CN112789035A - 具有作为抗癌剂活性的苯并环庚烯类似物和相关化合物 - Google Patents

具有作为抗癌剂活性的苯并环庚烯类似物和相关化合物 Download PDF

Info

Publication number
CN112789035A
CN112789035A CN201980064451.2A CN201980064451A CN112789035A CN 112789035 A CN112789035 A CN 112789035A CN 201980064451 A CN201980064451 A CN 201980064451A CN 112789035 A CN112789035 A CN 112789035A
Authority
CN
China
Prior art keywords
nmr
solvent
cdcl
etoac
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980064451.2A
Other languages
English (en)
Other versions
CN112789035B (zh
Inventor
K·G·平尼
H·牛
D·蒙达尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baylor University
Original Assignee
Baylor University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baylor University filed Critical Baylor University
Publication of CN112789035A publication Critical patent/CN112789035A/zh
Application granted granted Critical
Publication of CN112789035B publication Critical patent/CN112789035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • A61K31/09Ethers or acetals having an ether linkage to aromatic ring nuclear carbon having two or more such linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/11Aldehydes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/235Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/23Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/54Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/38Unsaturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings
    • C07C47/47Unsaturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/753Unsaturated compounds containing a keto groups being part of a ring containing ether groups, groups, groups, or groups
    • C07C49/755Unsaturated compounds containing a keto groups being part of a ring containing ether groups, groups, groups, or groups a keto group being part of a condensed ring system with two or three rings, at least one ring being a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/12Esters of phosphoric acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/12One of the condensed rings being a six-membered aromatic ring the other ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/32All rings being cycloaliphatic the ring system containing at least eleven carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一系列苯并环庚烯类似物表现出了有效的微管蛋白聚合抑制、对人癌细胞的细胞毒性以及在肿瘤中的血管破坏作用。

