CN112774623A - 硅基负载型硫化纳米零价铁复合材料的制备方法及应用 - Google Patents

硅基负载型硫化纳米零价铁复合材料的制备方法及应用 Download PDF

Info

Publication number
CN112774623A
CN112774623A CN202011624833.7A CN202011624833A CN112774623A CN 112774623 A CN112774623 A CN 112774623A CN 202011624833 A CN202011624833 A CN 202011624833A CN 112774623 A CN112774623 A CN 112774623A
Authority
CN
China
Prior art keywords
silicon
nano zero
valent iron
composite material
based supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011624833.7A
Other languages
English (en)
Inventor
李辉
相明辉
司若凡
黄渊
王文兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202011624833.7A priority Critical patent/CN112774623A/zh
Publication of CN112774623A publication Critical patent/CN112774623A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0285Sulfides of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Soil Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种硅基负载型硫化纳米零价铁复合材料的制备方法及应用。该复合材料以表面起皱二氧化硅纳米球为载体,单分散的硫化纳米零价铁颗粒均匀分散在树突状纤维孔道中,整体形貌呈球形且高度分散,对溴代有机污染物四溴双酚A有更好的反应性和在石英砂柱中的运输性。本发明制备的硅基负载型硫化纳米零价铁复合材料的工艺简单、原料廉价易得、绿色环保。本发明制备的硅基负载型硫化纳米零价铁复合材料可用于土壤地下水中的卤代有机污染物的原位修复,可操作性强,修复效果明显。