Description

具有作为抗癌剂活性的苯并环庚烯类似物和相关化合物
背景技术
本申请要求2018年8月17日提交的题为“具有作为抗癌剂活性的苯并环庚烯(benzosuberene)类似物和相关化合物”的美国临时专利申请序列号62/719,362的优先权,其全部内容通过引用合并于此。
本公开涉及微管蛋白聚合的有效小分子抑制剂及其用途。
癌症,医学上称为恶性肿瘤,是由涉及细胞生长失控的多种疾病组成。在癌症中,细胞不受控制地分裂和生长,形成恶性肿瘤,可以侵袭身体局部到末端。2007年,癌症占全球所有人类死亡的约13%(790万)。随着更多人的寿命延长以及发展中国家生活方式的改变,发病率正在上升。迫切需要发现和开发新的抗癌药。
实体瘤在大小超过1mm3时需要功能性脉管系统为其细胞提供氧气和养分。与正常的脉管系统不同,与肿瘤相关的血管网络往往会不规则地扩张,从而合并了脆弱而混乱的凸起和盲端。肿瘤相关脉管系统的原始特征和固有脆性,以及阻断已建立的肿瘤相关血流导致小鼠肿瘤消退的重要观察结果,使肿瘤相关脉管系统成为有希望的癌症治疗靶标。已经开发出两类小分子,以血管为靶标的疗法:抑制发展性肿瘤中新血管形成的血管生成抑制剂(angiogenesis inhibiting agent,AIA);以及分别不可逆地损害已建立的肿瘤相关脉管系统的血管破坏剂(vascular disrupting agent,VDA)。VDA的两个主要细分领域包括生物制剂和小分子抗癌药。多数小分子VDA起到微管蛋白聚合抑制剂的作用,通过与β-微管蛋白上靠近α,β-微管蛋白异二聚体界面的秋水仙碱位点结合,使微管蛋白-微管蛋白系统不稳定。响应于VDA结合秋水仙碱位点触发的对微血管内皮细胞微管蛋白-微管蛋白系统细胞骨架的抑制作用,微血管内皮细胞迅速发生细胞骨架破坏,表现为形态变化(扁平至圆形)。这种迅速的内皮细胞细胞骨架重排对肿瘤相关脉管系统造成不可逆转的损害,最终导致肿瘤坏死。
发明概述
本公开内容涉及一系列用作微管蛋白聚合小分子抑制剂的苯并环庚烯类似物,该小分子抑制剂既起到抗增殖剂(细胞毒素)的作用又起到血管破坏剂(VDA)的作用,对肿瘤相关脉管系统造成选择性和不可逆的损害,从使肿瘤失去了生存所需的血液、营养和氧气。
天然产物秋水仙碱、康普瑞汀(combretastatin)A-4(CA4)和康普瑞汀A-1(CA1)以及合成的类似物非他汀(phenstatin),都是微管蛋白聚合的有效秋水仙碱位点抑制剂,可起到有前途的VDA的作用。在世界范围内努力鉴定在人类中用作癌症治疗剂、具有必要功效和安全性的小分子秋水仙碱位点试剂时,这些分子为许多第二代(及以后)分子的设计、合成和生物学评估提供了结构灵感和指导。迄今为止,尚没有与秋水仙碱位点相互作用并起到抗增殖剂或VDA(或显示双重作用机制)作用的小分子治疗剂获得FDA批准。这些天然产物之间的结构相似性包括三甲氧基苯基环、单独的羟基化对甲氧基芳基部分以及以相当的质心到质心距离连接两个环的桥接官能度。图1A显示了微管蛋白聚合的代表性小分子抑制剂:秋水仙碱、康普瑞汀(CA4,CA1)、非他汀(phenstatin)、二氢萘类似物(KGP03、KGP05)、苯并环庚烯类似物(KGP18、KGP156)、吲哚类似物(OXi8006)和苯并[b]呋喃类似物(BNC105)。秋水仙碱位点的分子识别导致发现有前途的合成类似物和衍生物,包括图1A所示的芪类化合物(stilbenoid)、苯并[b]噻吩、苯并呋喃、二氢萘、苯并环庚烯和基于吲哚的分子。许多其他研究已经研究了对康普瑞汀A-4的A环、B环和乙烯桥的各种结构和官能团修饰。
从研究中发现了两种基于苯并环庚烯的类似物(称为KGP18及其氨基同源物KGP156),作为与潜在的临床前候选物具有高度相关性的分子,这部分原因是其对微管蛋白聚合的有效抑制作用、对人类癌细胞的明显细胞毒性以及作为VDA有前途的活性。研究已经探讨了微管蛋白结合苯并环庚烯和二氢萘分子框架的稠合环和侧芳基环上的各种官能团修饰。图1B显示了所选的KGP18衍生物作为微管蛋白聚合的抑制剂,其在A环的C-4位和B环的C-6、7、8位具有修饰。有趣的是,在一系列合成的11个成员中,苯并环庚烯B-环二烯类似物被鉴定为最有效的细胞毒性剂之一,并且该相同的分子(本文的化合物88)在本文中作为意外的产物获得。值得注意的是,已经报道了一类新的苯二氮卓类作为微管蛋白聚合抑制剂。
附图简要说明
图1A显示了微管蛋白聚合的代表性小分子抑制剂。
图1B显示了所选的KGP18衍生物作为微管蛋白聚合抑制剂。
图2显示了根据本文所述优选实施方案的示例性苯并环庚烯和二氢萘类似物。
图3显示了用于合成本文所述代表性化合物的合成方案1。
图4显示了用于合成本文所述代表性化合物的合成方案2。
图5显示了用于合成本文所述代表性化合物的合成方案3。
图6显示了用于合成本文所述代表性化合物的合成方案4。
图7显示了用于合成本文所述代表性化合物的合成方案5。
图8显示了用于合成本文所述代表性化合物的合成方案6。
图9显示了用于合成本文所述代表性化合物的合成方案7。
图10显示了用于合成本文所述代表性化合物的合成方案8。
图11显示了用于合成本文所述代表性化合物的合成方案9。
图12显示了在大鼠中对示例性血管破坏剂(VDA)的血管反应的BLI评估结果。
图13显示了在大鼠中施用VDA后的相对发光。
图14显示了通过氯磺酰异氰酸酯(CSI)形成Β-内酰胺的机理。
发明详述
本公开涉及作为微管蛋白聚合抑制剂的苯并环庚烯类似物。特别是,本公开涉及使用KGP18和KGP05作为前导化合物的一系列结构变化的类似物,并且进一步采用了我们的方法来研究A环(C-4位)和B环(C-6、7、8、9位)上的官能团修饰以及侧芳基环(C环)区域化学易位对抑制微管蛋白聚合和对几种人类癌细胞系的细胞毒性的影响。
已经探讨了各种官能团修饰,并且已经确定,这些取代的苯并环庚烯类似物的C-1位对于保持有效抑制微管蛋白组装具有特别重要的意义,这通过掺入羟基、甲氧基和卤素部分的分子进行了举例说明。由于这些苯并环庚烯类似物强大活性的启示,已经描述了实现苯并环庚烯骨架的有效闭环复分解(ring-closing metathesis,RCM)方法,并且已经开发了在不同位置具有取代基的其他苯并环庚烯类似物。然而,先前尚未研究过在C-1位上掺入碳链同系物和其他官能团以及在七元环上具有修饰官能团的苯并环庚烯类似物。
已经合成了图2描述的新苯并环庚烯和二氢萘类似物,并研究了它们对所选人类癌细胞系的细胞毒性和抑制微管蛋白聚合的能力。
本文所述苯并环庚烯和二氢萘类似物的优选实施方案包括具有以下结构的化合物:
Figure BDA0002999069450000031
其中R为CH3、(CH2)3CH3、O(CH2)2O(CH2)2OCH3、O(CH2)2OH、COOEt、CH2OH、CN或CHO,并且其中n为0或1。在其他优选实施方案中,当R为CN时,n为0。在其他优选实施方案中,当R为CH3、(CH2)3CH3、O(CH2)2O(CH2)2OCH3、O(CH2)2OH、COOEt、CH2OH、CN或CHO时,n为1。
本文所述苯并环庚烯和二氢萘类似物的其他优选实施方案包括具有以下结构的化合物:
Figure BDA0002999069450000041
其中R1为CH3、OH、OCH3或OH,R2为Br或H,且R3为H、OH或NHAc。在其他优选实施方案中,R1为CH3,R2为Br,且R3为H。在其他优选实施方案中,R1为OH,R2为Br,且R3为H。在其他优选实施方案中,R1为OCH3,R2为H,且R3为OH。在其他优选实施方案中,R1为OH,R2为H,且R3为NHAc。
本文所述苯并环庚烯和二氢萘类似物的其他优选实施方案包括具有以下结构的化合物:
Figure BDA0002999069450000042
其中R4为H、OH或(=O)。
本文所述苯并环庚烯和二氢萘类似物的其他优选实施方案包括具有以下结构的化合物:
Figure BDA0002999069450000043
其中R5为PO(ONa)2
本文所述苯并环庚烯和二氢萘类似物的其他优选实施方案包括具有以下结构之一的化合物:
Figure BDA0002999069450000051
另外的优选实施方案涉及抑制微管蛋白聚合的方法、破坏血管形成的方法和治疗癌症的方法,所述方法包括向患有癌症或肿瘤的个体施用本文所述优选实施方案的苯并环庚烯类似物。
本发明的另一方面提供了药物组合物,其包括治疗有效量的如上所定义的苯并环庚烯类似物和药学上可接受的赋形剂、佐剂、载体、缓冲剂或稳定剂。“治疗有效量”应理解为,足以对肿瘤或癌细胞的微管蛋白聚合、血管形成和/或增殖显示抑制作用的示例性益生素(probiotic)的量。给药的实际量、速率和时程应当取决于所治疗疾病的性质和严重性。治疗处方是全科医师和其他医师的责任。药学上可接受的赋形剂、佐剂、载体、缓冲剂或稳定剂应当是无毒的,并且不应干扰活性成分的功效。载体或其他材料的确切性质应当取决于给药途径,给药途径可以是口服或通过注射,例如皮肤、皮下或静脉内注射,或通过干粉吸入器。
口服给药的药物组合物可以是片剂、胶囊、粉末或液体形式。片剂可包含固体载体或佐剂。液体药物组合物通常包含液体载体,例如水,石油、动物油或植物油、矿物油或合成油。可以包括生理盐水溶液、葡萄糖或其他糖溶液或二醇,例如乙二醇、丙二醇或聚乙二醇。胶囊可包含固体载体,例如明胶。对于静脉内、皮肤或皮下注射,活性成分应当是不含热原且具有合适的pH、等渗性和稳定性的肠胃外可接受的水溶液形式。本领域相关技术人员能够很好地使用例如等渗媒介物例如氯化钠溶液、林格氏溶液(Ringer’s solution)或乳酸盐林格氏溶液来制备合适的溶液。可以根据需要包括防腐剂、稳定剂、缓冲剂、抗氧化剂和/或其他添加剂。
在另一方面,提供了治疗有效量的如上所定义的苯并环庚烯类似物在制造施用于个体的药物中的用途。
在整个说明书中使用的术语“药学上可接受的盐”应理解为是指由盐酸、硫酸、磷酸、乙酸、柠檬酸、草酸、丙二酸、水杨酸、苹果酸、富马酸、琥珀酸、抗坏血酸、马来酸、甲磺酸、异乙二磺酸(isoethonic acid)等,以及碳酸钾、氢氧化钠或氢氧化钾、氨、三乙胺、三乙醇胺等形成的任何酸或碱衍生的盐。
术语“前药”是指以无活性或无显著活性形式施用的药理物质。施用后,前药会在体内代谢成活性代谢物。
术语“治疗有效量”是指无毒但足以提供所需治疗效果的药物量。“有效”的量会因个体而异,这取决于个体的年龄和一般状况、所施用的具体浓度和组成等。因此,并非总是可能指定确切的有效量。但是,本领域普通技术人员可以使用常规实验来确定在任何个别情况下的适当有效量。此外,有效量是在足以允许立即应用制剂以便递送在治疗有效范围内的药物量的范围内的浓度。
本文所述苯并环庚烯类似物的某些优选实施方案涉及氯磺酰异氰酸酯诱导的环酮形成。氯磺酰异氰酸酯(CSI)最早由德国的Graf及其同事于二十世纪五十年代初发现,在室温下呈液态,在潮湿的空气中的烟气与水剧烈反应,并且与质子溶剂不相容。CSI可能是最具化学反应性的异氰酸酯。CSI是通用试剂,部分原因是该分子具有用于亲核试剂攻击的两个亲电子位点,即羰基碳和磺酰基的硫,并且在异氰酸酯部分可发生环加成反应。Graf和他的同事们在二十世纪六十年代首先开发了用CSI从烯烃合成β-内酰胺的方法。
CSI反应性的最常见类型之一是,涉及对异氰酸酯碳进行初始攻击的加成。CSI可能会受到诸如醇(硫醇/酚)和胺之类的亲核试剂的攻击,从而提供N-氯磺酰氨基甲酸酯和尿素衍生物。在某些情况下,可以通过CSI选择性衍生伯醇,而不会影响复杂分子中的其他立体中心和其他基团。图14显示了通过CSI形成β-内酰胺的机理。对于单取代的烯烃,该方法主要产生所需的β-内酰胺产物。但是,对于三取代的烯烃,可能会发生不同类型的反应,包括烯烃氢的取代或环化。对于这些反应,已经提出了一致和非一致的1,4-偶极机理。彻底研究了通过[2+2]环加成产生β-内酰胺的各种烯烃。但是,没有报道有相邻芳基环参与的环化酮的形成。
实施例1.合成
以无水形式使用四氢呋喃(THF)、四氯化碳、二氯甲烷、甲醇、二甲基甲酰胺(DMF)和乙腈。反应在氮气下进行。薄层色谱(TLC)板(预涂有硅胶60F254的玻璃板,厚度为0.25mm)用于监测反应。中间体和产物的纯化是用Biotage Isolera快速纯化系统,使用硅胶(200-400目,
Figure BDA0002999069450000061
)或RP-18预装柱进行或在玻璃柱中手动进行。使用VarianVNMRS500MHz或Bruker DPX 600MHz仪器,根据中间体和产物的1H NMR(500或600MHz)、13CNMR(125或150MHz)光谱数据对其进行表征。记录在CDCl3、D2O、(CD3)2CO或CD3OD中的光谱。所有化学位移均以ppm(δ)表示,峰模式报告为宽(br)、单峰(s)、双峰(d)、三重峰(t)、四重峰(q)、五重峰(p)、六重峰(sext)、七重峰(sept)、双双峰(dd)、双双双峰(ddd)和多重峰(m)。
使用具有二极管阵列检测器(λ=190-400nm)、Zorbax XDB-C18 HPLC柱(
Figure BDA0002999069450000071
Figure BDA0002999069450000072
5μm)以及Zorbax可靠盒保护柱(reliance cartridge guard-column)的Agilent1200HPLC系统,在25℃进一步分析最终化合物的纯度;方法:溶剂A,乙腈,溶剂B,H2O;梯度,在0-40min内从10%A/90%B到100%A/0%B;平衡时间(post-time)10min(分钟);流速1.0mL/min;进样量20μL;在210、230、254、280和320nm的波长下监测。除化合物27(254nm处94.3%)外,目标分子(具有已报告的生物学数据)的纯度≥95%(通过HPLC在一个或多个扫描波长处测定)。使用Thermo Scientific LTQ Orbitrap Discovery仪器在正或负ESI(电喷雾电离)下进行质谱分析。
图3显示方案1,化合物9的合成:1-甲基-2-甲氧基-5-(3′,4′,5′-三甲氧基苯基)-苯并环庚-5-烯。将叔醇(2.38g,6.4mmol)溶解于乙酸(15mL)中并搅拌6h。反应用水(100mL)淬灭,然后用EtOAc萃取,用盐水洗涤,并用Na2SO4干燥。浓缩有机层,并通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(3CV),7%A/93%B→60%A/40%B(10CV),60%A/40%B(1CV);流速:25mL/min;在254nm和280nm下监测],得到为白色粉末的目标分子(1.78g,5.0mmol,78%)。1H NMR(CDCl3,500MHz)δ6.86(1H,d,J=10.0Hz),6.70(1H,d,J=10.0Hz),6.52(2H,s),6.32(1H,t,J=7.5Hz),2.68(2H,t,J=6.5Hz),2.29(3H,s),2.12(2H,p,J=7.0Hz),1.91(2H,q,J=7.5Hz)。13C NMR(CDCl3,125MHz)δ156.5,152.8,143.5,141.7,138.6,137.3,133.0,127.4,126.5,123.2,107.4,105.3,60.9,56.1,55.5,34.0,27.7,25.5,11.8。HRMS:实测值355.1906[M+H]+,理论值C22H27O5:355.1904。HPLC:19.87min。
图4显示了方案2,合成化合物20:4-丁基-3-甲氧基-9-(30,40,50-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯。将叔醇(0.76g,1.8mmol)溶解于乙酸(10mL)中,并将反应混合物搅拌6h。反应用水(50mL)淬灭,并用EtOAc(3×20mL)萃取。合并的有机相用盐水洗涤,用Na2SO4干燥并在减压下浓缩。粗反应产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(3CV),7%A/93%B?60%A/40%B(10CV),60%A/40%B(1CV);流速:40mL/min;在254nm和280nm下监测],得到为淡黄色油的目标分子(0.76g,1.8mmol,定量)。1H NMR(CDCl3,500MHz)d 6.84(1H,d,J=8.5Hz),6.69(1H,d,J=8.5Hz),6.51(2H,s),6.32(1H,t,J=7.4Hz),3.86(3H,s),3.83(3H,s),3.81(6H,s),2.74(2H,m),2.68(2H,t,J=6.9Hz),2.13(2H,p,J=7.0Hz),1.91(2H,q,J=7.3Hz),1.53(2H,m),1.46(2H,m),0.98(3H,t,J=7.3Hz)。13C NMR(CDCl3,125MHz)d 156.4,152.8,143.5,141.2,138.7,137.3,133.1,128.5,127.5,126.4,107.5,105.3,60.9,56.2,55.4,34.9,32.9,27.3,26.3,25.5,23.2,14.1.HRMS:Obsd 397.2374[M+H]+,calcd for C25H33O4:397.2373.HPLC:22.30min。
图5显示了方案3,合成化合物23、24、28、31、33、34和35。结构修饰包括:1)稠合芳基环上的官能团(R)修饰,包括安装醇、醛、腈、酯基以及醚键,以促进极性醇部分从稠合的六-七环系统中延伸出去;2)在引入-Br、-OH和-NHAc基团的七元环的烯烃和烯丙基位置上掺入R2和R3;3)与叔醇位点相邻的稠合脂族环的修饰(R4位置);4)在稠合的非芳族环上的烯烃化和三甲氧基苯基环侧基的区域化学。类似物23、24、28、31、33、35的合成是从常见的中间体酮21开始的,该中间体酮21可利用先前的方法学容易地获得。用三甲氧基苯基锂(由相应的溴化物制备)处理苯并环庚酮21产生叔醇22,随后在除去酚类TBS保护基后将其转化为二醇23。分别地,将叔醇22转化为其相应的苯并环庚烯26,将其用一系列氧化剂(m-CPBA、NBS、OsO4)处理以促进环氧化,然后开环和氧化、溴化和Upjohn二羟基化。除去保护基后,获得目标化合物24、33和35。类似地,4-甲基苯并环庚烯32(9)(先前制备的)与NBS/AIBN的反应得到乙烯基溴化物33。将也可通过此方法获得的先导化合物27(称为KGP18)直接转化为其相应的醚类似物28和31(方案3)。
1-((叔丁基二甲基甲硅烷基)氧基)-2-甲氧基-5-(3,4,5-三甲氧基苯基)-6,7,8,9-四氢-5H-苯并[7]轮烯(annulen)-5-醇(22)。向烘箱干燥的烧瓶中,加入THF(10mL)和3,4,5-三甲氧基苯基溴化物(0.89g,3.6mmol),并将溶液冷却至-78℃。将正丁基锂(1.44mL,3.60mmol)滴加到反应混合物中,然后将反应混合物在-78℃下搅拌1h。然后将在THF(5mL)中的TBS保护的酮(21)(0.77g,2.4mmol)缓慢加入到烧瓶中,并搅拌反应混合物,同时在12h内从-78℃升温至室温。反应混合物用水淬灭,并用EtOAc(3×30mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:2%A/98%B(1CV),2%A/98%B→20%A/80%B(10CV),20%A/80%B(2CV);流速:50mL/min;在254nm和280nm下监测],得到为澄清油的叔醇22(1.05g,2.15mmol,89%)。1H NMR(500MHz,CDCl3)δ7.15(1H,d,J=9Hz),6.69(1H,d,J=9Hz),6.50(2H,s),3.84(3H,s),3.80(3H,s),3.75(6H,s),3.29(1H,m),2.56(1H,m),2.26(1H,m),2.12(2H,m),1.90(1H,m),1.75(2H,m),0.99(9H,s),0.17(3H,s),0.15(3H,s)。13C NMR(125MHz,CDCl3)δ153.1,149.4,142.0,141.9,138.7,137.3,132.9,119.8,108.0,104.4,80.2,61.0,56.2,54.8,41.4,27.1,26.4,26.2,25.5,19.1,-3.8,-4.0。
2-甲氧基-5-(3,4,5-三甲氧基苯基)-6,7,8,9-四氢-5H-苯并[7]轮烯-1,5-二醇(23)。将TBS保护的叔醇22(0.41g,0.84mmol)溶解于THF(6mL)中,并添加TBAF(1.01mL,在THF中1M,1.01mmol),并将反应混合物在室温下搅拌4h。溶液用水洗涤,并用EtOAc(3×20mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的10g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:3%A/97%B(1CV),3%A/97%B→30%A/70%B(10CV),30%A/70%B(2CV);流速:12mL/min;在254nm和280nm下监测],得到为无色油的酚(0.11g,0.29mmol,35%)。1H NMR(500MHz,CDCl3)δ7.04(1H,d,J=9Hz),6.70(1H,d,J=9Hz),6.52(2H,s),5.79(1H,s),3.91(3H,s),3.84(3H,s),3.76(6H,s),3.23(1H,m),2.56(1H,m),2.35(1H,m),2.11(1H,m),1.92(1H,m),1,75(2H,m),1.47(1H,m)。13C NMR(125MHz,CDCl3)δ153.1,145.6,142.7,141.9,139.4,137.3,127.2,118.2,107.3,104.4,80.2,61.0,56.3,56.0,41.5,26.8,26.3,24.7。HRMS:实测值397.1623[M+Na+],理论值C21H26O6Na:397.1622。HPLC:16.33min。
叔丁基((3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-基)氧基)二甲基硅烷(26)。将TBS保护的叔醇22(0.64g,1.3mmol)溶解于乙酸(10mL)中,并将反应混合物在室温下搅拌6h。减压除去未反应的乙酸。所得反应混合物用水洗涤,并用EtOAc(3×30mL)萃取。合并的有机萃取物用盐水洗涤,用硫酸钠干燥,减压蒸发,并通过快速色谱法使用预装的25g硅胶柱纯化[溶剂A:EtOAc,溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→50%A/50%B(10CV),50%A/50%B(2CV);流速:25mL/min;在254nm和280nm下监测],得到透明油,固化为TBS保护的苯并环庚烯类似物26无色固体(0.41g,0.87mmol,66%)。1H NMR(CDCl3,500MHz)δ6.68(1H,d,J=8.5Hz),6.61(1H,d,J=8.5Hz),6.48(2H,s),6.32(1H,t,J=7Hz),3.85(3H,s),3.81(3H,s),3.79(6H,s),2.76(2H,t,J=7Hz),2.10(2H,m),1.95(2H,m),1.04(9H,s),0.23(6H,s)。13CNMR(CDCl3,125MHz)δ152.9,148.8,143.2,141.6,138.8,137.3,133.9,133.4,127.0,122.5,108.5,105.3,61.0,56.2,54.8,34.1,26.3,25.7,24.4,19.2,-3.7。
1-(叔丁基二甲基甲硅烷基)氧基)-5-羟基-2-甲氧基-5-(3,4,5-三甲氧基苯基)-5,7,8,9-四氢-6H-苯并[7]轮烯-6-酮(25)。在-5℃下,向溶解于CH2Cl2(20mL)中的TBS保护的苯并环庚烯26(0.51g,1.1mmol)的溶液中加入m-CPBA(0.36g,2.1mmol),并将反应混合物搅拌2h,然后在室温下放置12h。溶液用饱和Na2S2O3和饱和NaHCO3洗涤,并用CH2Cl2(3x20mL)萃取。合并的有机层用硫酸钠干燥,并减压蒸发。粗产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为黄色油的叔醇25(0.256g,0.51mmol,47%)。1H NMR(600MHz,CDCl3)δ7.26(1H,d,J=9Hz),6.76(1H,d,J=9Hz),6.42(2H,s),5.01(1H,s),3.83(3H,s),3.81(3H,s),3.75(6H,s),3.10(2H,m),2.82(1H,m),2.70(1H,m),1.98(1H,m),1.76(1H,m)。13C NMR(150MHz,CDCl3)δ211.1,153.4,150.2,142.1,138.0,137.5,131.4,131.1,127.8,109.1,105.2,85.6,61.0,56.3,54.8,39.7,26.2,25.8,24.2,19.1,-3.7,-3.9。
1,5-二羟基-2-甲氧基-5-(3,4,5-三甲氧基苯基)-5,7,8,9-四氢-6H-苯并[7]轮烯-6-酮(24)。将TBS保护的苯并环庚烷(benzosuberane)25(0.17g,0.33mmol)溶解于THF(10mL)中。加入TBAF(0.33mL,1M,0.33mmol),并将反应混合物在室温、在0℃下搅拌1h。加入盐水(30mL)溶液,反应混合物用EtOAc(3×30mL)萃取。合并的有机相用硫酸钠干燥,过滤,减压蒸发,并通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],到为白色固体的酚24(123mg,0.320mmol,96%)。1H NMR(600MHz,CDCl3)δ7.17(1H,d,J=8.4Hz),6.77(1H,d,J=9Hz),6.43(2H,s),5.88(1H,s),5.00(1H,s),3.90(3H,s),3.82(3H,s),3.74(6H,s),3.08(2H,m),2.84(1H,m),2.68(1H,m),1.99(1H,m),1.83(1H,m)。13C NMR(150MHz,CDCl3)δ211.0,153.3,146.4,142.8,138.0,137.2,131.6,125.7,120.2,108.4,105.2,85.5,60.9,56.3,56.0,39.4,25.4,23.3.HRMS:实测值411.1414[M+Na+],理论值C21H24O7Na:411.1414。HPLC:15.75min。
3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-醇(27)。将TBS保护的苯并环庚烯24(0.41g,0.87mmol)溶解于THF(10mL)中。加入TBAF(1.13mL,1.13mmol),并将反应混合物在室温下搅拌1h。溶液用水洗涤,并用EtOAc(3×20mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的10g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:3%A/97%B(1CV),3%A/97%B→30%A/70%B(10CV),30%A/70%B(2CV);流速:12mL/min;在254nm和280nm下监测],得到为白色固体的酚27(0.25g,0.70mmol,81%)。1H NMR(CDCl3,500MHz)δ6.71(1H,d,J=9Hz),6.56(1H,d,J=9Hz),6.50(2H,s),6.34(1H,t,J=7.5Hz),5.74(1H,s),3.91(3H,s),3.86(3H,s),3.80(6H,s),2.76(2H,t,J=7Hz),2.14(2H,m),1.97(2H,m)。13C NMR(CDCl3,125MHz)δ152.9,145.2,142.9,142.4,138.6,134.4,127.9,127.4,121.0,110.1,107.8,105.4,61.1,56.3,56.1,33.7,25.9,23.7。
3-甲氧基-4-(2-(2-甲氧基乙氧基)乙氧基)-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯(28)。将酚27(0.11g,0.31mmol)溶解于DMF(6mL)中,并加入K2CO3(0.12g,0.86mmol)。将该溶液在室温下搅拌20min。加入纯度为90%的1-溴-2-(2-甲氧基乙氧基)乙烷(0.07mL,0.5mmol),将反应混合物在室温下搅拌15h。溶液用水洗涤,并用EtOAc(3×40mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的10g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:3%A/97%B(1CV),3%A/97%B→30%A/70%B(20CV),30%A/70%B(2CV);流速:12mL/min;在254nm和280nm下监测],得到为无色油的醚28(25mg,0.06mmol,18%)。1H NMR(500MHz,CDCl3)δ6.74(2H,m),6.48(2H,s),6.32(1H,t,J=7.5Hz),4.18(2H,t,J=5Hz),3.87(2H,t,J=5.5Hz),3.85(6H,s),3.79(6H,s),3.76(2H,m),3.60(2H,m),3.40(3H,s),2.78(2H,t,J=6.5Hz),2.13(2H,m),1.93(2H,m)。13C NMR(125MHz,CDCl3)δ152.9,151.5,145.1,142.9,138.5,137.4,136.1,133.8,127.3,125.3,109.3,105.3,72.8,72.2,70.78,70.77,61.0,59.2,56.2,55.7,34.5,25.7,24.2。HRMS:实测值481.2198[M+Na+],理论值C26H34O7Na:481.2197。HPLC:21.65min。
((8-溴-3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-基)氧基)(叔丁基)二甲基硅烷(29)。向TBS保护的苯并环庚烯(102mg,0.22mmol)在CCl4(30mL)中的溶液中加入NBS(46mg,0.26mmol)和AIBN(3.6mg,0.02mmol)。将该溶液回流加热2h,然后加入水(20mL),并用CH2Cl2(3x 30mL)萃取。合并的有机相用硫酸钠干燥,过滤,并在减压下除去溶剂。获得的粗产物为黄色油,无需进一步纯化即可直接用于下一步。
1-((叔丁基二甲基甲硅烷基)氧基)-2-甲氧基-5-(3,4,5-三甲氧基苯基)-6,7,8,9-四氢-5H-苯并[7]轮烯-5,6-二醇(30)。在室温下,向TBS保护的苯并环庚烯26(1.00g,2.12mmol)在丙酮/水(35mL/15mL)的溶液中加入OsO4(270mg,1.06mmol)和N-甲基吗啉-N-氧化物(0.66mL,4.8M,3.2mmol),并将反应混合物搅拌12h。加入饱和亚硫酸氢钠(20mL)溶液,并将反应混合物用EtOAc(5×20mL)萃取。合并的有机萃取物用盐水洗涤,用硫酸钠干燥,过滤,减压蒸发,并通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为橙色油的二醇30(0.35mg,0.69mmol,33%)。1HNMR(600MHz,CDCl3)δ7.30(1H,d,J=8.4Hz),6.74(1H,d,J=9Hz),6.47(2H,s),4.51(1H,s,b),3.81(3H,s),3.80(3H,s),3.72(6H,s),3.42(1H,m),3.33(1H,s),2.15(1H,m),1.96(2H,m),1.83(1H,m),1.62(1H,m),1.51(1H,m),0.98(9H,s),0.15(6H,d,J=3.6Hz)。13C NMR(150MHz,CDCl3)δ153.1,149.8,142.0,138.8,137.7,133.1,132.7,122.3,108.5,105.0,83.1,76.5,60.9,56.2,54.7,32.7,26.2,25.9,21.3,19.0,-3.9,-4.0。
2-((3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-基)氧基)乙-1-醇(31)。将酚27(0.14g,0.39mmol)溶解于DMF(3mL)中,然后同时加入碳酸亚乙酯(70mg,0.79mmol)和四丁基溴化铵(0.13g,0.39mmol)。搅拌溶液并回流加热24h。反应混合物用盐水稀释,用EtOAc(3×10mL)萃取,并将合并的有机层用硫酸钠干燥,过滤,减压浓缩,并且通过快速色谱法使用预装的25g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:25mL/min;在254nm和280nm下监测],得到醇31(0.11g,0.27mmol,68%)。1HNMR(500MHz,CDCl3)δ6.76(2H,m),6.47(2H,s),6.33(1H,t,J=7.5Hz),4.12(2H,m),3.89(2H,m),3.88(3H,s),3.84(3H,s),3.79(6H,s),2.75(2H,t,J=7Hz),2.15(2H,m),1.95(2H,m)。13C NMR(125MHz,CDCl3)δ152.9,151.1,145.0,142.8,138.3,137.4,136.1,134.2,127.3,125.7,109.2,105.3,76.1,62.2,61.0,56.2,55.8,34.6,25.6,24.6。HRMS:实测值423.1780[M+Na+],理论值C23H28O6Na:423.1778。HPLC:13.77min。
8-溴-3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-醇(33)。将溴化苯并环庚烯29(0.12g,0.22mmol,粗产物)溶解于THF(20mL)中,并在0℃下将TBAF(0.22mL,1M,0.22mmol)添加到溶液中。将反应混合物搅拌1h,用盐水(20mL)洗涤,并用EtOAc(3×30mL)萃取。合并的有机相用硫酸钠干燥,过滤,并减压蒸发。所得物质通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为白色晶状固体的溴化酚333(在两个步骤内,97mg,0.22mmol,100%)。1H NMR(600MHz,CDCl3)δ6.63(1H,d,J=8.4Hz),6.45(2H,s),6.41(1H,d,J=8.4Hz),5.74(1H,s),3.88(3H,s),3.87(3H,s),3.80(6H,s),2.88(2H,t,J=7.2Hz),2.58(2H,t,J=7.2Hz),2.26(2H,m)。13C NMR(150MHz,CDCl3)δ152.7,145.5,142.5,140.8,137.9,137.3,135.3,126.4,121.5,121.1,108.0,107.5,61.0,56.3,56.1,38.5,32.5,23.2。HRMS:实测值457.0621[M+Na+],理论值C21H23BrO5Na:457.0621。HPLC:17.54min。
8-溴-3-甲氧基-4-甲基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯(34)。将KGP391 32(9)(68mg,0.19mmol)溶解于CCl4(20mL)中,并小心加入NBS(37mg,0.21mmol)和AIBN(3.1mg,0.02mmol),避免摇动或用金属刮刀刮擦,因为AIBN可能爆炸。将反应混合物回流并搅拌2h。将该溶液用水洗涤,并用CH2Cl2萃取,将有机相进一步用盐水洗涤并用硫酸钠干燥,过滤,减压浓缩,并通过快速色谱法使用预装的10g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:6%A/94%B(1CV),6%A/94%B→70%A/30%B(10CV),70%A/30%B(2CV);流速:12mL/min;在254nm和280nm下监测],得到为白色固体的溴化苯并环庚烯类似物34(66mg,0.15mmol,80%)。1H NMR(600MHz,CDCl3)δ6.70(1H,d,J=7Hz),6.62(1H,d,J=7Hz),6.47(2H,s),3.88(3H,s),3.81(9H,s),2.81(2H,m),2.53(2H,m),2.26(3H,s),2.24(2H,m)。13C NMR(150MHz,CDCl3)δ156.8,152.7,141.4,140.2,138.0,137.2,134.2,127.6,123.5,120.5,107.7,107.4,61.0,56.3,55.6,38.3,33.0,27.5,11.9。HRMS:实测值457.0808[M+Na+],理论值C22H25BrO4Na:455.0828。HPLC:25.38min。
2-甲氧基-5-(3,4,5-三甲氧基苯基)-6,7,8,9-四氢-5H-苯并[7]轮烯-1,5,6-三醇(35)。在0℃下,向TBS保护的酚30(0.35g,0.69mmol)在THF(20mL)中的溶液中加入TBAF(0.76mL,在THF中1M,0.76mmol)。将反应混合物搅拌1h,随后用盐水(30mL)洗涤,并用EtOAc(3×30mL)萃取。所得有机相用硫酸钠干燥,过滤,减压蒸发,并且通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→100%A/0%B(10CV),100%A/0%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为黄色固体的二醇酚35(138mg,0.35mmol,51%)。1HNMR(600MHz,CDCl3)δ7.24(1H,d,J=8.4Hz),6.78(1H,d,J=8.4Hz),6.51(2H,s),5.82(1H,s),4.56(1H,m),3.93(3H,s),3.83(3H,s),3.75(6H,s),3.37(1H,m),3.21(1H,s),2.24(1H,m),2.05(1H,m),1.96(1H,m),1.69(2H,m)。13C NMR(150MHz,CDCl3)δ153.3,146.1,142.8,138.6,137.9,133.8,127.0,120.6,107.9,105.2,83.3,76.8,61.0,56.3,56.0,32.7,25.1,21.2。HRMS:实测值413.1571[M+Na+],理论值C21H26O7Na:413.1571。HPLC:13.71min。
图6显示了方案4,化合物38、39和40的合成。使可从我们先前的合成研究中容易获得的先导化合物苯并环庚烯36(称为KGP156)及其相应的二氢萘类似物37(称为KGP05)进行Sandmeyer自由基-亲核芳族取代方案,以生成腈类似物38和39(方案4)。在随后还原腈类似物之后获得苯并环庚烯醛类似物40。
3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-甲腈(38)。在0℃下,向在2M HCl/CH3OH溶液(5mL/5mL)中的KGP156(0.10g,0.28mmol)中加入NaNO2(77.7mg,1.12mmol),并将混合物搅拌1h。加入CuCN(50.4mg,0.56mmol),并将反应混合物在60℃下加热2h。加入Na2CO3和NaCN(各50mg),并将反应混合物在室温下搅拌12h。加入饱和的FeCl3溶液(50mL)以淬灭反应,并将反应混合物用EtOAc(3×30mL)萃取。合并的有机相用盐水和饱和NaHCO3溶液洗涤,然后用硫酸钠干燥,并减压蒸发。粗反应物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为黄色固体的腈38(41mg,0.11mmol,40%)。1H NMR(600MHz,CDCl3)δ7.20(1H,d,J=8.4Hz),6.80(1H,d,J=8.4Hz),6.43(1H,t,J=7.8Hz),6.42(2H,s),3.94(3H,s),3.86(3H,s),3.80(6H,s),2.90(2H,t,J=7.2Hz),2.26(2H,m),1.94(2H,m)。13C NMR(150MHz,CDCl3)δ160.7,153.1,147.5,141.6,137.6,137.5,134.9,133.4,128.7,116.1,108.5,105.0,101.7,61.1,56.3,56.2,34.8,25.7,25.4。HRMS:实测值388.1521[M+Na+],理论值C22H23NO4Na:388.1519。HPLC:20.75min。
2-甲氧基-5-(3,4,5-三甲氧基苯基)-7,8-二氢萘-1-甲腈(39)。将KGP05(48.6mg,0.14mmol)溶解于2M HCl/CH3OH(2mL/2mL)中。将溶液冷却至0℃,加入NaNO2(39.2mg,0.56mmol),并将得到的反应混合物在0℃下搅拌1h。将反应混合物在60℃下加热2h,然后加入CuCN(25.5mg,0.28mmol)。将反应混合物冷却至室温后加入Na2CO3和NaCN,以将pH调节至10,并提供更多的腈离子以提高产率,随后再搅拌12h。加入FeCl3淬灭反应,然后用EtOAc(3×20mL)萃取。合并的有机相用盐水和饱和NaHCO3溶液洗涤,用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为白色泡沫的腈39(17mg,0.046mmol,32%)。1H NMR(600MHz,CDCl3)δ7.20(1H,d,J=8.4Hz),6.69(1H,d,J=9Hz),6.50(2H,s),6.03(1H,t,J=4.8Hz),3.91(3H,s),3.88(3H,s),3.84(6H,s),3.06(2H,t,J=7.8Hz),2.43(2H,m)。13C NMR(150MHz,CDCl3)δ160.3,153.3,142.9,138.5,137.6,135.8,130.8,128.8,126.1,115.6,108.3,105.8,101.6,61.1,56.3,56.2,26.8,22.7。HRMS:实测值374.1363[M+Na+],理论值C21H21NO4Na:374.1363.HPLC:20.92min。
3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-甲醛(40)。在0℃下,向腈38(48mg,0.13mmol)在甲苯(15mL)的溶液中加入DIBAL-H(0.16mL,1M,0.16mmol),并将所得溶液搅拌12h,同时升温到室温。向反应混合物中加入1M HCl(100mL),将其在室温下搅拌30min,同时溶液颜色变为黄色。使用EtOAc(3×50mL)萃取有机化合物。合并的有机相用硫酸钠干燥,并减压浓缩。粗产物通过快速色谱法,使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为白色固体的醛40(37.8mg,0.10mmol,78%)。1H NMR(600MHz,CDCl3)δ10.68(1H,s),7.18(1H,d,J=7.2Hz),6.82(1H,d,J=8.4Hz),6.47(2H,s),6.43(1H,t,J=7.8Hz),3.92(3H,s),3.86(3H,s),3.81(6H,s),2.99(2H,m),2.27(2H,m),1.91(2H,m)。13C NMR(150MHz,CDCl3)δ193.3,161.8,153.2,145.2,141.9,138.2,137.6,135.5,134.7,128.8,123.7,108.7,105.3,61.1,56.3,55.9,31.7,25.7,22.8。HRMS:实测值391.1519[M+Na+],理论值C22H24O5Na:391.1516。HPLC:22.39min。
图7显示了方案5,化合物47和48的合成。作为较大项目的一部分,所述项目关注使用强细胞毒性的苯并环庚烯和二氢萘类似物作为抗体-药物缀合物(ADCs)中的有效载荷,并用作在严重肿瘤缺氧区靶向选择性释放的前药,考虑用以伯醇(或氨基)部分终止的短碳链取代4-位杂原子[氧(酚)或氮(苯胺)],从而维持其氢键供体性质,并充当将来连接各种接头的可行位置的可能性。因此,酚溴醛41的甲基化(方案5),然后进行Wittig烯烃化,随后进行氢化反应(在Ph2S介导下保持芳基溴基),得到甲酯44。通过伊顿试剂(Eaton’sreagent)(CH3SO3H中的P2O5重量百分比为7.7%)促进的分子内Friedel-Crafts环化,获得苯并环庚酮45,随后用三甲氧基苯基锂处理化合物45,然后在酸性条件下进行反应后处理(reaction work-up),生成苯并环庚烯中间体46。先前已研究了相应的氟和氯苯并环庚烯类似物。进行卤素-锂交换,然后与氯甲酸乙酯反应,得到乙酯47,将其还原(LiAlH4),生成苯甲醇48。值得注意的是,尽管已证明可以直接从中间体46获得类似物48,但分离出的收率在这些条件下非常低(≤8%),这可能部分是由于低聚甲醛在低温下在THF中的溶解度低以及其作为聚合物的反应性低。
2-溴-3-甲氧基苯甲醛(42)。向2-溴-3-羟基苯甲醛41(2.50g,12.4mmol)在DMF(50mL)中的溶液中加入CH3I(1.01mL,16.2mmol)和K2CO3(1.35g,13.7mmol)。将反应混合物在室温下搅拌3h。减压除去溶剂,残余物用水(50mL)洗涤,并用EtOAc(3×50mL)萃取。合并有机相,浓缩,无需进一步纯化,得到为褐色固体的2-溴-3-甲氧基苯甲醛42(2.67g,12.4mmol,100%)。1H NMR(600MHz,CDCl3)δ10.44(1H,s),7.52(1H,d,J=7.8Hz),7.38(1H,t,J=7.8Hz),7.13(1H,d,J=8.4Hz),3.96(3H,s)。13C NMR(150MHz,CDCl3)δ192.4,156.4,134.9,128.5,121.6,117.3,117.1,56.8。
5-(2-溴-3-甲氧基苯基)-4-戊烯酸(43)。向溶解于THF(250mL)中的3-(羧丙基)三苯基溴化膦(5.33g,12.4mmol)中加入叔丁醇钾(3.08g,27.3mmol),并将该反应混合物在室温下搅拌1h。加入2-溴-3-甲氧基苯甲醛42(2.67g,16.2mmol),并将反应混合物在室温下搅拌12h。减压除去THF,将得到物质淬灭,用2M HCl(30mL)酸化,并用EtOAc(3×50mL)萃取。合并的有机相用硫酸钠干燥,过滤,并减压蒸发。粗反应产物通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为白色固体的羧酸43(1.74g,6.10mmol,49%)。在下一步之后进行NMR表征。
5-(2-溴-3-甲氧基苯基)戊酸甲酯(44)。向溶解于CH3OH(30mL)中的羧酸43(0.69g,2.42mmol)中加入10%钯碳(0.26g)、Ph2S(40μL,0.24mmol)和两个充有氢气的气球。搅拌24h后,将混合物用
Figure BDA0002999069450000151
过滤,并将
Figure BDA0002999069450000152
用EtOAc(3×50mL)洗涤。减压蒸发合并的有机相(CH3OH和EtOAc)。残余物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的饱和酯44(0.48g,1.6mmol,66%)。1H NMR(600MHz,CDCl3)δ7.54(1H,t,J=7.8Hz),7.19(1H,d,J=8.4Hz),7.10(1H,d,J=7.8Hz),4.24(3H,s),4.02(3H,s),3.14(2H,m),2.72(2H,m),2.07(2H,m),2.02(2H,m)。13C NMR(150MHz,CDCl3)δ174.2,156.1,143.3,127.8,122.5,113.9,109.5,56.4,51.6,36.1,34.0,29.4,24.8。
1-溴-2-甲氧基-6,7,8,9-四氢-5H-苯并[7]轮烯-5-酮(45)。向酯44(0.48g,1.6mmol)中加入伊顿试剂(8.5mL),并将混合物在室温下搅拌12h。然后将反应混合物倒在冰上,并用碳酸钠中和。将水层用EtOAc(3×40mL)萃取。合并的有机相用硫酸钠干燥,减压蒸发,并且通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的苯并环庚酮45(0.20g,0.74mmol,47%)。1HNMR(600MHz,CDCl3)δ7.63(1H,d,J=8.4Hz),6.82(1H,d,J=8.4Hz),3.94(3H,s),3.17(2H,m),2.69(2H,m),1.85(2H,m),1.75(2H,m)。13C NMR(150MHz,CDCl3)δ205.2,159.0,142.1,133.7,129.1,114.1,109.4,56.6,40.5,31.2,23.9,20.7。
4-溴-3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯(46)。向烘箱干燥的烧瓶中,加入THF(20mL)和3,4,5-三甲氧基苯基溴化物(1.12g,4.53mmol),并将溶液冷却至-78℃。向反应混合物中缓慢加入正丁基锂(1.81mL,2.5M,4.52mmol),然后在-78℃下搅拌45min。然后将苯并环庚酮45(0.61g,2.3mmol)滴加到烧瓶中,并搅拌反应混合物,同时在12h内从-78℃升温至室温。反应混合物用水洗涤,并用EtOAc(3×40mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→20%A/80%B(10CV),20%A/80%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为白色固体的溴化苯并环庚烯46(0.46g,1.1mmol,49%)。1HNMR(600MHz,CDCl3)δ6.97(1H,d,J=8.4Hz),6.75(1H,d,J=8.4Hz),6.48(2H,s),6.37(1H,t,J=7.8Hz),3.92(3H,s),3.86(3H,s),3.81(6H,s),2.95(2H,t,J=7.2Hz),2.17(2H,m),1.92(2H,m)。13C NMR(150MHz,CDCl3)δ154.9,153.1,143.0,142.8,138.0,137.6,134.4,129.1,127.8,113.4,109.1,105.3,61.0,56.4,56.3,33.8,31.9,25.4。
3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-羧酸乙酯(47)。在-78℃下,向溴化苯并环庚烯46(0.15g,0.36mmol)在THF(20mL)中的溶液中滴加正丁基锂(0.34mL,1.6M,0.54mmol)。将反应混合物在-78℃下搅拌30min,然后加入氯甲酸乙酯(61.5μL,0.64mmol)。搅拌反应混合物,同时在12h内从-78℃升温至室温。反应混合物用水洗涤,并用EtOAc(3×30mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的苯并环庚烯酯(benzosuberene ester)47(51.8mg,0.13mmol,35%)。1H NMR(600MHz,CDCl3)δ7.03(1H,d,J=8.4Hz),6.76(1H,d,J=9Hz),6.47(2H,s),6.37(1H,t,J=7.8Hz),4.43(2H,q,J=7.2Hz),3.85(3H,s),3.84(3H,s),3.79(6H,s),2.56(2H,t,J=6.6Hz),2.17(2H,m),1.96(2H,m),1.41(3H,t,J=7.2Hz)。13C NMR(150MHz,CDCl3)δ168.8,155.2,153.0,142.3,140.2,138.1,137.5,133.2,131.6,127.7,123.4,108.6,105.2,61.4,61.0,56.3,55.9,34.9,29.6,25.3,14.4。HRMS:实测值435.1778[M+Na+],理论值C24H28O6Na:435.1778。HPLC:22.42min。
(3-甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-4-基)甲醇(48)。将酯47(0.12g,0.28mmol)溶解于THF(10mL)中,并将溶液冷却至0℃。将LiAlH4(77μL,在醚中4M,0.31mmol)滴加到该溶液中,将反应混合物搅拌1h,同时升温至室温。反应混合物用水洗涤,并用EtOAc(3×20mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为白色固体的苯甲醇48(54.3mg,0.15mmol,52%)。1H NMR(600MHz,CDCl3)δ6.97(1H,d,J=9Hz),6.75(1H,d,J=9Hz),6.50(2H,s),6.35(1H,t,J=7.8Hz),4.87(2H,s),3.89(3H,s),3.86(3H,s),3.81(6H,s),2.79(2H,t,J=7.2Hz),2.16(2H,p,J=7.2Hz),1.92(2H,m)。13C NMR(150MHz,CDCl3)δ157.1,153.1,143.3,142.4,138.5,137.5,133.8,130.2,127.1,126.0,107.9,105.4,61.1,57.7,56.3,55.7,35.3,27.6,25.4。HRMS:实测值393.1672[M+Na+],理论值C22H26O5Na:393.1672。HPLC:19.09min。
图8显示了方案6,化合物57和69的合成。制备仲烯丙醇57及其相应的N-乙酰基同源物69(方案6),以研究与构象柔性稠合七元环上杂原子掺入有关的结构-活性关系相关性。麦氏酸(Meldrum’s acid)(向57)和Wittig-ylide方法(向69)促进了适当的醛链延长,随后官能团转化(包括在皂化条件下获得的羧酸部分的安装)分别得到了被保护的醇54和N-乙酰胺65。通过用四氯化锡(以获得酮55)或伊顿试剂(以获得酮66)处理必需的酰氯,实现了获得苯并环庚酮分子核的路易斯酸介导的环化。在每种情况下,通过与3,4,5-三甲氧基苯基锂反应来安装侧环。在有机锂步骤之前暴露(通过脱保护)仲醇部分(目标化合物57),而在有机锂反应之后暴露酚部分(目标化合物69)(方案6)。如果用路易斯酸,如AlCl3或BCl3处理,化合物56和57都先进行去除(烯丙醇),然后脱甲基。
S 3-(2,3-二甲氧基苯基)丙酸(50)。向肉桂酸49(5.0g,24mmol)中加入甲醇(50mL)和10%Pd/C(0.8g)。通过橡胶隔片安装两个氢气球,并将反应混合物在室温下搅拌4h。用
Figure BDA0002999069450000171
过滤反应混合物,并用EtOAc(3×50mL)洗涤
Figure BDA0002999069450000172
减压蒸发有机溶剂(CH3OH和EtOAc),得到为白色固体的羧酸50(5.0g,24mmol,定量)。无需进一步纯化。1H NMR(600MHz,CDCl3)δ6.98(1H,t,J=7.8Hz),6.78(2H,m),3.86(3H,s),3.84(3H,s),2.95(2H,t,J=7.8Hz),2.66(2H,t,J=7.8Hz)。13C NMR(150MHz,CDCl3)δ178.9,152.8,147.2,134.1,124.1,121.8,110.9,60.7,55.8,34.8,25.4。
5-(2,3-二甲氧基苯基)-3-氧代戊酸甲脂(51)。向溶解于二氯甲烷(96mL)中的羧酸50(5.05g,24.0mmol)中加入草酰氯(4.12mL,47.2mmol)和催化量的DMF(0.15mL)。将反应混合物在室温下搅拌1h,此时再添加催化量的DMF(0.15mL),并将反应溶液在室温下搅拌1h。减压除去溶剂和未反应的草酰氯,得到为黄色晶状固体的酰基氯,将其再溶解于二氯甲烷(50mL)中并冷却至0℃。加入麦氏酸(3.47g,24.1mmol)和吡啶(4.33mL,53.8mmol),并将反应混合物在0℃下搅拌30min,然后在室温下搅拌1h。将混合物用二氯甲烷(50mL)稀释,并用2M HCl(20mL)洗涤,然后用盐水(30mL)洗涤。有机层用硫酸钠干燥并真空浓缩。将残余物溶于CH3OH(50mL)中,并回流加热3h。减压除去溶剂。粗产物通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:40mL/min;在254nm和280nm下监测],得到为浅黄色油的酯51(3.57g,13.4mmol,56%)。1H NMR(600MHz,CDCl3)δ6.96(1H,t,J=7.8Hz),6.77(1H,d,J=9Hz),6.74(1H,d,J=7.8Hz),3.84(3H,s),3.81(3H,s),3.71(3H,s),3.44(2H,s),2.89(2H,m),2.83(2H,m)。13C NMR(150MHz,CDCl3)δ202.1,167.6,152.7,147.0,134.2,124.0,121.8,110.6,60.5,55.6,52.3,49.0,43.6,24.2。
5-(2,3-二甲氧基苯基)-3-羟基戊酸甲酯(52)。在0℃下,向酮51(0.50g,1.9mmol)在CH3OH(8mL)中的充分搅拌溶液中加入一等分试样的硼氢化钠(24mg,0.63mmol)。首先将反应混合物在0℃下搅拌1h,然后在室温下再搅拌1h。减压除去溶剂。残余物用水(10mL)洗涤,并用乙醚(3×10mL)萃取。合并的有机相用硫酸钠干燥,并减压浓缩。粗产物通过快速色谱纯化使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(3CV),7%A/93%B→60%A/40%B(10CV),60%A/40%B(1CV);流速:40mL/min;在254nm和280nm下监测],得到醇52(0.40g,1.5mmol,79%)。1H NMR(600MHz,CDCl3)δ6.98(1H,t,7.8Hz),6.78(2H,m),3.97(1H,m),3.85(3H,s),3.82(3H,s),3.69(3H,s),2.76(2H,t,J=7.8Hz),2.48(2H,m),1.78(2H,m)。13C NMR(150MHz,CDCl3)δ173.3,152.8,147.2,135.4,124.2,122.1,110.5,67.2,60.8,55.8,51.8,41.4,37.6,25.9。
3-((叔丁基二苯基甲硅烷基)氧基)-5-(2,3-二甲氧基苯基)戊酸甲酯(53)。在室温下,向乙醇52(0.38g,0.14mmol)和咪唑(0.16g,2.3mmol)在DMF(2.6mL)中的溶液中加入一等分试样的TBDPSCl(0.55mL,2.1mmol)。将反应混合物搅拌14h,用盐水(10mL)稀释,并用Et2O(3x 10mL)萃取。合并有机萃取物用硫酸钠干燥,过滤,减压浓缩,并通过快速色谱法使用预装的25g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→30%A/70%B(10CV),30%A/70%B(2CV);流速:75mL/min;在254nm和280nm下监测],得到为无色油的酯53(0.35g,0.69mmol,49%)。1H NMR(600MHz,CDCl3)δ7.72(3H,m),7.67(1H,m),7.38(6H,m),6.91(1H,t,J=7.8Hz),6.73(1H,d,J=9.6Hz),6.55(1H,d,J=9Hz),4.29(1H,m),3.83(3H,s),3.71(3H,s),3.54(3H,s),2.58(4H,m),1.76(2H,m),1.06(9H,s)。13CNMR(150MHz,CDCl3)δ172.0,152.8,147.1,136.1,136.0,135.9,135.3,134.9,134.2,134.1,129.8,129.7,127.9,127.7,127.6,123.9,121.8,110.2,70.5,60.7,55.8,51.5,41.9,38.2,27.1,26.7,25.4。
3-((叔丁基二苯基甲硅烷基)氧基)-5-(2,3-二甲氧基苯基)戊酸(54)。在0℃下,向酯53(0.67g,1.3mmol)在CH3OH/THF(2.2mL/1.1mL)中的溶液中加入2.5M NaOH(1.76mL)。将反应混合物在0℃下搅拌1h,然后在室温下搅拌13h,用2M HCl(10mL)酸化,并用Et2O(3x10mL)萃取。合并有机萃取物用硫酸钠干燥,过滤,减压浓缩,并通过快速色谱法使用预装的25g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→30%A/70%B(10CV),30%A/70%B(2CV);流速:75mL/min;在254nm和280nm下监测],得到为无色油的羧酸54(0.26g,0.53mmol,40%)。1H NMR(600MHz,CDCl3)δ7.67(4H,m),7.41(6H,m),6.89(1H,t,J=8.4Hz),6.72(1H,d,J=8.4Hz),6.52(1H,m),4.20(1H,m),3.83(3H,s),3.69(3H,s),2.50(4H,m),1.80(2H,m),1.06(9H,s)。13C NMR(150MHz,CDCl3)δ152.6,146.94,146.93,135.9,135.8,129.9,129.8,129.77,127.7,127.6,123.81,123.80,121.6,110.2,70.2,60.5,55.6,40.8,37.6,26.9,25.3,19.3。
7-((叔丁基二苯基甲硅烷基)氧基)-1,2-二甲氧基-6,7,8,9-四氢-5H-苯并[7]轮烯-5-酮(55)。在室温下,向羧酸54(5.37g,10.9mmol)在二氯甲烷(40mL)中的溶液中加入草酰氯(4.5mL,52mmol)和3滴DMF作为催化剂。将所得反应混合物搅拌2h。减压除去溶剂和未反应的草酰氯。将残余的酰氯溶解于二氯甲烷(50mL)中。将溶液冷却至-10℃,此时加入SnCl4(3.63mL,在CH2Cl2中1M,3.63mmol),然后在-10℃下搅拌1h。反应用冷水淬灭,并用EtOAc(3×50mL)萃取。合并有机萃取物,用硫酸钠干燥,过滤,减压浓缩,并通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:75mL/min;在254nm和280nm下监测],得到为无色油的环化酮55(2.80g,5.90mmol,54%)。1H NMR(600MHz,CDCl3)δ7.63(4H,m),7.56(1H,d,J=8.4Hz),7.39(6H,m),6.81(1H,d,J=9Hz),6.29(1H,m),3.90(3H,s),3.78(3H,s),3.17(1H,m),3.03(2H,m),2.88(1H,m),1.98(1H,m),1.84(1H,m),1.03(9H,s)。13CNMR(150MHz,CDCl3)δ199.5,155.8,146.2,137.9,136.0,135.9,134.1,133.9,133.1,129.9,129.8,127.81,127.77,125.7,109.6,68.3,60.9,55.9,50.4,36.2,27.0,21.3,19.3。
7-羟基-1,2-二甲氧基-6,7,8,9-四氢-5H-苯并[7]轮烯-5-酮(56)。向酮55(0.73g,1.5mmol)在THF(10mL)中的溶液中加入TBAF(3.1mL在THF中1M,3.1mmol),并将反应混合物在0℃下搅拌30min,并在室温下搅拌16h。用盐水(10mL)淬灭反应,并用EtOAc(3×20mL)萃取。合并有机萃取物,用硫酸钠干燥,过滤,减压浓缩,并通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→20%A/80%B(10CV),20%A/80%B(2CV);流速:75mL/min;在254nm和280nm下监测],得到为黄色油的醇56(0.16g,0.66mmol,49%)。1H NMR(600MHz,CDCl3)δ7.60(1H,d,J=8.4Hz),6.84(1H,d,J=8.4Hz),4.33(1H,m),3.91(3H,s),3.80(3H,s),3.08(3H,m),2.99(1H,m),1.89(2H,m)。13C NMR(150MHz,CDCl3)δ199.3,156.0,146.3,137.7,132.6,125.8,109.8,67.3,60.9,56.0,50.3,35.8,21.4。
3,4-二甲氧基-9-(3,4,5-三甲氧基苯基)-6,7-二氢-5H-苯并[7]轮烯-7-醇(57)。在-78℃下,向3,4,5-三甲氧基苯基溴化物(0.49g,2.0mmol)在THF(20mL)中的溶液中添加正丁基锂(1.85mL,在己烷中1.6M,2.98mmol),将反应混合物搅拌1h。缓慢加入在THF(5mL)中的苯并环庚酮56(0.16g,0.66mmol)。将反应混合物在0℃下搅拌20h。加入2M HCl(20mL),并将混合物用EtOAc(4x 20mL)萃取。合并的有机相进一步用盐水洗涤,用硫酸钠干燥,过滤,并减压浓缩,并通过快速色谱法使用预装的25g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→80%A/20%B(10CV),80%A/20%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为棕色固体的醇57(0.10g,0.26mmol,39%)。1HNMR(600MHz,CDCl3)δ6.75(2H,m),6.51(2H,s),6.28(1H,d,J=4.8Hz),4.18(1H,m),3.877(3H,s),3.875(3H,s),3.86(3H,s),3.80(6H,s),3.16(1H,m),2.53(1H,m),2.43(1H,m),2.15(1H,m)。13C NMR(150MHz,CDCl3)δ153.1,152.0,146.1,139.4,137.8,137.4,135.7,132.9,131.5,125.5,109.6,105.5,70.0,61.4,61.1,56.3,55.8,43.2,22.4。HRMS:实测值409.1621[M+Na+],理论值C22H26O6Na:409.1622。HPLC:16.79min。
2-((叔丁基二甲基甲硅烷基)氧基)-3-甲氧基苯甲醛(59)。向2-羟基-3-甲氧基苯甲醛58(0.50g,3.3mmol)在二氯甲烷(30mL)中充分搅拌的溶液中加入TBSCl(0.74g,4.9mmol)、DMAP(0.12g,0.99mmol)和Et3N(0.69mL,4.9mmol)。将反应混合物在室温下搅拌12h,此时加入盐水(50mL),并将反应混合物用二氯甲烷(3×40mL)萃取。合并有机萃取物,用硫酸钠干燥,过滤,减压浓缩,并通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:75mL/min;在254nm和280nm下监测],得到为淡黄色油的受保护的醛59(0.50g,1.86mmol,57%)。1H NMR(600MHz,CDCl3)δ10.51(1H,s),7.36(1H,d,J=7.8Hz),7.03(1H,d,J=7.8Hz),6.94(1H,t,J=8.4Hz),3.81(3H,s),0.99(9H,s),0.20(6H,s)。13CNMR(150MHz,CDCl3)δ190.4,150.8,149.2,127.9,121.2,119.1,117.0,55.2,26.0,19.0,4.1。
5-(2-((叔丁基二甲基甲硅烷基)氧基)-3-甲氧基苯基)-3-氧代-4-戊烯酸乙酯(60)。向溶解于THF(20mL)的3-氧代-4-(三苯基膦(triphenylphophoranylidene))丁酸乙酯(3.22g,8.26mmol)中加入受保护的醛59(2.2g,8.3mmol),并将反应混合物回流加热,并搅拌17h。减压除去溶剂,残余物为浆液,并通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为灰白色固体的酯60(2.50g,6.59mmol,80%)。在下一步之后进行NMR表征。
5-(2-((叔丁基二甲基甲硅烷基)氧基)-3-甲氧基苯基)-3-氧代戊酸乙酯(61)。向溶于甲醇(60mL)中的酯60(2.50g,6.59mmol)中加入10%钯碳(0.54g),并用气球引入氢气。将反应混合物在室温下搅拌12h,用
Figure BDA0002999069450000201
过滤,并用EtOAc(3×40mL)洗涤
Figure BDA0002999069450000202
减压蒸发合并的有机相(CH3OH和EtOAc)。所得的有机物质通过快速色谱法,使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为浅黄色油的饱和酯61(1.15g,3.02mmol,46%)。1H NMR(600MHz,CDCl3)δ6.81(1H,m),6.71(1H,d,J=7.8Hz),4.16(2H,q,J=7.2Hz),3.76(3H,s),3.39(2H,s),2.90(2H,m),2.83(2H,m),1.25(3H,t,J=7.2Hz),0.98(9H,s),0.18(6H,s)。13C NMR(150MHz,CDCl3)δ202.3,167.2,150.0,142.8,131.8,121.9,121.0,109.7,61.4,54.8,49.4,43.2,26.2,24.8,18.9,14.2,-3.7。
(Z)-3-氨基-5-(2-((叔丁基二甲基甲硅烷基)氧基)-3-甲氧基苯基)-2-戊烯酸乙酯(62)。向溶于甲醇(15mL)中的酮酯61(1.10g,2.89mmol)中加入干燥的乙酸铵(1.11g,14.5mmol)。将反应混合物在35℃下搅拌16h。在真空下除去甲醇,并将残余物悬浮在EtOAc(30mL)中并过滤。滤液用EtOAc(4×20mL)洗涤。合并的有机层用硫酸钠干燥,并减压浓缩,得到为浅黄色晶体的胺62(1.02g,2.69mmol,93%)。没有进行进一步纯化。1HNMR(600MHz,CDCl3)δ6.82(1H,m),6.72(2H,m),4.58(1H,s),4.11(2H,m),3.78(3H,s),2.87(2H,m),2.40(2H,m),1.26(3H,t,J=7.2Hz),1.00(9H,s),0.19(6H,s)。13C NMR(150MHz,CDCl3)δ170.7,163.6,150.0,142.8,131.8,122.0,121.1,109.8,83.5,58.7,54.8,36.7,29.3,26.3,19.0,14.7,-3.6。