Description

硅基负载型硫化纳米零价铁复合材料的制备方法及应用
技术领域
本发明涉及土壤修复材料制备领域,尤其涉及一种硅基负载型硫化纳米零价铁复合材料的制备及应用。
背景技术
四溴双酚A(TBBPA)是全球生产和使用最广泛的溴化阻燃剂(BFR)之一,它使工业产品,例如塑料,橡胶,纺织品和纤维,具有良好的阻燃性和自熄性。TBBPA不可避免地释放到环境中,由于其亲脂性,持久性和远距离迁移性,已在空气,土壤,水,沉积物和生物中被检测出。TBBPA在动物中具有内分泌破坏能力,神经毒性,肾毒性和肝毒性,并且可以刺激人体细胞的氧化应激,炎症和免疫抑制,暴露于人体的TBBPA污染环境对健康的潜在风险已引起广泛关注。因此,必须开发有效的技术从受污染的环境介质中去除TBBPA。
硫化纳米零价铁(S-NZVI)具有比纳米零价铁颗粒更好的电子转移效率和反应活性,现已成为土壤地下水卤代有机污染修复中的研究热点。然而,S-NZVI在范德华力,高表面能和固有的磁相互作用下仍趋于聚集,这将导致土壤孔隙堵塞,影响其在多孔介质中的流动性,所以限制了其在实际环境修复工程中的应用。为了提高其稳定性和分散性,可以将S-NZVI负载在易于合成,结构可调,化学稳定性强的多孔硅基载体上,但是大多数硅铁复合材料的形状不规则,不能有效利用载体的比表面积,这不利于修复材料在土壤中的运输和去除地下水污染。
发明内容
本发明的目的是提供一种硅基负载型硫化纳米零价铁复合材料的制备及应用,以表面起皱二氧化硅纳米球为载体,将硫化纳米零价铁分散在树突状纤维孔道中,从而克服硫化纳米零价铁易团聚的缺陷,同时提高吸附和还原反应能力,更高效的穿透土壤含水层以去除地下水中的四溴双酚A。
为实现上述发明目的,本发明提供了种硅基负载型硫化纳米零价铁复合材料的制备方法,其特征在于,具体包括以下步骤:
步骤1、将0.068g三乙醇胺溶于25mL水中,80-100℃搅拌0.5h,再加入0.380g十六烷基三甲基溴化铵和0.167-0.251g水杨酸钠,搅拌1h形成混合溶液,其中十六烷基三甲基溴化铵为结构导向剂;
步骤2、向上述混合溶液中加入2-4mL正硅酸四乙酯充分反应1-2h后,在7000rpm下离心5min后收集白色固体产物;
步骤3、将上述白色固体产物在60℃下用酸性乙醇萃取3次去除十六烷基三甲基溴化铵,再用无水乙醇洗涤3次,60℃烘箱干燥12h后获得表面起皱二氧化硅纳米球;其中,盐酸和乙醇的体积比为2:98;
步骤4、将0.05-0.3g表面起皱二氧化硅纳米球和0.483g六水合三氯化铁溶解在60mL超纯水和30mL无水乙醇的混合溶液中,超声2h并机械搅拌30min;
步骤5、在通入氮气保护下用蠕动泵向上述溶液中滴加20mL含有0.350g硼氢化钠和0.008-0.047g连二亚硫酸钠的溶液,继续搅拌30min;
步骤6、在5000rpm下离心5min后收集黑色产物,经无水乙醇洗涤后在60℃真空干燥箱中干燥2h后得到最终产物硅基负载型硫化纳米零价铁复合材料。
进一步地,十六烷基三甲基溴化铵和水杨酸钠的摩尔比为1-1.5,复合材料的硅铁质量比为0.5-3。
本发明还提供了一种用于验证硅基负载型硫化纳米零价铁复合材料去除四溴双酚A的方法,其特征在于,
步骤1、将0.1g表面起皱二氧化硅纳米球、0.1g硫化纳米零价铁和0.2g硅基负载型硫化纳米零价铁复合材料投加到含100mL 10-40mg/L四溴双酚A地下水溶液的摇瓶中,调节溶液pH至6.5±0.3,在30℃250rpm的振荡箱中遮光反应8h,在设定时间点下取部分水样用高效液相色谱仪检测四溴双酚A浓度。
步骤2、将100mL 1g/L硫化纳米零价铁或硅基负载型硫化纳米零价铁复合材料悬浮液泵入装有石英砂(20-10目)的树脂柱(直径25mm,高170mm,孔隙率0.41)中,收集每分钟流出物,用HCl酸化6小时后通过邻菲罗啉法测定总铁浓度。
进一步地,石英砂为20-10目,石英砂的树脂柱为直径25mm,高170mm,孔隙率0.41。
本发明的有益效果在于:
(1)本发明所制备的表面起皱二氧化硅纳米球具有孔径由内向外逐渐增大的中心-径向孔结构,可通过改变十六烷基三甲基溴化铵和水杨酸钠的摩尔比调节表面起皱二氧化硅纳米球的大小。
(2)本发明所制备的硅基负载型硫化纳米零价铁复合材料可轻易调节硅铁质量比和硫铁摩尔比以获得最佳的反应活性。
(3)本发明所制备的硅基负载型硫化纳米零价铁复合材料改善了硫化纳米零价铁的聚集提高了分散性,强化了对污染物的吸附作用并暴露出更多的活性位点,在去除四溴双酚A污染的地下水中展现出高效的反应性,表面电荷的改变使其在土壤多孔介质中有着更强的运输性。
(4)本发明结合了表面起皱二氧化硅纳米球和硫化纳米零价铁的优点合成了硅基负载型硫化纳米零价铁复合材料,提高了硫化纳米零价铁在修复环境中的分散性、反应性和运输性,证明了该复合材料在实际污染场地修复中的应用潜力。
附图内容
图1为本发明制备的不同材料的透射电镜图;
图2为本发明制备的硅基负载型硫化纳米零价铁复合材料去除土壤地下水中四溴双酚A的降解效果图;
图3为本发明制备的硅基负载型硫化纳米零价铁复合材料在石英砂柱中的穿透曲线图。
具体实施方式
以下将结合附图1-3对实施例的技术方案进行详细说明。
实施例1:
该实施例提供了一种硅基负载型硫化纳米零价铁复合材料的制备方法,具体包括以下步骤:
步骤1、将0.068g三乙醇胺溶于25mL水中,80℃搅拌0.5h,再加入0.380g十六烷基三甲基溴化铵和0.251g水杨酸钠,搅拌1h形成混合溶液,其中十六烷基三甲基溴化铵为结构导向剂;
步骤2、向上述混合溶液中加入4mL正硅酸四乙酯充分反应2h后,在7000rpm下离心5min后收集白色固体产物;
步骤3、将上述白色固体产物在60℃下用酸性乙醇(盐酸和乙醇的体积比为2:98)萃取3次去除十六烷基三甲基溴化铵,再用无水乙醇洗涤3次,60℃烘箱干燥12h后获得表面起皱二氧化硅纳米球;
步骤4、将0.1g表面起皱二氧化硅纳米球和0.483g六水合三氯化铁溶解在60mL超纯水和30mL无水乙醇的混合溶液中,超声2h并机械搅拌30min;
步骤5、在通入氮气保护下用蠕动泵向上述溶液中滴加20mL含有0.350g硼氢化钠和0.031g连二亚硫酸钠的溶液,继续搅拌30min;
步骤6、在5000rpm下离心5min后收集黑色产物,经无水乙醇洗涤后在60℃真空干燥箱中干燥2h后得到最终产物硅基负载型硫化纳米零价铁复合材料。
硫化纳米零价铁的制备除了不需加入表面起皱二氧化硅纳米球,其他与硅基负载型硫化纳米零价铁复合材料制备步骤一致。
用此方法制备的复合材料特性如下:
如图1所示,为本发明制备的不同材料的透射电镜图。硫化纳米零价铁是表面粗糙具有圆形核和片状壳形的球形颗粒,并严重聚集成粒径较大的链状结构(图1a)。表面起皱二氧化硅纳米球的孔结构是放射状的,并且孔径沿着颗粒的中心朝向表面逐渐增大(图1b)。硅基负载型硫化纳米零价铁复合材料显示球形和分散的硫化纳米零价铁颗粒(尺寸接近50nm)均匀地分散在纤维状中心-径向孔道中,分散性得到有效提升(图1c)。
实施例2:
该实施例提供了一种硅基负载型硫化纳米零价铁复合材料的制备及其降解土壤地下水中四溴双酚A的方法,具体包括以下步骤:
步骤1、将0.068g三乙醇胺溶于25mL水中,90℃搅拌0.5h,再加入0.380g十六烷基三甲基溴化铵和0.167g水杨酸钠,搅拌1h形成混合溶液,其中十六烷基三甲基溴化铵为结构导向剂;
步骤2、向上述混合溶液中加入3mL正硅酸四乙酯充分反应1h后,在7000rpm下离心5min后收集白色固体产物;
步骤3、将上述白色固体产物在60℃下用酸性乙醇(盐酸和乙醇的体积比为2:98)萃取3次去除十六烷基三甲基溴化铵,再用无水乙醇洗涤3次,60℃烘箱干燥12h后获得表面起皱二氧化硅纳米球;
步骤4、将0.05g表面起皱二氧化硅纳米球和0.483g六水合三氯化铁溶解在60mL超纯水和30mL无水乙醇的混合溶液中,超声2h并机械搅拌30min;
步骤5、在通入氮气保护下用蠕动泵向上述溶液中滴加20mL含有0.350g硼氢化钠和0.031g连二亚硫酸钠的溶液,继续搅拌30min;
步骤6、在5000rpm下离心5min后收集黑色产物,经无水乙醇洗涤后在60℃真空干燥箱中干燥2h后得到最终产物硅基负载型硫化纳米零价铁复合材料。
硫化纳米零价铁的制备除了不需加入表面起皱二氧化硅纳米球,其他与硅基负载型硫化纳米零价铁复合材料制备步骤一致。
步骤7、将0.1g表面起皱二氧化硅纳米球、0.1g硫化纳米零价铁和0.2g硅基负载型硫化纳米零价铁复合材料投加到含100mL 10mg/L四溴双酚A地下水溶液的摇瓶中,调节溶液pH至6.5,在30℃250rpm的振荡箱中遮光反应8h,在设定时间点下取部分水样用高效液相色谱仪检测四溴双酚A浓度。
如图2所示,为本发明制备的硅基负载型硫化纳米零价铁复合材料去除土壤地下水中四溴双酚A的降解效果图。反应8h后,硅基负载型硫化纳米零价铁复合材料显示了对土壤地下水中四溴双酚A降解的最佳效率(91.4%),显著高于仅依靠还原能力的硫化纳米零价铁(66.3%)和仅依靠吸附能力的表面起皱二氧化硅纳米球(9.5%)。结果表明硅基负载型硫化纳米零价铁复合材料中的吸附和还原有着明显的协同作用,有效提高了对四溴双酚A的降解效果。
实施例3:
该实施例提供了一种硅基负载型硫化纳米零价铁复合材料在石英砂柱中的运输方法,具体包括以下步骤:
将100mL 1g/L硫化纳米零价铁或硅基负载型硫化纳米零价铁复合材料悬浮液泵入装有石英砂(20-10目)的树脂柱(直径25mm,高170mm,孔隙率0.41)中,收集每分钟流出物,用HCl酸化6小时后通过邻菲罗啉法测定总铁浓度。
如图3所示,为本发明制备的硅基负载型硫化纳米零价铁复合材料在石英砂柱中的穿透曲线图。约70.5%的硅基负载型硫化纳米零价铁复合材料成功穿透石英砂柱到达底部,相反,只有不到1%的硫化纳米零价铁随出水流出。表明带负电的硅基负载型硫化纳米零价铁复合材料可增强与带负电荷的石英砂之间的静电排斥力,从而更有效地穿透土壤含水层运输至受污染的区域开展修复。
本领域技术人员应该理解,上述实施例仅仅是对本发明的示意性实现方式的解释,并非对本发明包含范围的限定。实施例中的细节并不构成对本发明范围的限制,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案的等效变换、简单替换等显而易见的改变,均落在本发明保护范围之内。