(Z)-3-乙酰氨基-5-(2-((叔丁基二甲基甲硅烷基)氧基)-3-甲氧基苯基)-2-戊烯酸乙酯(63)。向溶解于THF(50mL)中的胺62(4.02g,10.6mmol)中加入吡啶(1.71mL,21.2mmol)和乙酸酐(6.00mL,63.6mmol)。将反应混合物回流搅拌48h。在真空下除去THF,并将残余物溶解于EtOAc(50mL)中,并用水(50mL)、2M HCl(20mL)、饱和NaHCO3(50mL)和盐水(50mL)洗涤。合并的有机层用硫酸钠干燥,并减压浓缩。所得的有机物质通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm处检测],得到为黄色油的N-乙酰胺63(2.17g,5.15mmol,49%)。1H NMR(600MHz,CDCl3)δ6.80(2H,m),6.70(1H,m),4.90(1H,s),4.14(2H,m),3.76(3H,s),3.00(2H,m),2.86(2H,m),2.15(3H,s),1.26(3H,m),0.98(9H,s),0.17(6H,s)。13C NMR(150MHz,CDCl3)δ169.3,168.3,158.2,149.8,142.7,132.0,122.2,120.9,109.5,96.2,59.8,54.7,34.5,28.7,26.2,25.3,18.9,14.3,-3.8。
3-乙酰氨基-5-(2-((叔丁基二甲基甲硅烷基)氧基)-3-甲氧基苯基)戊酸乙酯(64)。将不饱和N-乙酰胺63(2.17g,5.15mmol)溶解于CH3OH(30mL)中。引入钯(10%)碳(0.53g)和氢气球,并将溶液在室温下搅拌60h,并用
Figure BDA0002999069450000211
过滤。将
Figure BDA0002999069450000212
用EtOAc(3×50mL)洗涤。减压蒸发合并的有机相(CH3OH和EtOAc)。所得的有机物质通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→50%A/50%B(10CV),50%A/50%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的饱和N-乙酰胺64(0.96g,2.3mmol,44%)。1H NMR(600MHz,CDCl3)δ6.83(1H,t,J=7.8Hz),6.71(2H,m),6.03(1H,d,J=9Hz),4.29(1H,m),4.11(2H,q,J=7.2Hz),3.77(3H,s),2.74(1H,m),2.62(1H,m),2.59(1H,m),2.51(1H,m),1.96(3H,s),1.82(2H,m),1.24(3H,t,J=7.2Hz),1.00(9H,s),0.17(6H,d,J=10.8Hz)。13C NMR(150MHz,CDCl3)δ172.1,169.6,150.0,142.7,132.7,121.9,121.0,109.4,60.7,54.8,46.3,38.8,34.3,27.6,26.3,23.7,19.0,14.3,-3.6,-3.7。
3-乙酰氨基-5-(2-羟基-3-甲氧基苯基)戊酸(65)。向溶解于甲醇(5mL)中的不饱和酯64(0.96g,2.3mmol)中加入1M KOH(7.48mL)。在3h内将反应从0℃搅拌至室温。在真空下除去甲醇,并将2M HCl(5mL)加入到残余物中,然后将其用EtOAc(3×20mL)萃取。减压蒸发合并的有机相。所得的有机物质通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→100%A/0%B(35CV),100%A/0%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的羧酸65(0.38g,1.8mmol,58%)。1H NMR(600MHz,CDCl3)δ6.74(3H,m),6.34(1H,d,J=9Hz),4.25(1H,m),3.85(3H,s),2.64(4H,m),1.97(3H,s),1.91(2H,m)。13C NMR(150MHz,CDCl3)δ175.6,171.0,146.6,143.5,127.3,122.5,119.8,108.9,56.2,46.7,38.9,34.1,26.8,23.5。
N-(1-羟基-2-甲氧基-5-氧代-6,7,8,9-四氢-5H-苯并[7]轮烯-7-基)乙酰胺(66)。将羧酸65(0.70g,2.5mmol)溶解于伊顿试剂(14mL)中,并将反应混合物在室温下搅拌12h。将冰加入到反应混合物中,这产生大量的热量。加入饱和碳酸钠溶液直至达到中性pH。将混合物用二氯甲烷(4×30mL)萃取。有机相进一步用盐水洗涤,用硫酸钠干燥,过滤,并减压浓缩,并通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:CH3OH;溶剂B:CH2Cl2;梯度:1%A/99%B(1CV),1%A/99%B→10%A/90%B(10CV),10%A/90%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为黄色油的环化酮66(0.37g,1.4mmol,57%)。1H NMR(600MHz,CDCl3)δ7.34(1H,d,J=8.4Hz),6.79(1H,d,J=9Hz),5.91(1H,s),4.48(1H,m),3.94(3H,s),3.23(1H,m),3.13(1H,m),2.83(2H,m),2.73(1H,m),2.44(1H,m),1.96(3H,s)。13CNMR(150MHz,CDCl3)δ201.1,169.6,149.3,142.9,133.1,129.0,121.1,108.2,56.3,47.0,45.7,32.9,23.6,22.6。
N-(1-(((叔丁基二甲基甲硅烷基)氧基)-2-甲氧基-5-氧代-6,7,8,9-四氢-5H-苯并[7]轮烯-7-基)乙酰胺(67)。在室温下向环化酮66(0.37g,1.4mmol)在二氯甲烷(20mL)中的溶液中加入TBSCl(0.32g,2.1mmol)、DMAP(52mg,0.42mmol)和三甲胺(0.30mL,2.1mmol),并将所得反应混合物搅拌12h。随后将反应混合物用盐水(30mL)洗涤,并用二氯甲烷(3×40mL)萃取。合并的有机层用硫酸钠干燥,并减压浓缩。所得的有机物质通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:CH3OH;溶剂B:CH2Cl2;梯度:0%A/100%B(1CV),0%A/100%B→5%A/95%B(10CV),5%A/95%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为灰白色固体的受保护的酮67(0.36g,0.95mmol,68%)。1H NMR(600MHz,CDCl3)δ7.41(1H,d,J=8.4Hz),6.78(1H,d,J=9Hz),5.61(1H,br),4.46(1H,m),3.84(3H,s),3.26(1H,m),3.16(1H,m),2.80(2H,m),2.71(1H,m),2.45(1H,m),1.96(3H,s),1.00(9H,s),0.17(6H,d,J=14.4Hz)。13C NMR(150MHz,CDCl3)δ201.1,169.6,153.4,142.4,134.7,129.0,122.6,109.1,55.1,46.9,45.8,40.0,33.2,26.2,23.6,19.1,-3.7,-3.8。
N-(1-((叔丁基二甲基甲硅烷基)氧基)-2-甲氧基-5-(3,4,5-三甲氧基苯基)-6,7,8,9-四氢-5H-苯并[7]轮烯-7-基)乙酰胺(68)。向烘箱干燥的烧瓶中,加入THF(20mL)和3,4,5-三甲氧基苯基溴化物(0.16g,0.64mmol),并将溶液冷却至-78℃。将正丁基锂(1.6M,0.59mL,0.94mmol)缓慢添加到反应混合物中,然后将其在-78℃下搅拌45min。然后将苯并环庚酮67(80mg,0.21mmol)滴加到烧瓶中,搅拌反应混合物,同时在12h内从-78℃升温至室温。加入2M HCl(20mL),并将反应混合物搅拌30min,然后用EtOAc(3×50mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的20g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→100%A/0%B(10CV),100%A/0%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为晶状白色固体的交叉偶联产物苯并环庚烯68(63.6mg,0.120mmol,57%)。1H NMR(600MHz,CDCl3)δ6.68(1H,d,J=9Hz),6.58(1H,d,J=8.4Hz),6.47(2H,s),5.98(1H,d,J=6Hz),5.54(1H,d,J=8.4Hz,br),4.39(1H,m),3.85(3H,s),3.80(3H,s),3.79(9H,s),3.20-2.46(4H,m),1.95(3H,s),1.03(9H,s),0.25(3H,s),0.22(3H)。13C NMR(150MHz,CDCl3)δ169.0,152.8,149.1,141.7,141.5,137.9,137.6,132.7,132.3,128.4,122.9,108.9,105.4,60.9,56.2,54.7,47.8,41.0,26.2,23.6,22.9,19.0,-3.6,-3.9。
N-(1-羟基-2-甲氧基-5-(3,4,5-三甲氧基苯基)-6,7,8,9-四氢-5H-苯并[7]轮烯-7-基)乙酰胺(69)。将受保护的苯并环庚烯N-乙酰胺68(63.6mg,0.12mmol)溶解于THF(2mL)中,并冷却至0℃。加入TBAF(0.24mL,0.24mmol),并将反应混合物在0℃下搅拌2h。溶液用水洗涤,并用EtOAc(3×20mL)萃取。合并的有机相用硫酸钠干燥,过滤,并减压浓缩,并通过快速色谱法使用预装的25g硅胶柱纯化[溶剂A:CH3OH;溶剂B:CH2Cl2;梯度:5%A/95%B(1CV),10%A/90%B→10%A/90%B(10CV),10%A/90%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为白色固体的苯并环庚烯N-乙酰胺69(22mg,0.05mmol,44%)。1HNMR(600MHz,CDCl3)δ6.71(1H,d,J=9Hz),6.54(1H,d,J=8.4Hz),6.48(2H,s),5.98(1H,d,J=6Hz),5.76(1H,s),5.56(1H,d,J=9Hz,br),4.38(1H,m),3.91(3H,s),3.86(3H,s),3.80(6H,s),3.17-2.43(4H,m),1.96(3H,s)。13CNMR(150MHz,CDCl3)δ169.2,153.0,145.7,142.5,141.4,137.83,137.75,133.3,128.8,126.9,121.5,108.3,105.6,61.1,56.4,56.2,48.1,40.8,23.8,22.3。HRMS:实测值436.1730[M+Na+],理论值C23H29NO6Na:436.1731。HPLC:9.92min。
图9显示了方案7,化合物76和77的合成。通过以下方式实现三甲氧基苯基的易位:首先环化(伊顿试剂)羧酸74,并伴随消除,从而得到α,β-不饱和酮75。在手头有α,β-不饱和酮的情况下,使用适当的芳基锂和盖尔曼试剂(Gilman reagent)进行1,2-和1,4-加成反应,以提供叔醇类似物76(具有不饱和7元环以保持刚性),并分别提供迈克尔加合物、三甲氧基侧苯基环移位类似物77(方案7)。
5-(2,3-二甲氧基苯基)-3-氧代戊酸乙酯(72)。在室温下,向2,3-二甲氧基苯甲醛70(1.06g,6.38mmol)在THF(50mL)中的溶液中加入3-氧代-4-(三苯基膦(triphenylphosphoranylidene))丁酸乙酯(3.00g,7.65mmol)和叔丁醇钾(1.73g,15.3mmol),将反应混合物搅拌12h。减压除去THF,将所得物质用2M HCl(20mL)淬灭,并用EtOAc(3×50mL)萃取。减压蒸发合并的有机层,并将粗产物(71)溶解于CH3OH(40mL)中。向该溶液中加入10%钯碳(0.24g)和充有氢气的气球。将反应混合物在室温下搅拌12h,用
Figure BDA0002999069450000231
过滤,并用EtOAc(3×30mL)洗涤
Figure BDA0002999069450000232
减压蒸发合并的有机相(CH3OH和EtOAc)。所得的有机物质通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的饱和酯72(1.45g,5.17mmol,81%)。1H NMR(600MHz,CDCl3)δ6.97(1H,t,J=7.8Hz),6.78(1H,d,J=9Hz),6.75(1H,d,J=7.8Hz),4.17,(2H,q,J=7.2Hz),3.85(3H,s),3.82(3H,s),3.43(2H,s),2.90(2H,m),2.84(2H,m),1.26(3H,t,J=6.6Hz)。13C NMR(150MHz,CDCl3)δ202.4,167.3,152.9,147.2,134.5,124.1,122.0,110.8,61.5,60.7,55.8,49.5,43.8,24.5,14.2。
5-(2,3-二甲氧基苯基)-3-羟基戊酸乙酯(73)。在0℃下,向酮72(1.45g,5.17mmol)在CH3OH(20mL)中的溶液中加入NaBH4(110mg,2.91mmol),并将反应混合物在0℃下搅拌1h,然后在环境温度下搅拌3h。减压除去CH3OH,并将所得物质用水洗涤,并用EtOAc(3×30mL)萃取。合并的有机相在减压下浓缩,得到为无色油的粗醇产物73(1.20g,4.25mmol,82%)。1H NMR(600MHz,CDCl3)δ6.98(1H,t,J=7.8Hz),6.78(2H,m),4.15(2H,m),3.97(1H,m),3.85(3H,s),3.83(3H,s),2.76(2H,m),2.47(2H,m),1.80(1H,m),1.72(1H,m),1.25(3H,t,J=7.2Hz)。13C NMR(150MHz,CDCl3)δ173.0,152.8,147.2,135.5,124.2,122.1,110.4,67.3,60.8,55.8,41.5,37.6,25.9,14.3。
5-(2,3-二甲氧基苯基)-3-羟基戊酸(74)。在0℃下,向酯73在CH3OH/THF(8mL/4mL)中的溶液中加入2.5M NaOH水溶液(6mL),并将反应混合物在0℃下搅拌1h,然后在12h内升温至室温。减压除去CH3OH和THF,并将所得物质用水洗涤,并用EtOAc(3×30mL)萃取。合并的有机萃取物用Na2SO4干燥,过滤,并在压力下浓缩,得到为橙色油的羧酸74(0.88g,3.3mmol,77%)(无需进一步纯化)。1H NMR(600MHz,CDCl3)δ7.00(1H,t,J=8.4Hz),6.78(2H,dd,J=6.6Hz,6.6Hz),3.92(1H,m),3.86(3H,s),3.84(3H,s),2.76(2H,m),2.51(2H,m),1.82(1H,m),1.73(1H,m)。13C NMR(150MHz,CDCl3)δ176.8,152.7,146.9,134.9,124.5,122.2,110.6,66.9,61.0,55.8,41.2,37.6,25.6。
1,2-二甲氧基-8,9-二氢-5H-苯并[7]轮烯-5-酮(75)。向羧酸74(0.88g,3.3mmol)中加入伊顿试剂(15.7mL),并将混合物在室温下搅拌14h。然后将混合物倒在冰上并用碳酸钠中和。将水层用EtOAc(3×40mL)萃取。合并的有机相用硫酸钠干燥,减压蒸发,并通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→30%A/70%B(10CV),30%A/70%B(2CV);流速:50mL/min;在254nm和280nm下监测],得到为黄色晶状固体的不饱和环化酮75(0.360g,1.65mmol,50%)。1H NMR(600MHz,CDCl3)δ7.55(1H,d,J=9Hz),6.83(1H,d,J=9Hz),6.71(1H,td,J=4.8Hz,12Hz),6.23(1H,td,J=1.8Hz,12Hz),3.91(3H,s),3.78(3H,s),3.16(2H,m),2.55(2H,m)。13C NMR(150MHz,CDCl3)δ193.9,156.2,147.0,145.2,134.4,134.3,132.7,126.7,110.0,61.2,55.9,29.6,25.1。
1,2-二甲氧基-5-(3,4,5-三甲氧基苯基)-8,9-二氢-5H-苯并[7]轮烯-5-醇(76)。向烘箱干燥的烧瓶中,加入THF(30mL)和3,4,5-三甲氧基苯基溴化物(0.87g,3.5mmol),并将溶液冷却至-78℃。将正丁基锂(1.41mL,2.5M,3.52mmol)缓慢加入到反应混合物中,然后将其在-78℃下搅拌30min。然后将在THF(5mL)中不饱和的环化酮75(0.35g,1.6mmol)滴加到烧瓶中,搅拌反应混合物,同时在12h内从-78℃升温至室温。反应混合物用2M HCl(10mL)洗涤,并用EtOAc(3×30mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:12%A/88%B(1CV),12%A/88%B→60%A/40%B(10CV),60%A/40%B(5CV);流速:100mL/min;在254nm和280nm下监测],得到为白色固体的叔醇76(0.457g,1.18mmol,74%)。1H NMR(600MHz,CDCl3)δ7.54(1H,d,J=9Hz),6.82(1H,d,J=8.4Hz),6.59(2H,s),6.07(1H,d,J=12Hz),5.77(1H,td,J=1.2Hz,12Hz),3.90(3H,s),3.82(3H,s),3.78(6H,s),3.75(3H,s),3.05(1H,m),2.48(1H,m),2.43(1H,m),2.15(1H,m)。13C NMR(150MHz,CD3OD)δ153.9,153.2,147.5,145.1,141.7,138.3,137.2,134.1,130.8,121.6,109.9,106.0,78.6,61.4,61.1,56.5,56.1,30.0,23.4。HRMS:实测值409.1622[M+Na+],理论值C22H26O6Na:409.1622。HPLC:17.36min。
1,2-二甲氧基-7-(3,4,5-三甲氧基苯基)-6,7,8,9-四氢-5H-苯并[7]轮烯-5-酮(77)。向烘箱干燥的烧瓶中,加入THF(30mL)和3,4,5-三甲氧基苯基溴化物(0.47g,1.9mmol),并将溶液冷却至-78℃。将正丁基锂(0.76mL,2.5M,1.9mmol)缓慢添加至反应混合物中,将其在-78℃下搅拌45min,然后移至-10℃浴中。将一等分试样的CuI(0.181g,0.95mmol)加入到烧瓶中,并将反应混合物在-10℃搅拌1h。然后将THF(10mL)中的不饱和酮75(0.104g,0.47mmol)滴加到烧瓶中,搅拌反应混合物,同时在7h内从-78℃升温至室温。加入饱和NH4Cl溶液和氢氧化铵(20mL/20mL),然后在室温下搅拌30min,随后用EtOAc(3×50mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:110mL/min;在254nm和280nm下监测],得到为浅白色固体的迈克尔加成酮(Michael addition ketone)77(81.7mg,0.21mmol,44%)。1HNMR(600MHz,CDCl3)δ7.56(1H,d,J=8.4Hz),6.88(1H,d,J=9Hz),6.41(2H,s),3.93(3H,s),3.83(6H,s),3.824(3H,s),3.819(3H,s),3.34(1H,td,J=4.8Hz,15Hz),3.09(1H,m),3.04(1H,m),2.94(2H,m),2.16(1H,m),1.97(1H,m)。13C NMR(150MHz,CDCl3)δ203.0,156.4,153.4,146.1,141.4,136.6,135.5,132.5,125.7,110.1,104.0,61.3,61.0,56.2,56.0,47.9,39.9,34.6,23.4。HRMS:实测值409.1624[M+Na+],理论值C22H26O6Na:409.1622.HPLC:18.77min。
图10显示了方案8,化合物88和89的合成。在以苯并环庚烯类似物子集的酚部分保护基可变性为中心的研究过程中,发生了二烯87的形成,该二烯是将三甲氧基苯基锂1,2加成到酮86上,然后进行反应后处理获得的。在这种情况下,仲醇即使在温和的酸性或碱性条件下(例如在较低的温度下TBAF脱保护或BCl3裂解)也表现出消除的倾向。尝试了4-位(稠合的芳基环上的酚部分)和烯丙基醇保护基策略的各种组合,最终导致了二烯88意想不到地形成。重要的是要注意,该二烯(88)是先前获得的。手持该化合物并注意到其出色的生物学活性(抑制微管蛋白聚合和对人癌细胞系的细胞毒性,表1),有动机制备相应的水溶性磷酸盐前药二钠盐89,以促进在前列腺癌小鼠模型中的体内研究,从而来评估生物发光成像(BLI)所证明的该化合物作为VDA的功效。
2-异丙氧基-3-甲氧基苯甲醛(78)。向2-羟基-3-甲氧基苯甲醛58(5.00g,32.9mmol)在DMF(100mL)中的溶液中加入K2CO3(14.97g,98.58mmol)和2-碘丙烷(6.54mL,65.7mmol),并将混合物在50℃下搅拌20h。减压除去DMF,所得物质用水(100mL)洗涤以除去过量的盐,并用EtOAc(3×100mL)萃取。合并的有机相用硫酸钠干燥,浓缩,得到为无色油的受保护的醛78(6.12g,31.6mmol,96%),无需进一步纯化。1H NMR(600MHz,CDCl3)δ10.44(1H,s),7.41(1H,d,J=7.8Hz),7.10(2H,m),4.62(1H,m),3.86(3H,s),1.31(6H,d,J=6Hz)。13C NMR(150MHz,CDCl3)δ191.0,153.4,150.7,131.0,123.7,119.0,118.0,76.3,56.1,22.4。
5-(2-异丙氧基-3-甲氧基苯基)-3-氧代-4-戊烯酸乙酯(79)。向溶解于THF(50mL)中的3-氧代-4-(三苯基膦(tripheneylphosphoranylidene))丁酸乙酯(0.85g,2.2mmol)中加入叔丁醇钾(0.50g,4.4mmol)和醛78(0.35g,1.8mmol),并将所得反应混合物在室温下搅拌12h。减压除去THF,并将所得物质用2M HCl(10mL)中和,并用EtOAc(3×20mL)萃取。将合并的有机层减压蒸发,并将粗反应产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为黄色油的不饱和酯79(0.40g,1.3mmol,72%)。在下一步之后进行NMR表征。
5-(2-异丙氧基-3-甲氧基苯基)-3-氧代戊酸乙酯(80)。向溶解于CH3OH(20mL)中的不饱和酯79(0.39g,1.3mmol)中加入10%钯碳(0.2g)和充有氢气的气球。将反应混合物在室温下搅拌12h,然后用
Figure BDA0002999069450000261
过滤,并用EtOAc(3×20mL)洗涤
Figure BDA0002999069450000262
减压蒸发合并的有机相(CH3OH和EtOAc),得到为无色油的饱和酯80(0.23g,0.73mmol,57%)。1H NMR(600MHz,CDCl3)δ6.93(1H,t,J=7.8Hz),6.75(2H,m),4.51(1H,sept,J=6Hz),4.17(2H,q,J=7.2Hz),3.81(3H,s),3.41(2H,s),2.92(2H,t,J=7.8Hz),2.83(2H,t,J=8.4Hz),1.25(6H,d,J=6Hz),1.25(3H,t,7.2Hz)。13C NMR(150MHz,CDCl3)δ202.5,167.2,152.9,144.9,135.0,123.5,121.9,110.7,74.6,61.4,55.7,49.4,43.6,25.0,22.7,14.2。
3-羟基-5-(2-异丙氧基-3-甲氧基苯基)戊酸乙酯(81)。在0℃下,向溶解于CH3OH(30mL)中的酮80(2.32g,7.52mmol)中加入NaBH4(96mg,2.5mmol)。将反应搅拌1h,然后再回到室温再保持1h。减压除去CH3OH,残余物用水洗涤,并用EtOAc(3×30mL)萃取。将合并的有机相减压蒸发,并将粗反应产物通过快速色谱使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的醇81(1.80g,5.80mmol,77%)。1H NMR(600MHz,CDCl3)δ6.96(1H,t,J=8.4Hz),6.77(1H,d,J=6.6Hz),6.75(1H,d,J=7.8Hz),4.52(1H,sept,J=6.6Hz),4.13(2H,q,J=7.2Hz),3.91(1H,m),3.82(3H,s),2.82(1H,m),2.74(1H,m),2.45(1H,m),2.44(1H,m),1.78(1H,m),1.71(1H,m),1.28(3H,t,J=6.6Hz),1.26(3H,t,J=6.6Hz),1.25(3H,t,J=7.2Hz)。13C NMR(150MHz,CDCl3)δ172.8,152.9,144.8,136.0,123.7,122.1,110.3,74.9,67.1,60.7,55.7,41.6,37.5,41.6,37.5,26.3,22.9,22.6,14.3。
3-((叔丁基二苯基甲硅烷基)氧基)-5-(2-异丙氧基-3-甲氧基苯基)戊酸乙酯(82)。在室温下,向溶解于DMF(10mL)中的醇81(0.77g,2.5mmol)中加入叔丁基(氯)二苯基硅烷(TBDPSCl)(0.96mL,3.7mmol)和咪唑(0.280g,3.98mmol),并且将溶液在室温下搅拌12h。减压除去DMF,并将所得物质用盐水(50mL)洗涤,并用乙醚(3×30mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的受保护的醇82(0.960g,1.75mmol,71%)。1H NMR(600MHz,CDCl3)δ7.70(4H,m),7.39(6H,m),6.87(1H,t,J=7.8Hz),6.70(1H,d,J=8.4Hz),6.52(1H,d,J=7.8Hz),4.41(1H,m),4.29(1H,m),4.00(2H,m),3.80(3H,s),2.55(4H,m),1.76(2H,m),1.19(6H,m),1.18(3H,t,J=7.2Hz),1.08(9H,s)。13C NMR(150MHz,CDCl3)δ171.6,152.9,144.9,136.5,136.1,135.3,135.0,134.3,129.8,129.7,127.9,127.6,123.3,121.6,110.1,74.4,70.6,60.4,55.8,42.1,37.8,26.7,25.6,22.7,19.5,19.2,14.2。
3-((叔丁基二苯基甲硅烷基)氧基)-5-(2-异丙氧基-3-甲氧基苯基)戊酸(83)。在0℃下,向溶解于CH3OH/THF(60mL/30mL)中的受保护的醇82(7.80g,14.2mmol)中加入2.5MNaOH(20mL),将溶液搅拌1h,然后在室温下搅拌13h。减压除去有机溶剂(CH3OH和THF),并将水(30mL)加入到所得悬浮液中,然后用二乙醚(3×50mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗产物通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→60%A/40%B(15CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的羧酸83(3.49g,6.70mmol,46%)。1HNMR(600MHz,CDCl3)δ7.67(4H,m),7.39(6H,m),6.86(1H,t,J=7.8Hz),6.70(1H,d,J=8.4Hz),6.50(1H,d,J=7.2Hz),4.41(1H,m),4.20(1H,m),3.79(3H,s),2.56(4H,m),1.82(2H,m),1.19(6H,t,J=6Hz),1.06(9H,s)。13C NMR(150MHz,CDCl3)δ175.5,152.9,144.8,136.0,133.7,133.6,129.9,127.8,123.4,121.6,110.2,74.5,70.5,55.8,41.2,37.5,27.1,25.7,22.7,19.4。
7-((叔丁基二苯基甲硅烷基)氧基)-1-异丙氧基-2-甲氧基-6,7,8,9-四氢-5H-苯并[7]轮烯-5-酮(84)。在室温下,向溶解于二氯甲烷(30mL)中的羧酸83(3.49g,6.70mmol)中加入草酰氯(2.77mL,31.8mmol)和作为催化剂的DMF(0.1mL),并将该溶液在室温下搅拌2h。减压除去溶剂和未反应的草酰氯。然后将黄色酰氯溶解于二氯甲烷(40mL)中,并冷却至-10℃。向该溶液中加入1M SnCl4的二氯甲烷(7.4mL,7.4mmol)溶液,并将反应混合物在-10℃搅拌40min。加入水淬灭反应,然后用二氯甲烷(3×40mL)萃取。合并的有机相用硫酸钠干燥,并浓缩。粗产物通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速度:100mL/min;在254nm和280nm下监测],得到为浅黄色凝胶的酮84(2.19g,4.50mmol,67%)。1H NMR(600MHz,CDCl3)δ7.66(4H,m),7.54(1H,d,J=9.6Hz),7.38(6H,m),6.79(1H,d,J=9Hz),4.36(1H,m),4.28(1H,m),3.86(3H,s),3.14(1H,m),3.03(2H,m),2.88(1H,m),1.94(2H,m),1.27(6H,m),1.03(9H,s)。13C NMR(150MHz,CDCl3)δ199.7,156.0,144.1,138.5,136.1,136.0,135.9,134.2,133.9,133.1,129.9,129.8,127.9,127.8,127.7,125.3,109.5,75.2,68.4,55.9,50.4,36.1,27.0,22.7,22.6,22.0,19.3。
7-羟基-1-异丙氧基-2-甲氧基-6,7,8,9-四氢-5H-苯并[7]轮烯-5-酮(85)。将酮84(2.19g,4.50mmol)溶解于THF(20mL)中,在0℃下加入TBAF(9.00mL,9.00mmol),并将反应混合物搅拌30min,然后在室温下再搅拌6h。加入盐水(30mL),并将所得溶液用EtOAc(3×30mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗产物通过快速色谱法使用预装的100g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为黄色油的醇85(0.41g,1.7mmol,37%)。1H NMR(600MHz,CDCl3)δ7.57(1H,d,J=8.4Hz),6.8(1H,d,J=8.4Hz),4.41(1H,m),4.31(1H,m),3.88(3H,s),3.11(2H,m),3.06(1H,m),2.99(1H,m),2.15(1H,m),1.87(1H,m),1.29(6H,m)。13C NMR(150MHz,CDCl3)δ199.6,156.3,144.2,138.4,132.6,125.4,109.7,75.3,67.3,55.9,50.3,35.8,22.7,22.6,22.1。
1-异丙氧基-2-甲氧基-7-((三甲基甲硅烷基)氧基)-6,7,8,9-四氢-5H-苯并[7]轮烯-5-酮(86)。在室温下,向醇85(0.35g,1.33mmol)在DMF(20mL)中的溶液中加入咪唑(0.27g,6.4mmol)和TMSCl(4.26mmol),并将反应混合物搅拌12h。减压除去溶剂,并加入盐水(20mL),然后用EtOAc(3×30mL)萃取。有机萃取物用硫酸钠干燥,过滤,并减压浓缩,残余物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为黄色油的TMS保护的酮86(0.19g,0.56mmol,43%)。1H NMR(500MHz,CDCl3)δ7.54(1H,d,J=10.2Hz),6.79(1H,d,J=10.8Hz),4.39(1H,m),4.19(1H,m),3.86(3H,s),3.22(1H,m),2.99(2H,m),2.90(1H,m),1.91(2H,m),1.27(6H,d,J=9Hz),0.11(9H,s)。13C NMR(125MHz,CDCl3)δ199.7,156.1,144.0,138.6,132.6,125.3,109.5,75.1,67.3,55.8,51.0,36.4,22.6,22.5,21.7。
4-异丙氧基-3-甲氧基-9-(3,4,5-三甲氧基苯基)-5H-苯并[7]轮烯(87)。向烘箱干燥的烧瓶中,加入THF(20mL)和3,4,5-三甲氧基苯基溴化物(0.21g,0.85mmol),并将溶液冷却至-78℃。将正丁基锂(0.34mL,2.5M,0.85mmol)缓慢添加至反应混合物,然后将其在-78℃下搅拌45min。然后将酮86(0.19g,0.56mmol)滴加到烧瓶中,将反应混合物在4h内搅拌(-78℃至0℃),并在0℃下再搅拌1h。在℃下加入2M HCl(20mL),然后搅拌10min,并用EtOAc(3×30mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为无色油的二烯87(60mg,0.15mmol,27%)。1H NMR(600MHz,CDCl3)δ6.81(1H,d,J=8.4Hz),6.71(1H,d,J=9Hz),6.61(2H,s),6.60(1H,d,J=5.4Hz),6.17(1H,m),5.87(1H,m),4.48(1H,p,J=6.6Hz),3.91(3H,s),3.86(6H,s),3.85(3H,s),3.26(2H,m,b),1.38(6H,d,J=6Hz)。13C NMR(150MHz,CDCl3)δ153.8,153.0,145.6,142.0,140.4,137.5,134.5,131.7,128.5,126.9,125.9,124.8,109.1,106.7,75.0,61.0,56.3,55.8,26.7,22.8。
3-甲氧基-9-(3,4,5-三甲氧基苯基)-5H-苯并[7]轮烯-4-醇(88)。将异丙基保护的酚87(60mg,0.15mmol)溶解于CH2Cl2(10mL),向其中加入BCl3(0.17mL,1M,0.17mmol),并将反应混合物在0℃下搅拌1h。溶液用水和2M HCl洗涤,并用EtOAc(3×20mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:5%A/95%B(1CV),5%A/95%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为白色固体的酚88(40mg,0.11mmol,75%)。1H NMR(600MHz,CDCl3)δ6.67(1H,d,J=8.4Hz),6.62(1H,d,J=9Hz),6.60(2H,s),6.59(1H,d,J=5.4Hz),6.15(1H,m),5.94(1H,m),3.89(6H,s),3.84(6H,s),3.23(2H,m,b)。13C NMR(150MHz,CDCl3)δ153.0,147.1,145.5,140.6,140.3,137.5,132.2,128.3,127.0,126.2,126.0,120.1,107.6,106.7,61.1,56.3,56.2,25.7。HRMS:实测值377.1361[M+Na+],理论值C21H22O5Na:377.1359。HPLC:19.52min。
3-甲氧基-9-(3,4,5-三甲氧基苯基)-5H-苯并[7]轮烯-4-基磷酸钠(89)。向溶解于CH2Cl2(25mL)中的酚88(95mg,0.27mmol)中加入POCl3(0.11mL,1.1mmol)和吡啶(0.078mL,0.97mmol),并将反应混合物从0℃至室温搅拌8h。减压除去CH2Cl2,将残余物在室温下溶解于H2O/THF(10mL/5mL)中,并将溶液搅拌1h。将NaOH溶液(0.1M)添加至反应混合物中,以在0℃下将pH调节至10,并将溶液在0℃下搅拌30min。减压除去水。粗产物通过快速色谱使用预装的12g C-18柱纯化[溶剂A:乙腈;溶剂B:水;梯度:0%A/100%B(1CV),0%A/100%B→10%A/90%B(10CV),10%A/90%B(2CV);流速:12mL/min;在254nm和280nm下监测],得到为黄色固体的磷酸盐89(65.8mg,0.14mmol,51%)。1H NMR(500MHz,D2O)δ6.65(2H,s),6.60(2H,m),6.53(1H,d,J=6Hz),6.10(1H,m),5.98(1H,m),3.78(3H,s),3.72(3H,s),3.70(6H,s),3.29(2H,b)。13CNMR(125MHz,D2O)δ153.0,152.1,144.5,140.8,138.4,136.0,134.5,131.1,129.8,126.2,126.1,124.2,109.1,106.7,60.9,55.9,55.7,26.9。31P NMR(200MHz,D2O)δ0.81。HRMS:实测值479.0841[M+H+],理论值C21H22O8Na2P+:479.0842。HPLC:14.22min。
图11显示了方案9,化合物91和93的合成。对于该合成,使用无水形式的四氢呋喃(THF)、四氯化碳、二氯甲烷、甲醇、二甲基甲酰胺(DMF)和乙腈。除非另有说明,否则反应在氮气下进行。薄层色谱(TLC)板(预涂有硅胶60F254的玻璃板,厚度为0.25mm)用于监测反应。中间体和产物的纯化用Biotage Isolera快速纯化系统,使用硅胶(200-400目,
Figure BDA0002999069450000291
)或RP-18预装柱进行或在玻璃柱中手动进行。使用Varian VNMRS 500MHz或Bruker DPX600MHz仪器,根据合成的中间体和产物的1H NMR(500或600MHz)、13CNMR(125或150MHz)光谱数据,对合成的中间体和产物进行表征。记录在CDCl3、D2O、(CD3)2CO或CD3OD中的光谱。所有化学位移均以ppm(δ)表示,峰模式报告为宽(br)、单峰(s)、双峰(d)、三重峰(t)、四峰(q)、五峰(p)、六峰(sextet)、七峰(septet)、双双峰(dd)、双双双峰(ddd)和多峰(m)。
使用具有二极管阵列检测器(λ=190-400nm)、Zorbax XDB-C18 HPLC柱(
Figure BDA0002999069450000301
Figure BDA0002999069450000302
5μm)以及Zorbax可靠盒保护柱的Agilent 1200HPLC系统,在25℃进一步分析最终化合物的纯度;方法:溶剂A,乙腈,溶剂B,H2O;梯度:在0-40min内从10%A/90%B到100%A/0%B;平衡时间10min;流速1.0mL/min;进样量20μL;在210、230、254、280和320nm的波长下监测。使用Thermo Scientific LTQ Orbitrap Discovery仪器在正或负ESI(电喷雾电离)下进行质谱分析。
化合物90:4-((叔丁基二甲基甲硅烷基)氧基)-3,9,10,11-四甲氧基-6,7-二氢二苯并[a,h]薁-8(5H)-酮。在室温下向溶解于Et2O(10mL)中的TBS保护的苯并环庚烯类似物26(0.67g,1.7mmol)中加入氯磺酰异氰酸酯(0.15mL,1.7mmol),然后将反应混合物在室温下搅拌2h。在0℃下加入Na2CO3和Na2HPO4缓冲液(pH=7)溶液,然后将反应混合物搅拌过夜至室温。然后将反应混合物用Et2O(3x 20mL)萃取,将合并的有机相减压蒸发,并将粗反应产物通过快速色谱法使用预装的50g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为橙色油的产物90(0.19g,0.45mmol,26%)。1H NMR(CDCl3,500Hz)δ7.17(1H,d,J=12Hz),6.85(1H,d,J=12Hz),6.65(1H,s),4.14(3H,s),3.89(3H,s),3.86(3H,s),3.83(3H,s),2.77(2H,m),2.30(2H,m),2.11(2H,m),1.02(9H,s),0.21(6H,s)。13C NMR(CDCl3,150MHz)δ193.9,156.7,152.9,152.2,150.8,143.1,142.4,141.1,135.3,134.7,126.7,120.3,108.7,107.7,102.8,62.4,61.5,56.6,54.9,31.2,26.2,24.9,20.6,19.1,-3,7。
化合物91:4-羟基-3,9,10,11-四甲氧基-6,7-二氢二苯并[a,h]薁-8(5H)-酮。将TBS保护的环酮90(0.39g,0.79mmol)溶解于THF(6mL)中,加入TBAF(0.87mL,0.87mmol),并将反应混合物在0℃下搅拌1h。溶液用水洗涤,并用EtOAc(3×20mL)萃取。合并的有机相用硫酸钠干燥,并减压蒸发。粗反应产物通过快速色谱法使用预装的25g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:7%A/93%B(1CV),7%A/93%B→60%A/40%B(10CV),60%A/40%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为橙色固体的酚(0.27g,0.71mmol,90%)。1H NMR(600MHz,CDCl3)δ7.11(1H,d,J=6Hz),6.86(1H,d,J=6Hz),6.65(1H,s),5.82(1H),4.14(3H,s),3.97(3H,s),3.89(3H,s),3.84(3H,s),2.77(2H,m),2.31(2H,m),2.14(2H,m)。13C NMR(150MHz,CDCl3)δ193.8,156.8,152.8,151.9,147.0,143.8,142.3,141.1,135.6,129.0,127.2,118.8,107.9,107.7,102.7,62.4,61.5,56.6,56.2,31.0,24.2,20.4。HRMS:实测值405.1315[M+Na+],理论值C22H22O6Na:405.1309。HPLC:18.97min。
化合物93:3,4,9,10,11-五甲氧基-6,7-二氢二苯并[a,h]薁-8(5H)-酮。在室温下向溶解于Et2O(10mL)中的二甲氧基苯并环庚烯类似物92(50mg,0.13mmol)中加入氯磺酰异氰酸酯(0.058mL,0.13mmol),然后将反应混合物在室温下搅拌2h。在0℃下,加入Na2CO3和Na2HPO4缓冲液(pH=7)溶液,然后将反应混合物搅拌过夜至室温。然后将反应混合物用Et2O(3x 20mL)萃取,将合并的有机相减压蒸发,并将粗反应产物通过快速色谱法使用预装的25g硅胶柱纯化[溶剂A:EtOAc;溶剂B:己烷;梯度:10%A/90%B(1CV),10%A/90%B→40%A/60%B(10CV),40%A/60%B(2CV);流速:100mL/min;在254nm和280nm下监测],得到为橙色固体的产物93(16mg,0.04mmol,30%)。1H NMR(CDCl3,600MHz)δ7.22(1H,d,J=6Hz),6.94(1H,d,J=6Hz),6.76(1H,s),4.21(3H,s),3.94(3H,s),3.89(3H,s),3.87(3H,s),3.85(3H,s),2.32(6H,m,b)。13C NMR(CDCl3,150MHz)δ157.7,153.5,150.6,147.5,142.0,138.7,136.5,136.2,129.1,124.3,123.9,120.8,109.9,120.3,62.0,61.3,61.28,61.24,56.5,55.8,33.0,23.8,19.6.。HRMS:实测值419.1467[M+Na+],理论值C23H24O6Na+:419.1465。HPLC:21.10min。
实施例2.生物学评估
细胞系和磺酰罗丹明B(sulforhodamine B,SRB)检测。如前所述,施用磺酰罗丹明B(SRB)检测来评估人类癌细胞的生长抑制。使用补充有10%胎牛血清(Gibco)/1%硫酸庆大霉素的高葡萄糖DMEM,将DU-145、SK-OV-3和NCI-H460癌细胞系(从ATCC获得)保存在T75烧瓶(Corning)中,用于最多15次传代。对于这些实验,将细胞用胰蛋白酶处理,计数,并以7000-8000个细胞/孔接种在96孔板(Corning)中,并在5%的CO2气氛中的湿化培养箱中于37℃孵育24h。将要测试的化合物溶解在DMSO中,以生成10mg/mL的储备溶液,并在培养基中向板中添加系列稀释液。阿霉素(Sigma-Aldrich)和紫杉醇(Tokyo Chemical)用作阳性对照。处理48h后,将细胞用三氯乙酸(最终浓度为10%)固定,洗涤,干燥,用SRB染料染色,洗涤以除去过量的染料,并干燥。溶解SRB染料,并使用Biotek自动酶标仪在波长540nm下测量吸光度,并将其归一化为波长630nm下的值。由吸光度数据计算出50%的生长抑制(GI50或导致净蛋白质增加减少50%的药物浓度)。
秋水仙碱结合检测。在0.1mL反应混合物中测量对[3H]秋水仙碱与微管蛋白结合的抑制作用,每个混合物均含有1.0μM微管蛋白、5.0μM[3H]秋水仙碱(Perkin-Elmer)、5%(v/v)二甲基亚砜、1.0或5.0μM的所示化合物、以及稳定微管蛋白的秋水仙碱结合活性的成分(1.0M谷氨酸一钠[在2.0M储备液中用HCl调节至pH 6.6]、0.5mg/mL牛血清白蛋白、0.1M葡萄糖-1-磷酸、1.0mM MgCl2和1.0mM GTP)。当在对照反应混合物中秋水仙碱结合完成40-60%时,在37℃下孵育10min。用2.0mL冰冻水终止反应,并将反应混合物置于冰上。将每个稀释的样品倒入两个DEAE纤维素过滤器(GE Biomedical)的栈(stack)中,然后连续3次倒入2mL冰冻水等分试样中。使用降低的真空度从过滤器中除去多余的水,用2mL水洗涤3次,然后放入含有5mL Biosafe II闪烁混合物的小瓶中。18h后,在Beckman闪烁计数器中对样品计数。将具有抑制剂的样品与不具有抑制剂的样品进行比较,并确定抑制百分比,校正在不存在微管蛋白的情况下与过滤器结合的放射性标记量的所有值。
微管蛋白聚合的抑制。在0.25mL(最终体积)含有1mg/mL(10μM)纯化的牛脑微管蛋白、0.8M谷氨酸一钠(pH 6.6)、4%(v/v)二甲基亚砜、0.4mM GTP和不同化合物浓度的反应混合物中,评估微管蛋白聚合。除GTP外,所有组分均于30℃在0.24mL中预孵育15min。将测定混合物冷却至0℃,然后向每个样品中加入10μL 0.01M GTP。将反应混合物转移到于0℃下保存在装有电子温度控制器的Beckman DU-7400和DU-7500分光光度计中的比色皿内。在约30s(秒)内将温度升高至30℃,并在350nm下以比浊法进行聚合20min。将IC50定义为20min后聚合抑制程度为50%的化合物浓度。
体内血管破坏。如前详述,通过拆除肿瘤抑制基因蛋白PC3-DAB2IP来修饰人前列腺癌细胞系(PC3),并通过萤火虫荧光素酶报道基因转染进一步修饰人前列腺癌细胞系(PC3)。在雄性哥本哈根大鼠(最初来自Charles River,在UT Southwestern繁殖)的右大腿上皮下接种5X 105与30%
Figure BDA0002999069450000321
混合的PC3-DAB2IP-luc细胞。在植入日,这些大鼠约6周龄,体重在100–120g之间。在治疗开始之前,允许肿瘤长到直径为至少1cm。用IP(腹膜内)施用VDA前药89(生理盐水中25mg/mL)治疗三只大鼠。大鼠1接受10mg/kg,24h后接受40mg/kg,并在4天后IP施用CA4P(30mg/kg,在生理盐水中为20mg/mL)作为对照。大鼠2接受单剂量40mg/kg的VDA前药89,大鼠3接受80mg/kg的89。在治疗前(基线)以及在治疗后4和24h使用IVIS
Figure BDA0002999069450000322
(Perkin-Elmer)进行生物发光成像(Bioluminescence imaging,BLI)。简而言之,在麻醉的大鼠(吸入具有3%异氟烷的氧气,Henry Schein Inc.)的前后颈区(foreback neck)皮下注射120mg/kg D-荧光素钠盐(Gold Biotechnology,St.Louis,MO),并在约30min的时间段内成像。在每个时间点施用新鲜的萤光素。使用Living
Figure BDA0002999069450000323
软件对所得的光强度时间曲线进行分析,并测量涵盖肿瘤的目标区域的发光。所有动物程序均按照美国国立卫生研究院(U.S.National Institutes of Health)通过并颁布的《实验动物的护理和使用指南(Guide for the Care and Use of Laboratory Animals)》以及德克萨斯大学西南医学中心(University of Texas Southwestern Medical Center)机构动物护理和使用委员会(Institutional Animal Care and Use Committee)批准的协议(APN2017-102168)进行。
评估图2中的每一个化合物对对人类癌细胞系[SK-OV-3(卵巢)、NCI-H460(肺)、DU-145(前列腺)]的细胞毒性和抑制微管蛋白聚合的能力。结果列于下文表1和表2中。
表1
Figure BDA0002999069450000324
Figure BDA0002999069450000331
an≥3独立测定的平均值(除非另外指出)
b n=2独立测定的平均值(副本)
ND=未测定
NR=不相干(紫杉醇增强微管组装)
表2
Figure BDA0002999069450000341
an≥3独立测定的平均值(除非另外指出)
ND=未测定
被评估的分子中有十个被鉴定为微管蛋白组装的强抑制剂(IC50<5μM,无细胞检测),而十个分子中的七个具有高活性(IC50≤1.2μM)。CA4(IC50≈1μM)和KGP18(化合物27,IC50≈0.85μM)用作比较化合物。与我们的二氢萘先导化合物KGP03(IC50≤0.5μM)相比,苯并环庚烯和二氢萘类似物(化合物33、39)以及另一化合物(88)中的三个对微管蛋白更有效。在将4位酚基部分改变为腈、乙酯、CH2OH基团(38、39、47、48),以及对七元环上的双键进行修饰,包括用酮和叔醇基团取代,用溴基团取代和增加不饱和度(24、33、88)后,都保留了抑制微管蛋白聚合的优异IC50值。烷基链(在4位)通过以极性醇基团(化合物31)和甲氧基部分(化合物28)分别终止的醚连接的延伸导致抑制活性丧失。在七元环上的烯丙基位置上掺入氢键供体(化合物57和69)和双键的取代饱和(化合物23和35)都降低了微管蛋白聚合的抑制。化合物76观察到的微管蛋白活性缺乏是不曾预料到的,因为七元环的半刚性是通过从立体中心除去一个碳的双键保持的,并且母体苯并环庚烯类似物(稠合芳基环上的二甲氧基)表现出我们之前的研究报道的中等程度的微管蛋白聚合抑制(IC50=3.1μM)。化合物77在抑制微管蛋白聚合方面缺乏活性表明,位于稠合环系统苄基位置的三甲氧基侧芳基环与生物学功效(至少在抑制微管蛋白聚合方面)密切相关。先前没有研究过用三甲氧基芳基环进行这种β-位取代。
在所研究的苯并环庚烯和二氢萘类似物中,最具细胞毒性的试剂是化合物24、33、38、39、48、88(例如,对SK-OV-3卵巢癌细胞系的GI50分别为0.0314、0.0221、0.0648、0.0384、0.0403μM和0.00690μM)。明智而审慎地选择的对母体苯并环庚烯骨架中4、8和9位的结构修饰占在本研究中所评估的高效类似物的大多数。尽管该分子子集的强大细胞毒性令人鼓舞,但值得注意的是,尽管对微管蛋白聚合表现出相似的抑制作用(无细胞检测),但所有分子均证明细胞毒性比先导苯并环庚烯KGP18低,并且细胞毒性比天然产物CA4低(化合物88的部分例外)。这些观察结果为有关对KGP18进行结构修饰的已知SAR注意事项提供了重要的扩展。正如预料的(并且对于康普瑞汀A-4磷酸盐类似地观察到的),在这种无细胞检测中,苯并环庚烯磷酸盐前药盐89作为微管蛋白聚合的抑制剂是无活性的,大概是由于缺乏将前药裂解成其母体酚类(生物活性)试剂所需的磷酸酶。前药89是活性细胞毒剂,因为在这些基于癌细胞的细胞毒性测定中存在非特异性磷酸酶活性。
实施例3.血管损伤评估
最后,会在体内使用VDA,因此了解体内血管破坏的功效和潜在的脱靶毒性至关重要。作为初步研究,与作为对照的CA4P相比,在用水溶性前药盐89治疗的大鼠的人前列腺肿瘤系中评估了血管损伤程度。已经开发出许多成像方法来在体内非侵入性地评估体内血管破坏。动态生物发光成像(BLI)被推荐用于VDA活性的初步验证,因为它提供了快速无创且简便的方法,并允许比较重复或顺序研究。BLI确实需要使用转染的细胞来表达萤光素酶(luc),但这些细胞通常是可获得的,并且我们已经像其他方法一样广泛使用了这种方法。使用了人前列腺癌PC3细胞系,其中已经拆除了肿瘤抑制基因蛋白DAB2IP,并引入了荧光素酶。BLI需要施用萤光素底物,该底物容易穿过膜并在整个脉管系统中携带。发光动力学的测量与荧光素底物的血管递送有关,因此它提供了血管通畅率的量度。肿瘤脉管系统的破坏阻断了底物的递送,因此导致生物发光信号的可定量下降。使用89的10和40或80mg/kgIP剂量评估IP血管关闭的程度,并与CA4P的30mg/kg剂量进行比较,先前已经证明CA4P在该剂量下会在大鼠中引起广泛的血管关闭。还应注意的是,先导苯并环庚烯KGP18和二氢萘KGP03(都作为其相应的水溶性磷酸盐前药盐(分别为KGP265和KGP04))以及其他结构修饰的苯并环庚烯类似物,均显示出血管关闭(由类似的BLI城乡研究或彩色多普勒超声(colorDoppler ultrasound)证明)。
图12显示了血管对VDA反应的BLI评估。在左边,热图覆盖在具有皮下PC3-DAB2IP-luc人前列腺肿瘤异种移植物的雄性哥本哈根大鼠的照片上,该照片在各时间点施用D-荧光素(120mg/kg)约20min后相对于VDA IP施用表现出发光。在右边,荧光素给药后约30min,在基线,VDA后约4h和VDA后24h获得了相应的动态发光曲线。A显示了10mg/kg化合物89的结果,表明没有血管扰动,但是在24h时信号增加,这与肿瘤的快速生长一致。B显示6h后,向同一只大鼠施用40mg/kg化合物89,在4h时产生减少了约95%的信号,这与大量的血管关闭相一致,并且在24h时显示出基本恢复。C显示四天后,向该大鼠施用30mg/kg CA4P,引起了BLI反应,类似于B所示的BLI反应。
以10mg/kg施用的前药89引起的发光变化最小。随后的40mg/kg剂量89导致发光大量减少(信号减少95%),但在24h时基本恢复。当4天后施用CA4P(30mg/kg)时,就作为血管关闭的替代者的BLI信号减弱的程度和寿命而言,它引起了非常相似的效果。当给予从未治疗的大鼠40mg/kg 89时,观察到类似的活性,在24h时基本恢复。
图13显示了施用VDAs后的相对发光。A显示了相对信号强度,该信号强度是在大鼠的前后颈区皮下施用D-荧光素约20min后显示的,该大鼠在大腿中具有PC3-DAB2IP-luc前列腺肿瘤异种移植物。顶部为基线(无先前药物),中间为40mg/kg 89后4h,底部为89后24h。B显示基线、89后4h和69后24h的相应发光动态曲线。C显示了图12中的大鼠以及A、B中从未治疗的大鼠在各时间点的归一化BLI信号,图12中的大鼠依次接受10mg/kg、40mg/kg69和30mg/kg CA4P,A、B中从未治疗的大鼠接受40mg/kg 89(**)。在48h时,大鼠看起来是健康的,并且信号稍微增加。80mg/kg的剂量也被很好地耐受,但是该较高剂量并未显示出额外的血管破坏。
这些实施例中的结果证明了先导苯并环庚烯和二氢萘类似物的结构修饰对微管蛋白聚合抑制和对人癌细胞系的细胞毒性的影响。在这组新分子中[以及化合物(88),通过单独的合成获得],出现了几种有希望的类似物(化合物24、33、38、39、48、88),它们引起的对微管蛋白组配的抑制(IC50)(无细胞检测)大于或比得上天然先导产物CA4以及我们的先导苯并环庚烯类似物KGP18和KGP156。这些化合物通常在低到中nM范围内表现出对SK-OV-3(卵巢)、NCI-H460(肺)和DU-145(前列腺)细胞的有效细胞毒性(GI50)。基于BLI,40mg/kg水溶性苯并环庚烯磷酸盐前药盐89的体内初步研究显示了在PC3-DAB2IP-luc人前列腺肿瘤异种移植物中的血管破坏(如图12和13所示),其与用CA4P获得的血管破坏相似。
参考文献
以下专利和出版物通过引用并入本文。
Haichan Niu,et al.,Structure Guided Design,Synthesis,and BiologicalEvaluation of Novel Benzosuberene Analogues as Inhibitors of TubulinPolymerization,J.Med.Chem.2019,2019,62,5594-5615.
(1)Salmon,B.A.;Siemann,D.W.Characterizing the Tumor Response toTreatment with Combretastatin A4 Phosphate.Int.J.Radiat.Oncol.Biol.Phys.2007,68(1),211–217.https://doi.org/10.1016/j.ijrobp.2006.12.051.
(2)Hanahan,D.;Weinberg,R.A.Hallmarks of Cancer:The NextGeneration.Cell 2011,144(5),646–674.https://doi.org/10.1016/j.cell.2011.02.013.
(3)Siemann,D.W.The Unique Characteristics of Tumor Vasculature andPreclinical Evidence for Its Selective Disruption by Tumor-VascularDisrupting Agents.Cancer Treat.Rev.2011,37(1),63–74.https://doi.org/10.1016/j.ctrv.2010.05.001.
(4)Tozer,G.M.;Kanthou,C.;Baguley,B.C.Disrupting Tumour BloodVessels.Nat.Rev.Cancer 2005,5(6),423–435.https://doi.org/10.1038/nrc1628.
(5)Kanthou,C.;Tozer,G.M.Tumour Targeting by Microtubule-Depolymerizing Vascular Disrupting Agents.Expert Opin.Ther.Targets 2007,11(11),1443–1457.https://doi.org/10.1517/14728222.11.11.1443.
(6)Denekamp,J.Endothelial Cell Proliferation as a Novel Approach toTargeting Tumour Therapy.Br.J.Cancer 1982,45(1),136–139.
(7)Denekamp,J.Review Article:Angiogenesis,Neovascular Proliferationand Vascular Pathophysiology as Targets for Cancer Therapy.Br.J.Radiol.1993,66(783),181–196.https://doi.org/10.1259/0007-1285-66-783-181.
(8)Sriram,M.;Hall,J.J.;Grohmann,N.C.;Strecker,T.E.;Wootton,T.;Franken,A.;Trawick,M.L.;Pinney,K.G.Design,Synthesis and Biological Evaluationof Dihydronaphthalene and Benzosuberene Analogs of the Combretastatins asInhibitors of Tubulin Polymerization in Cancer Chemotherapy.Bioorg.Med.Chem.2008,16(17),8161–8171.https://doi.org/10.1016/j.bmc.2008.07.050.
(9)Horsman,M.R.;Bohn,A.B.;Busk,M.Vascular Targeting Therapy:PotentialBenefit Depends on Tumor and Host Related Effects.Exp.Oncol.2010,32(3),143–148.
(10)Siemann,D.W.;Bibby,M.C.;Dark,G.G.;Dicker,A.P.;Eskens,F.A.L.M.;Horsman,M.R.;Marmé,D.;LoRusso,P.M.Differentiation and Definition of Vascular-Targeted Therapies.Clin.Cancer Res.2005,11(2 I),416–420.
(11)Mason,R.P.;Zhao,D.;Liu,L.;Trawick,M.L.;Pinney,K.G.A Perspectiveon Vascular Disrupting Agents That Interact with Tubulin:Preclinical TumorImaging and Biological Assessment.Integr.Biol.2011,3(4),375–387.https://doi.org/10.1039/C0IB00135J.
(12)Dougherty,G.J.;Chaplin,D.J.Development of Vascular DisruptingAgents.In Vascular Disruptive Agents for the Treatment of Cancer;Springer,NewYork,NY,2010;pp 1–27.https://doi.org/10.1007/978-1-4419-6609-4_1.
(13)Siemann,D.W.Tumor Vasculature:A Target for AnticancerTherapies.In Vascular-Targeted Therapies in Oncology;Siemann,D.W.,Ed.;Chichester,2006;pp 1-8.
(14)Monk,K.A.;Siles,R.;Hadimani,M.B.;Mugabe,B.E.;Ackley,J.F.;Studerus,S.W.;Edvardsen,K.;Trawick,M.L.;Garner,C.M.;Rhodes,M.R.;Pettit,G.R.;Pinney,K.G.Design,Synthesis,and Biological Evaluation of CombretastatinNitrogen-Containing Derivatives as Inhibitors of Tubulin Assembly andVascular Disrupting Agents.Bioorg.Med.Chem.2006,14(9),3231–3244.https://doi.org/10.1016/j.bmc.2005.12.033.
(15)Pettit,G.R.;Singh,S.B.;Boyd,M.R.;Hamel,E.;Pettit,R.K.;Schmidt,J.M.;Hogan,F.Antineoplastic Agents.291.Isolation and Synthesis ofCombretastatins A-4,A-5,and A-6.J.Med.Chem.1995,38(10),1666–1672.https://doi.org/10.1021/jm00010a011.
(16)McGown,A.T.;Fox,B.W.Differential Cytotoxicity of CombretastatinsA1 and A4 in Two Daunorubicin-Resistant P388 Cell Lines.CancerChemother.Pharmacol.1990,26(1),79–81.
(17)Pettit,G.R.;Moser,B.R.;Boyd,M.R.;Schmidt,J.M.;Pettit,R.K.;Chapuis,J.-C.Antineoplastic Agents 460.Synthesis of Combretastatin A-2Prodrugs.Anticancer.Drug Des.2001,16(4–5),185–193.
(18)Pettit,G.R.;Singh,S.B.;Hamel,E.;Lin,C.M.;Alberts,D.S.;Garcia-Kendal,D.Isolation and Structure of the Strong Cell Growth and TubulinInhibitor Combretastatin A-4.Experientia 1989,45(2),209–211.https://doi.org/10.1007/BF01954881.
(19)Dark,G.G.;Hill,S.A.;Prise,V.E.;Tozer,G.M.;Pettit,G.R.;Chaplin,D.J.Combretastatin A-4,an Agent That Displays Potent and Selective ToxicityToward Tumor Vasculature.Cancer Res.1997,57(10),1829–1834.
(20)Pettit,G.R.;Toki,B.;Herald,D.L.;Verdier-Pinard,P.;Boyd,M.R.;Hamel,E.;Pettit,R.K.Antineoplastic Agents.379.Synthesis of PhenstatinPhosphate.J.Med.Chem.1998,41(10),1688–1695.https://doi.org/10.1021/jm970644q.
(21)Boyland,E.;Boyland,M.E.Studies in Tissue Metabolism:The Action ofColchicine and B.Typhosus Extract.Biochem.J.1937,31(3),454–460.
(22)Woods,J.A.;Hadfield,J.A.;Pettit,G.R.;Fox,B.W.;McGown,A.T.TheInteraction with Tubulin of a Series of Stilbenes Based on Combretastatin A-4.Br.J.Cancer 1995,71(4),705–711.
(23)Pettit,G.R.;Singh,S.B.;Niven,M.L.;Hamel,E.;Schmidt,J.M.Isolation,Structure,and Synthesis of Combretastatins A-1 and B-1,Potent New Inhibitorsof Microtubule Assembly,Derived from Combretum Caffrum.J.Nat.Prod.1987,50(1),119–131.https://doi.org/10.1021/np50049a016.
(24)Pettit,G.R.;Grealish,M.P.;Herald,D.L.;Boyd,M.R.;Hamel,E.;Pettit,R.K.Antineoplastic Agents.443.Synthesis of the Cancer Cell Growth InhibitorHydroxyphenstatin and Its Sodium Diphosphate Prodrug.J.Med.Chem.2000,43(14),2731–2737.https://doi.org/10.1021/jm000045a.
(25)Herdman,C.A.;Devkota,L.;Lin,C.-M.;Niu,H.;Strecker,T.E.;Lopez,R.;Liu,L.;George,C.S.;Tanpure,R.P.;Hamel,E.;Chaplin,D.J.;Mason,R.P.;Trawick,M.L.;Pinney,K.G.Structural Interrogation of Benzosuberene-Based Inhibitors ofTubulin Polymerization.Bioorg.Med.Chem.2015,23(24),7497–7520.https://doi.org/10.1016/j.bmc.2015.10.012.