Claims (4)

1.一种硅基负载型硫化纳米零价铁复合材料的制备方法,其特征在于,具体包括以下步骤:
步骤1、将0.068g三乙醇胺溶于25mL水中,80-100℃搅拌0.5h,再加入0.380g十六烷基三甲基溴化铵和0.167-0.251g水杨酸钠,搅拌1h形成混合溶液,其中十六烷基三甲基溴化铵为结构导向剂;
步骤2、向上述混合溶液中加入2-4mL正硅酸四乙酯充分反应1-2h后,在7000rpm下离心5min后收集白色固体产物;
步骤3、将上述白色固体产物在60℃下用酸性乙醇萃取3次去除十六烷基三甲基溴化铵,再用无水乙醇洗涤3次,60℃烘箱干燥12h后获得表面起皱二氧化硅纳米球;其中,盐酸和乙醇的体积比为2:98;
步骤4、将0.05-0.3g表面起皱二氧化硅纳米球和0.483g六水合三氯化铁溶解在60mL超纯水和30mL无水乙醇的混合溶液中,超声2h并机械搅拌30min;
步骤5、在通入氮气保护下用蠕动泵向上述溶液中滴加20mL含有0.350g硼氢化钠和0.008-0.047g连二亚硫酸钠的溶液,继续搅拌30min;
步骤6、在5000rpm下离心5min后收集黑色产物,经无水乙醇洗涤后在60℃真空干燥箱中干燥2h后得到最终产物硅基负载型硫化纳米零价铁复合材料。
2.根据权利要求1所述的硅基负载型硫化纳米零价铁复合材料的制备方法,其特征在于:十六烷基三甲基溴化铵和水杨酸钠的摩尔比为1-1.5,复合材料的硅铁质量比为0.5-3。
3.一种用于验证硅基负载型硫化纳米零价铁复合材料去除四溴双酚A的方法,其特征在于,
步骤1、将0.1g表面起皱二氧化硅纳米球、0.1g硫化纳米零价铁和0.2g硅基负载型硫化纳米零价铁复合材料投加到含100mL10-40mg/L四溴双酚A地下水溶液的摇瓶中,调节溶液pH至6.5±0.3,在30℃250rpm的振荡箱中遮光反应8h,在设定时间点下取部分水样用高效液相色谱仪检测四溴双酚A浓度。
步骤2、将100mL 1g/L硫化纳米零价铁或硅基负载型硫化纳米零价铁复合材料悬浮液泵入装有石英砂的树脂柱中,收集每分钟流出物,用HCl酸化6小时后通过邻菲罗啉法测定总铁浓度。
4.根据权利要求3所述的用于验证硅基负载型硫化纳米零价铁复合材料去除四溴双酚A的方法,其特征在于:石英砂为20-10目,石英砂的树脂柱为直径25mm,高170mm,孔隙率0.41。
CN202011624833.7A 2020-12-31 2020-12-31 硅基负载型硫化纳米零价铁复合材料的制备方法及应用 Pending CN112774623A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011624833.7A CN112774623A (zh) 2020-12-31 2020-12-31 硅基负载型硫化纳米零价铁复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011624833.7A CN112774623A (zh) 2020-12-31 2020-12-31 硅基负载型硫化纳米零价铁复合材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN112774623A true CN112774623A (zh) 2021-05-11