(26)Tanpure,R.P.;Harkrider,A.R.;Strecker,T.E.;Hamel,E.;Trawick,M.L.;Pinney,K.G.Application of the McMurry Coupling Reaction in the Synthesis ofTri-and Tetra-Arylethylene Analogues as Potential Cancer ChemotherapeuticAgents.Bioorg.Med.Chem.2009,17(19),6993–7001.https://doi.org/10.1016/j.bmc.2009.08.011.
(27)Pinney,K.G.;Pettit,G.R.;Trawick,M.L.;Jelinek,C.;Chaplin,D.J.TheDiscovery and Development of the Combretastatins.Anticancer AgentsNat.Prod.2012,27–63.
(28)Pinney,K.G.Molecular Recognition of the Colchicine Binding Siteas a Design Paradigm for the Discovery and Development of Vascular DisruptingAgents.In Vascular-Targeted Therapies in Oncology;Siemann,D.W.,Ed.;Chichester,2006;pp 95-121.
(29)Siles,R.;Ackley,J.F.;Hadimani,M.B.;Hall,J.J.;Mugabe,B.E.;Guddneppanavar,R.;Monk,K.A.;Chapuis,J.-C.;Pettit,G.R.;Chaplin,D.J.;Edvardsen,K.;Trawick,M.L.;Garner,G.M.;Pinney,K.G.Combretastatin Dinitrogen-SubstitutedStilbene Analogues as Tubulin-Binding and Vascular-DisruptingAgents.J.Nat.Prod.2008,71(3),313–320.https://doi.org/10.1021/np070377j.
(30)Shirali,A.;Sriram,M.;Hall,J.J.;Nguyen,B.L.;Guddneppanavar,R.;Hadimani,M.B.;Ackley,J.F.;Siles,R.;Jelinek,C.J.;Arthasery,P.;Brown,R.C.;Murrell,V.L.;McMordie,A.;Sharma,S.;Chaplin,D.J.;Pinney,K.G.Development ofSynthetic Methodology Suitable for the Radiosynthesis of Combretastatin A-1(CA1)and Its Corresponding Prodrug CA1P.J.Nat.Prod.2009,72(3),414–421.https://doi.org/10.1021/np800661r.
(31)Chaplin,D.J.;III,C.M.G.;Kane,R.R.;Pinney,K.G.;Prezioso,J.A.;Edvardsen,K.Functionalized Stilbene Derivatives as Improved VascularTargeting Agents.US7384925B2,June 10,2008.
(32)Chen,Z.;Mocharla,V.P.;Farmer,J.M.;Pettit,G.R.;Hamel,E.;Pinney,K.G.Preparation of New Anti-Tubulin Ligands Through a Dual-Mode,Addition-Elimination Reaction to a Bromo-Substitutedα,β-UnsaturatedSulfoxide.J.Org.Chem.2000,65(25),8811–8815.https://doi.org/10.1021/jo0004761.
(33)Pinney,K.G.;Bounds,A.D.;Dingeman,K.M.;Mocharla,V.P.;Pettit,G.R.;Bai,R.;Hamel,E.A New Anti-Tubulin Agent Containing the Benzo[b]Thiophene RingSystem.Bioorg.Med.Chem.Lett.1999,9(8),1081–1086.https://doi.org/10.1016/S0960-894X(99)00143-2.
(34)Pinney,K.;Pettit,G.;Mocharla,V.;Mejia,M.del P.;Shirali,A.Anti-Mitotic Agents Which Inhibit Tubulin Polymerization.WO/1998/039323,September12,1998.
(35)Pinney,K.;Sriram,M.;George,C.;Tanpure,R.Efficient Method forPreparing Functionalized Benzosuberenes.WO/2012/068284,May 25,2012.
(36)Pinney,K.;Mocharla,V.;Chen,Z.;Garner,C.;Ghatak,A.;Hadimani,M.;Kessler,J.;Dorsey,J.;Edvardsen,K.;Chaplin,D.;Prezioso,J.;Ghatak,U.TubulinBinding Agents and Corresponding Prodrug Constructs.US20040043969A1,March 4,2004.
(37)Tanpure,R.P.;George,C.S.;Strecker,T.E.;Devkota,L.;Tidmore,J.K.;Lin,C.-M.;Herdman,C.A.;MacDonough,M.T.;Sriram,M.;Chaplin,D.J.;Trawick,M.L.;Pinney,K.G.Synthesis of Structurally Diverse Benzosuberene Analogues andTheir Biological Evaluation as Anti-Cancer Agents.Bioorg.Med.Chem.2013,21(24),8019–8032.https://doi.org/10.1016/j.bmc.2013.08.035.
(38)Tanpure,R.P.;George,C.S.;Sriram,M.;Strecker,T.E.;Tidmore,J.K.;Hamel,E.;Charlton-Sevcik,A.K.;Chaplin,D.J.;Trawick,M.L.;Pinney,K.G.An Amino-Benzosuberene Analogue That Inhibits Tubulin Assembly and DemonstratesRemarkable Cytotoxicity.MedChemComm 2012,3(6),720–724.https://doi.org/10.1039/C2MD00318J.
(39)Hadimani,M.B.;MacDonough,M.T.;Ghatak,A.;Strecker,T.E.;Lopez,R.;Sriram,M.;Nguyen,B.L.;Hall,J.J.;Kessler,R.J.;Shirali,A.R.;Liu,L.;Garner,C.M.;Pettit,G.R.;Hamel,E.;Chaplin,D.J.;Mason,R.P.;Trawick,M.L.;Pinney,K.G.Synthesis of a 2-Aryl-3-Aroyl Indole Salt(OXi8007)ResemblingCombretastatin A-4 with Application as a Vascular DisruptingAgent.J.Nat.Prod.2013,76(9),1668–1678.https://doi.org/10.1021/np400374w.
(40)Hamel,E.Antimitotic Natural Products and Their Interactions withTubulin.Med.Res.Rev.1996,16(2),207–231.https://doi.org/10.1002/(SICI)1098-1128(199603)16:2<207::AID-MED4>3.0.CO;2-4.
(41)Wu,X.;Wang,Q.;Li,W.Recent Advances in Heterocyclic TubulinInhibitors Targeting the Colchicine Binding Site.Anticancer AgentsMed.Chem.2016,16(10),1325-1338.https://doi.org/10.2174/1871520616666160219161921.
(42)Lee,R.M.;Gewirtz,D.A.Colchicine Site Inhibitors of MicrotubuleIntegrity as Vascular Disrupting Agents.Drug Dev.Res.2008,69(6),352–358.https://doi.org/10.1002/ddr.20267.
(43)Gigant,B.;Cormier,A.;Dorléans,A.;Ravelli,R.B.G.;Knossow,M.Microtubule-Destabilizing Agents:Structural and Mechanistic Insights fromthe Interaction of Colchicine and Vinblastine with Tubulin.In Tubulin-BindingAgents:Synthetic,Structural and Mechanistic Insights;Carlomagno,T.,Ed.;Topicsin Current Chemistry;Springer Berlin Heidelberg:Berlin,Heidelberg,2009;pp259–278.https://doi.org/10.1007/128_2008_11.
(44)Sackett,D.L.Podophyllotoxin,Steganacin and Combretastatin:NaturalProducts That Bind at the Colchicine Site of Tubulin.Pharmacol.Ther.1993,59(2),163–228.https://doi.org/10.1016/0163-7258(93)90044-E.
(45)Wang,Y.;Zhang,H.;Gigant,B.;Yu,Y.;Wu,Y.;Chen,X.;Lai,Q.;Yang,Z.;Chen,Q.;Yang,J.Structures of a Diverse Set of Colchicine Binding SiteInhibitors in Complex with Tubulin Provide a Rationale for DrugDiscovery.FEBS J.2016,283(1),102–111.https://doi.org/10.1111/febs.13555.
(46)Ji,Y.-T.;Liu,Y.-N.;Liu,Z.-P.Tubulin Colchicine Binding SiteInhibitors as Vascular Disrupting Agents in ClinicalDevelopments.Curr.Med.Chem.2015,22(11),1348-1360.https://doi.org/10.2174/0929867322666150114163732.
(47)Nguyen,T.L.;McGrath,C.;Hermone,A.R.;Burnett,J.C.;Zaharevitz,D.W.;Day,B.W.;Wipf,P.;Hamel,E.;Gussio,R.A Common Pharmacophore for a Diverse Setof Colchicine Site Inhibitors Using a Structure-BasedApproach.J.Med.Chem.2005,48(19),6107–6116.https://doi.org/10.1021/jm050502t.
(48)Chen,J.;Liu,T.;Dong,X.;Hu,Y.Recent Development and SAR Analysisof Colchicine Binding Site Inhibitors.Mini.Rev.Med.Chem.2009,9(10),1174-1190.https://doi.org/info:doi/10.2174/138955709789055234.
(49)Lu,Y.;Chen,J.;Xiao,M.;Li,W.;Miller,D.D.An Overview of TubulinInhibitors That Interact with the Colchicine Binding Site.Pharm.Res.2012,29(11),2943–2971.https://doi.org/10.1007/s11095-012-0828-z.
(50)Macdonough,M.T.;Strecker,T.E.;Hamel,E.;Hall,J.J.;Chaplin,D.J.;Trawick,M.L.;Pinney,K.G.Synthesis and Biological Evaluation of Indole-Based,Anti-Cancer Agents Inspired by the Vascular Disrupting Agent 2-(3’-Hydroxy-4’-Methoxyphenyl)-3-(3″,4″,5″-Trimethoxybenzoyl)-6-Methoxyindol e(OXi8006).Bioorg.Med.Chem.2013,21(21),6831–6843.https://doi.org/10.1016/j.bmc.2013.07.028.
(51)Flynn,B.L.;Gill,G.S.;Grobelny,D.W.;Chaplin,J.H.;Paul,D.;Leske,A.F.;Lavranos,T.C.;Chalmers,D.K.;Charman,S.A.;Kostewicz,E.;Shackleford,D.M.;Morizzi,J.;Hamel,E.;Jung,M.K.;Kremmidiotis,G.Discovery of 7-Hydroxy-6-Methoxy-2-Methyl-3-(3,4,5-Trimethoxybenzoyl)Benzo[b]Furan(BNC105),a TubulinPolymerization Inhibitor with Potent Antiproliferative and Tumor VascularDisrupting Properties.J.Med.Chem.2011,54(17),6014–6027.https://doi.org/10.1021/jm200454y.
(52)Kuo,C.-C.;Hsieh,H.-P.;Pan,W.-Y.;Chen,C.-P.;Liou,J.-P.;Lee,S.-J.;Chang,Y.-L.;Chen,L.-T.;Chen,C.-T.;Chang,J.-Y.BPR0L075,a Novel SyntheticIndole Compound with Antimitotic Activity in Human Cancer Cells,ExertsEffective Antitumoral Activity in Vivo.Cancer Res.2004,64(13),4621–4628.https://doi.org/10.1158/0008-5472.CAN-03-3474.
(53)Liu,L.;Beck,H.;Wang,X.;Hsieh,H.-P.;Mason,R.P.;Liu,X.Tubulin-Destabilizing Agent BPR0L075 Induces Vascular-Disruption in Human BreastCancer Mammary Fat Pad Xenografts.PLOS ONE 2012,7(8),e43314.https://doi.org/10.1371/journal.pone.0043314.
(54)Rasolofonjatovo,E.;Provot,O.;Hamze,A.;Rodrigo,J.;Bignon,J.;Wdzieczak-Bakala,J.;Desravines,D.;Dubois,J.;Brion,J.-D.;Alami,M.Conformationally Restricted Naphthalene Derivatives Type IsocombretastatinA-4 and Isoerianin Analogues:Synthesis,Cytotoxicity and AntitubulinActivity.Eur.J.Med.Chem.2012,52,22–32.https://doi.org/10.1016/j.ejmech.2012.03.001.
(55)Rasolofonjatovo,E.;Provot,O.;Hamze,A.;Rodrigo,J.;Bignon,J.;Wdzieczak-Bakala,J.;Lenoir,C.;Desravines,D.;Dubois,J.;Brion,J.-D.;Alami,M.Design,Synthesis and Anticancer Properties of 5-Arylbenzoxepins asConformationally Restricted Isocombretastatin A-4Analogs.Eur.J.Med.Chem.2013,62,28–39.https://doi.org/10.1016/j.ejmech.2012.12.042.
(56)Chen,Z.;O’Donnell,C.J.;Maderna,A.Synthesis of 3-Methoxy-9-(3,4,5-Trimethoxyphenyl)-6,7-Dihydro-5H-Benzo[7]Annulen-4-Ol,a Potent AntineoplasticBenzosuberene Derivative for Anti-Cancer Chemotherapy.Tetrahedron Lett.2012,53(1),64–66.https://doi.org/10.1016/j.tetlet.2011.10.145.
(57)Chen,Z.;Maderna,A.;Sukuru,S.C.K.;Wagenaar,M.;O’Donnell,C.J.;Lam,M.-H.;Musto,S.;Loganzo,F.New Cytotoxic Benzosuberene Analogs.Synthesis,Molecular Modeling and Biological Evaluation.Bioorg.Med.Chem.Lett.2013,23(24),6688–6694.https://doi.org/10.1016/j.bmcl.2013.10.039.
(58)Galli,U.;Travelli,C.;Aprile,S.;Arrigoni,E.;Torretta,S.;Grosa,G.;Massarotti,A.;Sorba,G.;Canonico,P.L.;Genazzani,A.A.;Tron,G.C.Design,Synthesis,and Biological Evaluation of Combretabenzodiazepines:A Novel Classof Anti-Tubulin Agents.J.Med.Chem.2015,58(3),1345–1357.https://doi.org/10.1021/jm5016389.
(59)Prileschajew Nikolaus.Oxydation
Figure BDA0002999069450000421
Verbindungen MittelsOrganischer Superoxyde.Berichte Dtsch.Chem.Ges.1909,42(4),4811–4815.https://doi.org/10.1002/cber.190904204100.
(60)VanRheenen,V.;Kelly,R.C.;Cha,D.Y.An Improved Catalytic OsO4Oxidation of Olefins to Cis-1,2-Glycols Using Tertiary Amine Oxides as theOxidant.Tetrahedron Lett.1976,17(23),1973–1976.https://doi.org/10.1016/S0040-4039(00)78093-2.
(61)Gustowski,D.A.;Delgado,M.;Gatto,V.J.;Echegoyen,L.;Gokel,G.W.Electrochemical Switching in Anthraquinone-Substituted Carbon-PivotLariat Ethers and Podands:Chain Length Effects in Geometric and Electronic Cooperativity.J.Am.Chem.Soc.1986,108(24),7553–7560.https://doi.org/10.1021/ja00284a019.
(62)Sandmeyer Traugott.Ueber Die Ersetzung Der Amidgruppe Durch Chlorin Den Aromatischen Substanzen.Berichte Dtsch.Chem.Ges.2006,17(2),1633–1635.https://doi.org/10.1002/cber.18840170219.
(63)Sandmeyer Traugott.Ueber Die Ersetzung Der Amid-gruppe DurchChlor,Brom Und Cyan in Den Aromatischen Substanzen.BerichteDtsch.Chem.Ges.2006,17(2),2650–2653.https://doi.org/10.1002/cber.188401702202.
(64)Mori,A.;Mizusaki,T.;Miyakawa,Y.;Ohashi,E.;Haga,T.;Maegawa,T.;Monguchi,Y.;Sajiki,H.Chemoselective Hydrogenation Method Catalyzed by Pd/CUsing Diphenylsulfide as a Reasonable Catalyst Poison.Tetrahedron 2006,62(51),11925–11932.https://doi.org/10.1016/j.tet.2006.09.094.
(65)E.Eaton,P.;R.Carlson,G.;T.Lee,J.Phosphorus Pentoxide-Methanesulfonic Acid.Convenient Alternative to PolyphosphoricAcid.J.Org.Chem.1973,38,4071-4073.https://doi.org/10.1021/jo00987a028.
(66)Tanis,V.M.;Moya,C.;Jacobs,R.S.;Little,R.D.Synthesis andEvaluation of the Bioactivity of Simplified Analogs of the Seco-Pseudopterosins;Progress Toward Determining a Pharmacophore.Tetrahedron 2008,64(47),10649–10663.https://doi.org/10.1016/j.tet.2008.09.025.
(67)Lin,W.;Wang,Q.;Xiao,Y.;He,H.;Zheng;Chen,X.;Chen,S.;WuXiAppTec.Fast Synthetic Route for 3-Aryl Substituted Propanoic Acid.China,CN101747171 A,December 17,2008.
(68)Benner Andre;Bonifazi Alessandro;Shirataki Chikako;Temme Louisa;Schepmann Dirk;Quaglia Wilma;Shoji Osami;Watanabe Yoshihito;DaniliucConstantin;Wünsch Bernhard.GluN2B-Selective N-Methyl-d-aspartate(NMDA)Receptor Antagonists Derived from 3-Benzazepines:Synthesis andPharmacological Evaluation of Benzo[7]Annulen-7-amines.ChemMedChem 2014,9(4),741–751.https://doi.org/10.1002/cmdc.201300547.
(69)Walsh,J.J.;Sha,R.;McCormack,E.M.;Hudson,G.J.;White,M.;Stack,G.D.;Moran,B.W.;Coogan,A.;Breen,E.C.Tubulin Binding Agents.US20150018566A1,August27,2012.
(70)Gilman,H.;Jones,R.G.;Woods,L.A.The Preparation of Methylcopperand Some Observations on the Decomposition of OrganocopperCompounds.J.Org.Chem.1952,17(12),1630–1634.https://doi.org/10.1021/jo50012a009.
(71)Hua,J.;Sheng,Y.;Pinney,K.G.;Garner,C.M.;Kane,R.R.;Prezioso,J.A.;Pettit,G.R.;Chaplin,D.J.;Edvardsen,K.Oxi4503,a Novel Vascular TargetingAgent:Effects on Blood Flow and Antitumor Activity in Comparison toCombretastatin A-4Phosphate.Anticancer Res.2003,23(2B),1433–1440.
(72)Benham,F.J.;Fogh,J.;Harris,H.Alkaline Phosphatase Expression inHuman Cell Lines Derived from Various Malignancies.Int.J.Cancer 1981,27(5),637–644.
(73)Rao,S.R.;Snaith,A.E.;Marino,D.;Cheng,X.;Lwin,S.T.;Orriss,I.R.;Hamdy,F.C.;Edwards,C.M.Tumour-Derived Alkaline Phosphatase Regulates TumourGrowth,Epithelial Plasticity and Disease-Free Survival in Metastatic ProstateCancer.Br.J.Cancer 2017,116(2),227–236.https://doi.org/10.1038/bjc.2016.402.
(74)Gangjee,A.;Zhao,Y.;Lin,L.;Raghavan,S.;Roberts,E.G.;Risinger,A.L.;Hamel,E.;Mooberry,S.L.Synthesis and Discovery of Water Soluble MicrotubuleTargeting Agents That Bind to the Colchicine Site on Tubulin and CircumventPgp Mediated Resistance.J.Med.Chem.2010,53(22),8116–8128.https://doi.org/10.1021/jm101010n.
(75)Maguire,C.J.;Chen,Z.;Mocharla,V.P.;Sriram,M.;Strecker,T.E.;Hamel,E.;Zhou,H.;Lopez,R.;Wang,Y.;Mason,R.P.;Chaplin,D.J.;Trawick,M.L.;Pinney,K.G.Synthesis of Dihydronaphthalene Analogues Inspired by Combretastatin A-4and Their Biological Evaluation as Anticancer Agents.MedChemComm.2018,9(10),1649-1662.https://doi.org/10.1039/C8MD00322J.
(76)Folaron,M.;Seshadri,M.Bioluminescence and MR Imaging of theSafety and Efficacy of Vascular Disruption in Gliomas.Mol.Imaging Biol.MIBOff.Publ.Acad.Mol.Imaging 2016,18(6),860–869.https://doi.org/10.1007/s11307-016-0963-8.
(77)Tumati,V.;Mathur,S.;Song,K.;Hsieh,J.-T.;Zhao,D.;Takahashi,M.;Dobin,T.;Gandee,L.;Solberg,T.D.;Habib,A.A.;Saha,D.Development of a LocallyAdvanced Orthotopic Prostate Tumor Model in Rats for Assessment of CombinedModality Therapy.Int.J.Oncol.2013,42(5),1613–1619.https://doi.org/10.3892/ijo.2013.1858.
(78)Zhao,D.;Richer,E.;Antich,P.P.;Mason,R.P.Antivascular Effects ofCombretastatin A4 Phosphate in Breast Cancer Xenograft Assessed Using DynamicBioluminescence Imaging and Confirmed by MRI.FASEB J.Off.Publ.Fed.Am.Soc.Exp.Biol.2008,22(7),2445–2451.https://doi.org/10.1096/fj.07-103713.
(79)Zhao,D.;Jiang,L.;Hahn,E.W.;Mason,R.P.Tumor Physiologic Responseto Combretastatin A4 Phosphate Assessed by MRI.Int.J.Radiat.Oncol.Biol.Phys.2005,62(3),872–880.https://doi.org/10.1016/j.ijrobp.2005.03.009.
(80)Zhao,D.;Chang,C.-H.;Kim,J.G.;Liu,H.;Mason,R.P.In Vivo Near-Infrared Spectroscopy and Magnetic Resonance Imaging Monitoring of TumorResponse to Combretastatin A-4-Phosphate Correlated with Therapeutic Outcome.Int.J.Radiat.Oncol.Biol.Phys.2011,80(2),574–581.https://doi.org/10.1016/j.ijrobp.2010.12.028.
(81)Galbraith,S.M.;Maxwell,R.J.;Lodge,M.A.;Tozer,G.M.;Wilson,J.;Taylor,N.J.;Stirling,J.J.;Sena,L.;Padhani,A.R.;Rustin,G.J.S.Combretastatin A4Phosphate Has Tumor Antivascular Activity in Rat and Man as Demonstrated byDynamic Magnetic Resonance Imaging.J.Clin.Oncol.Off.J.Am.Soc.Clin.Oncol.2003,21(15),2831–2842.https://doi.org/10.1200/JCO.2003.05.187.
(82)Vichai,V.;Kirtikara,K.Sulforhodamine B Colorimetric Assay forCytotoxicity Screening.Nat.Protoc.2006,1(3),1112–1116.https://doi.org/10.1038/nprot.2006.179.
(83)Monks,A.;Scudiero,D.;Skehan,P.;Shoemaker,R.;Paull,K.;Vistica,D.;Hose,C.;Langley,J.;Cronise,P.;Vaigro-Wolff,A.;Gray-Goodrich,M.;Campbell,H.;Mayo,J.;Boyd,M.Feasibility of a High-Flux Anticancer Drug Screen Using aDiverse Panel of Cultured Human Tumor Cell Lines.JNCI J.Natl.CancerInst.1991,83(11),757–766.https://doi.org/10.1093/jnci/83.11.757.
(84)Hamel,E.;Lin,C.M.Stabilization of the Colchicine-Binding Activityof Tubulin by Organic Acids.Biochim.Biophys.Acta BBA-Gen.Subj.1981,675(2),226–231.https://doi.org/10.1016/0304-4165(81)90231-2.
(85)Hamel,E.Evaluation of Antimitotic Agents by QuantitativeComparisons of Their Effects on the Polymerization of Purified Tubulin.CellBiochem.Biophys.2003,38(1),1–22.https://doi.org/10.1385/CBB:38:1:1.

Claims (14)

1.下式的化合物或其药理学上可接受的盐:
Figure FDA0002999069440000011
其中R为CH3、(CH2)3CH3、O(CH2)2O(CH2)2OCH3、O(CH2)2OH、COOEt、CH2OH、CN或CHO,
n为0或1,
R1为CH3、OH、OCH3或OH,
R2为Br或H,且
R3为H、OH或NHAc。
2.根据权利要求1所述的化合物,其中R为CH3、(CH2)3CH3、O(CH2)2O(CH2)2OCH3、O(CH2)2OH、COOEt、CH2OH、CN或CHO,n为1。
3.根据权利要求1所述的化合物,其中R1为CH3,R2为Br,且R3为H。
4.根据权利要求1所述的化合物,其中R1为OH,R2为Br,且R3为H。
5.根据权利要求1所述的化合物,其中R1为OCH3,R2为H,且R3为OH。
6.药物制剂,包含治疗有效量的权利要求1所述的化合物。
7.用于在患者的肿瘤中抑制微管蛋白聚合和破坏血管形成的方法,包括施用权利要求6所述的药物制剂。
8.下式的化合物或其药理学上可接受的盐:
Figure FDA0002999069440000012
其中R4为H、OH或(=O),且
R5为PO(ONa)2
9.根据权利要求8所述的化合物,其中R4为(=O)。
10.药物制剂,包含治疗有效量的权利要求8所述的化合物。
11.用于在患者的肿瘤中抑制微管蛋白聚合和破坏血管形成的方法,包括施用权利要求10所述的药物制剂。
12.下式的化合物或其药理学上可接受的盐:
Figure FDA0002999069440000021
13.药物制剂,包含治疗有效量的权利要求12所述的化合物。
14.用于在患者的肿瘤中抑制微管蛋白聚合和破坏血管形成的方法,包括施用权利要求13所述的药物制剂。
CN201980064451.2A 2018-08-17 2019-08-16 具有作为抗癌剂活性的苯并环庚烯类似物和相关化合物 Active CN112789035B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862719362P 2018-08-17 2018-08-17
US62/719,362 2018-08-17
PCT/US2019/046828 WO2020037209A1 (en) 2018-08-17 2019-08-16 Benzosuberene analogues and related compounds with activity as anticancer agents