Family

ID=75754478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011624833.7A Pending CN112774623A (zh) 2020-12-31 2020-12-31 硅基负载型硫化纳米零价铁复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112774623A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275024A (zh) * 2021-06-07 2021-08-20 上海大学 一种ZIF-67衍生的包裹型S-Fe/Co@C双金属催化剂制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030151030A1 (en) * 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
CN109433204A (zh) * 2018-11-28 2019-03-08 中触媒新材料股份有限公司 一种介孔氧化硅纳米球负载型铜硅催化剂及其制备方法
CN109607635A (zh) * 2018-09-20 2019-04-12 浙江工业大学 一种硫化零价铁的制备方法及其应用
CN110203939A (zh) * 2019-06-11 2019-09-06 吉林大学 一种多室化介孔材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030151030A1 (en) * 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
CN109607635A (zh) * 2018-09-20 2019-04-12 浙江工业大学 一种硫化零价铁的制备方法及其应用
CN109433204A (zh) * 2018-11-28 2019-03-08 中触媒新材料股份有限公司 一种介孔氧化硅纳米球负载型铜硅催化剂及其制备方法
CN110203939A (zh) * 2019-06-11 2019-09-06 吉林大学 一种多室化介孔材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANNAN YANG ET AL.: "Anion Assisted Synthesis of Large Pore Hollow Dendritic Mesoporous Organosilica Nanoparticles: Understanding the Composition Gradient", 《CHEM. MATER.》 *
任路遥: "基于蛋黄-蛋壳结构的Fe/FeS@SiO2材料去除模拟地下水中卤代有机物", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275024A (zh) * 2021-06-07 2021-08-20 上海大学 一种ZIF-67衍生的包裹型S-Fe/Co@C双金属催化剂制备方法与应用

Similar Documents

Publication Publication Date Title
Liu et al. Effective adsorption and immobilization of Cr (VI) and U (VI) from aqueous solution by magnetic amine-functionalized SBA-15
Ma et al. Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight
Kumar et al. Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg (II)
Zhao et al. Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides
Zhang et al. MIL-101 (Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants
Zhang et al. Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review
Matlochova et al. The application of nanoscale materials in groundwater remediation.
CN105197899B (zh) 一种氮化硼纳米片/四氧化三铁磁性纳米复合材料的制备方法
CN103007887B (zh) 碳纳米管负载多级纳米四氧化三铁吸附剂及其制备方法与应用
CN107570127A (zh) 一种石墨烯基油水分离泡沫材料及其制备方法和应用
Vishnu et al. Synthesis of tri-metallic surface engineered nanobiochar from cynodon dactylon residues in a single step-batch and column studies for the removal of copper and lead ions
WO2023030086A1 (zh) 一种高效可再生的纳米除锰剂及其制备方法与应用
CN112774623A (zh) 硅基负载型硫化纳米零价铁复合材料的制备方法及应用
Ramachandra et al. Improved Photocatalytic Activity of g‐C3N4/ZnO: A Potential Direct Z‐Scheme Nanocomposite
Wang et al. Adsorption performance and mechanism of antibiotics from aqueous solutions on porous boron nitride–carbon nanosheets
Yin et al. Preparation of biochar grafted with amino-riched dendrimer by carbonization, magnetization and functional modification for enhanced copper removal
Mohan et al. Enhanced visible light photocatalysis with E‐waste‐based V2O5/zinc–ferrite: BTEX degradation and mechanism
Jin et al. Influence of chromate adsorption and reduction on transport and retention of biochar colloids in saturated porous media
Liu et al. Adsorption properties and mechanisms of methylene blue and tetracycline by nano-silica biochar composites activated by KOH
Xiao et al. One-step arc-produced amino-functionalized graphite-encapsulated magnetic nanoparticles for the efficient removal of radionuclides
Velempini et al. Heavy-metal spent adsorbents reuse in catalytic, energy and forensic applications-a new approach in reducing secondary pollution associated with adsorption
Yuan et al. Construction of Fe3S4/g-C3N4 composites as photo-Fenton-like catalysts to realize high-efficiency degradation of pollutants
Qu et al. Pinecone-derived magnetic porous hydrochar co-activated by KHCO3 and K2FeO4 for Cr (VI) and anthracene removal from water
Liu et al. Adsorption of lead ions by activated carbon doped sodium alginate/sodium polyacrylate hydrogel beads and their in-situ recycle as sustainable photocatalysts
CN114433020A (zh) 一种生物炭固定零价铁的复合材料及其制备方法和在去除水中四环素中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210511

RJ01 Rejection of invention patent application after publication