Publications (2)

Publication Number Publication Date
CN112789035A true CN112789035A (zh) 2021-05-11
CN112789035B CN112789035B (zh) 2024-02-09

Family

ID=67777478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980064451.2A Active CN112789035B (zh) 2018-08-17 2019-08-16 具有作为抗癌剂活性的苯并环庚烯类似物和相关化合物

Country Status (5)

Country Link
US (1) US10807932B2 (zh)
EP (1) EP3836910A1 (zh)
CN (1) CN112789035B (zh)
CA (1) CA3108802A1 (zh)
WO (1) WO2020037209A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043969A1 (en) * 2000-03-10 2004-03-04 Pinney Kevin G. Tubulin binding agents and corresponding prodrug constructs
WO2006138427A2 (en) * 2005-06-14 2006-12-28 Baylor University Combretastatin analogs with tubulin binding activity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886025A (en) 1997-03-06 1999-03-23 Baylor University Anti-mitotic agents which inhibit tubulin polymerization
US6919324B2 (en) 2001-10-26 2005-07-19 Oxigene, Inc. Functionalized stilbene derivatives as improved vascular targeting agents
CN101747171A (zh) 2008-12-17 2010-06-23 上海药明康德新药开发有限公司 3-取代芳香基丙酸的快速合成方法
US20120130129A1 (en) 2010-11-16 2012-05-24 Baylor University Efficient Method for Preparing Functionalized Benzosuberenes
US20150018566A1 (en) 2011-08-25 2015-01-15 The Provost, Fellows, Foundation Scholars, & the Other Members of Board, of The College of the Holy Tubulin binding agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043969A1 (en) * 2000-03-10 2004-03-04 Pinney Kevin G. Tubulin binding agents and corresponding prodrug constructs
WO2006138427A2 (en) * 2005-06-14 2006-12-28 Baylor University Combretastatin analogs with tubulin binding activity

Also Published As

Publication number Publication date
US20200055805A1 (en) 2020-02-20
CA3108802A1 (en) 2020-02-20
WO2020037209A1 (en) 2020-02-20
EP3836910A1 (en) 2021-06-23
US10807932B2 (en) 2020-10-20
CN112789035B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN102471264B (zh) 5,5-双取代-2-亚氨基吡咯烷类衍生物、其制备方法及其在医药上的应用
US7429681B2 (en) Combretastatin analogs with tubulin binding activity
US10370349B2 (en) Functionalised benzopyran compounds and use thereof
TW200301110A (en) Indole compounds
US20070082872A1 (en) Indole-containing compounds with anti-tubulin and vascular targeting activity
KR20030008208A (ko) 말초 카나비노이드 수용체 특이적 아고니스트
JP2013516435A (ja) アンドロゲンレセプター活性調節因子としての、ビスフェノール誘導体およびその使用
Niu et al. Structure guided design, synthesis, and biological evaluation of novel benzosuberene analogues as inhibitors of tubulin polymerization
Herdman et al. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization
Sato et al. A novel class of in vivo active anticancer agents: achiral seco-amino-and seco-hydroxycyclopropylbenz [e] indolone (seco-CBI) analogues of the duocarmycins and CC-1065
PT93049A (pt) Processo para a preparacao de compostos de aril-hidroxi-ureia possuindo actividade anti-inflamatoria e de composicoes farmaceuticas que os contem
KR101975299B1 (ko) 인돌아세트산의 코어구조를 함유하는 화합물 및 그의 용도
CN112789035B (zh) 具有作为抗癌剂活性的苯并环庚烯类似物和相关化合物
US20050065213A1 (en) Combretastatin a-4 derivatives having antineoplastic activity
US8198302B2 (en) Compositions and methods with enhanced therapeutic activity
US20240092744A1 (en) Tricyclic compound, and preparation method therefor and medical use thereof
KR101554703B1 (ko) 벤조일옥시신남알데히드-폴리에틸렌글리콜 결합 마이셀에 아연 프로토포르피린을 담지한 pH 감응형 항암 전구약물 및 이의 제조방법
US20090047221A1 (en) Compounds and compositions useful in the treatment of neoplasia
CA2888379A1 (fr) Composes 3,4-bis(catechol)pyrrole-n-substitues, leur preparation et utilisation dans le traitement du cancer
KR20000053227A (ko) Cox-2의 인덴 억제제
Niu Efficient Synthetic Methodology for the Construction of Dihydronaphthalene and Benzosuberene Molecular Scaffolds and Structure Guided Design, Synthesis and Biological Evaluation of Novel Benzosuberene Analogues as Inhibitors of Tubulin Polymerization
US20180291043A1 (en) Benzocyclooctene-based and indene-based anticancer agents
US20240350448A1 (en) Dichloroacetic acid conjugating diphenyl ethane compound, and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant