CN112763345B - 一种飞机翼面载荷校准区域加载试验方法 - Google Patents

一种飞机翼面载荷校准区域加载试验方法 Download PDF

Info

Publication number
CN112763345B
CN112763345B CN202011551797.6A CN202011551797A CN112763345B CN 112763345 B CN112763345 B CN 112763345B CN 202011551797 A CN202011551797 A CN 202011551797A CN 112763345 B CN112763345 B CN 112763345B
Authority
CN
China
Prior art keywords
loading
load
airfoil
tested
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011551797.6A
Other languages
English (en)
Other versions
CN112763345A (zh
Inventor
何发东
吴波
陈怦
张迪
王启
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese Flight Test Establishment
Original Assignee
Chinese Flight Test Establishment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Flight Test Establishment filed Critical Chinese Flight Test Establishment
Priority to CN202011551797.6A priority Critical patent/CN112763345B/zh
Publication of CN112763345A publication Critical patent/CN112763345A/zh
Application granted granted Critical
Publication of CN112763345B publication Critical patent/CN112763345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/22Investigating strength properties of solid materials by application of mechanical stress by applying steady torsional forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0021Torsional
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明属于飞机飞行试验结构载荷测量技术领域,具体涉及一种飞机翼面载荷校准试验方法。本发明提供一种飞机翼面载荷校准的区域加载试验方法,该试验方法包括:通过对翼面结构进行分析确定载荷工况内容的区域加载工况设计方法;根据加载工况使用加载装置与连接装置施加结构载荷的区域加载工况实施方法;采集记录载荷与应变数据建立载荷模型的数据采集与分析方法。

Description

一种飞机翼面载荷校准区域加载试验方法
技术领域
本发明属于飞机飞行试验结构载荷测量技术领域,具体涉及一种飞机翼面载荷校准试验方法。
背景技术
飞机翼面载荷校准是飞行载荷测量的关键环节,通过对加装有载荷测量应变计电桥的翼面结构施加载荷,模拟飞机翼面在空中的真实受载情况,利用物理和数学方法分析试验数据,建立载荷模型的过程。通过校准试验的载荷模型,结合实际飞行中的测量的应变参数可以计算得到飞行载荷。
国内目前翼面载荷校准试验,通常使用点加载方式,即通过在结构关键点上施加集中载荷进行加载,这种加载方法存在一些不足:载荷量级受局部强度限制难以提高;加载面比较小,部分翼面没有载荷,与翼面结构真实受载差异较大;多点工况弯矩、剪力和扭矩耦合性强等。这些因素直接影响翼面载荷测量的精度。
为了解决点加载方式的缺陷,实现更真实的飞行载荷模拟工况,获得更高精度的测载模型,研究了一种飞机翼面载荷校准区域加载试验方法。
发明内容
本发明的目的:提供一种飞机翼面载荷校准区域加载试验方法,以解决翼面载荷校准试验的载荷施加问题。
本发明的技术方案:提供一种飞机翼面载荷校准区域加载试验方法,所述试验方法包括:
步骤1,区域加载工况设计:对待测翼面结构进行传力分析,分别确定待测翼面建模区域及验模区域的加载工况个数;
对待测翼面结构局部进行强度分析,确定待测翼面测载剖面的剪力、弯矩与扭矩限制载荷;根据待测翼面测载剖面的限制载荷,确定区域加载工况的加载位置及对应载荷大小和方向;
步骤2,区域加载工况实施:所述区域加载工况通过液压作动器连接垫板对待测翼面进行载荷施加;
步骤3,数据采集与分析:在对待测翼面进行试验加载时,实时同步记录待测翼面结构的应变响应及各区域加载工况的施加载荷;采用多元线性回归的方法建立待翼面结构的应变响应与施加的区域加载工况载荷的载荷模型。
进一步地,步骤1中,所述区域加载工况包括剪力、弯矩与扭矩加载工况。
进一步地,步骤1中,所述区域加载工况包括纯弯、纯扭、纯剪加载工况,用以减少多种载荷对结构应变计的耦合影响。
进一步地,区域加载工况为纯弯工况时,待测翼面所受的剪力与扭矩为0,弯矩为设计值,用于消除剪力、扭矩对测载剖面应变电桥的影响。
进一步地,区域加载工况为纯剪工况时,待测翼面所受的弯矩与扭矩为0,剪力为设计值,用于消除弯矩、扭矩对测载剖面应变电桥的影响。
进一步地,区域加载工况为纯扭工况时,待测翼面所受的剪力与弯矩为0,扭矩为设计值,用于消除剪力、弯矩对测载剖面应变电桥的影响。
进一步地,所述载荷模型的公式为,
其中,Q为剪力,M为弯矩,T为扭矩,εn为翼面测载剖面第n个应变电桥响应值;kQn为第n个应变电桥的剪力方程系数;kMn为第n个应变电桥的弯矩方程系数;kTn为第n个应变电桥的扭矩方程系数。
进一步地,对待测翼面结构进行传力分析,确定翼面结构的传力路径及翼面结构的应变计布置;并根据传力路径及应变计布置分别确定建模区域、验模区域的加载工况个数。
本发明的优点:
(1)区域加载工况量级大
通过杠杆传力方案,实现翼面区域加载,相比点加载方式,在翼面局部强度受限的情况下,通过增加加载面积,提高了加载量级,扩充了载荷模型的有效范围。
(2)区域加载工况利用率高
与点加载方式相比,区域加载方法可在翼面薄弱结构处实施有效加载,且加载面积较大,相同工况数量下覆盖翼面面积更大,更易于涵盖翼面结构所有传力路径,更接近真实翼面受载情况。
(3)区域加载工况种类多样
区域加载方法通过不同组合方式可实现纯弯、纯剪和纯扭加载工况,通过物理方式实现弯矩、剪力以及扭矩的载荷解耦,便于建立与验证载荷模型。区域加载试验方法,增加了加载量级,提高了工况利用率,简化了模型耦合度,有效提升了翼面载荷测量精度,且具有一定经济效应,可广泛应用于翼面载荷校准试验。
具体实施方式:
本实施例,提供一种飞机翼面载荷校准区域加载试验方法,可广泛用于飞机翼面载荷校准试验。
本方法具体包括以下内容:
(1)区域加载工况设计,对测载翼面结构进行传力分析,结合翼面结构应变计布置,确定结构传力路径及建模、验模区域加载工况;对翼面结构进行局部强度分析,结合测载剖面的剪力、弯矩与扭矩限制,确定加载区域位置与各个加载区域的载荷大小和方向。
(2)区域加载工况实施,根据各个区域的加载方向和载荷量级选择区域加载装置和连接装置;通过选取的加载装置与连接装置将载荷按工况准确施加到特定的翼面加载区域上。
(3)数据采集与分析,实时同步记录载荷工况施加过程中翼面结构的应变传感器响应与各加载区域的施加载荷;采用多元线性回归的方法建立翼面结构应变响应与施加的区域载荷的关系及载荷模型,用于飞行试验中实际飞行载荷的测量。
下面对本发明做进一步详细描述。本实施例,提供一种飞机翼面载荷校准区域加载试验方法,具体包括以下步骤:
步骤1:区域加载工况设计
对测载翼面结构进行传力分析,结合翼面结构应变计布置,确定结构传力路径及建模、验模区域加载工况个数;
对翼面结构局部进行强度分析,结合测载剖面的剪力、弯矩与扭矩限制,确定加载区域位置与各个加载区域的载荷大小和方向。
区域加载工况设计应遵循以下原则:
a)用于建模的区域加载工况涵盖待测翼面结构所有传力路径;
b)用于建模的区域加载工况不小于测载剖面应变电桥数;
c)区域加载工况最小量级大于测载剖面外的结构重量;
d)区域加载工况最大量级大于40%剖面限制载荷,弯矩和剪力均应达到相应的量值;用于确保应变计与施加的区域加载工况成线性关系;
e)区域加载工况加载总面积不小于翼面总面积的80%。
区域加载工况包含垂直于翼面的单区域加载及多区域加载,单区域加载明确加载区域中心点,面积,载荷量级,载荷方向(拉、压),多区域加载明确每个加载区域中心点,面积,载荷量级,载荷方向以及合力点的位置、大小(拉正压负),表述方式见表1
表1区域加载工况
翼面结构主要受载形式包括剪力(Q)、弯矩(M)和扭矩(T),可通过多区域加载方法实现纯弯、纯扭、纯剪等加载工况,减少多种载荷对结构应变计的耦合影响,具体解耦工况如表2所示。本实施例,以机体坐标系为参考坐标系,其中,X、Y、Z分别表示航向、侧向、垂向坐标值;M2为加载区域面积;N表示加载工况载荷值。
以n区域加载工况为例,翼面所在平面为XOY,测载剖面为OY,刚轴所在直线为L(x,y),加载区域中心点为(xi,yi),到刚轴距离ki,载荷值为Fi,合力点(x0,y0);xi、yi分别表示第i个加载区域中心点航向、侧向坐标,ki表示第i个加载区域中心点到刚轴距离,Fi表示第i个加载区域的工况值,x0,y0分别表示加载区域的工况合力点航向、侧向坐标。
其中:
剪力
弯矩
扭矩
表2解耦工况类型
工况类型 剪力 弯矩 扭矩 条件
纯剪 公式(2) 0 0 公式(3)(4)为0
纯弯 0 公式(3) 0 公式(2)(4)为0
纯扭 0 0 公式(4) 公式(2)(3)为0
步骤2区域加载工况实施
区域加载通过液压作动器连接垫板对翼面结构进行载荷施加,根据加载面积和量级选择合适大小和数量的垫板,单块垫板直接与作动器连接,两块及以上垫板通过杠杆结构连接作动器,作动器与垫板间配有力传感器,确保设计区域加载工况准确施加到特定的翼面加载区域上。
每种加载工况的加载应包括预加载和正式加载,预加载一般加载至工况试验载荷的40%,进行一个循环,正式加载应加载至工况试验载荷的100%,至少进行两个循环。试验加载应分级进行,每级不大于最大试验载荷的20%。
加载顺序遵循从翼尖到翼根、加载区域数由少及多的顺序实施。
步骤3数据采集与分析
按工况加载顺序,使用载荷采集设备记录载荷工况施加过程中各加载区域的施加载荷,使用应变采集设备记录翼面结构待测载剖面的应变电桥响应;对载荷和应变数据进行同步实时合成、发送,统一记录。
实时分析数据的稳定性、重复性及线性度;计算每个应变电桥的响应系数,绘制响应系数曲线,分析电桥的载荷特性,选取对应载荷特性良好的电桥参与建立载荷模型;选取建模区域加载工况数据,采用多元线性回归或其他数学方法建立满足测载要求的载荷模型;选取未参与建模的验模区域加载工况数据对载荷模型进行检验。
一般,翼面结构的载荷方程为:
其中,εn为翼面测载剖面第n个应变电桥响应值,kQn为第n个应变电桥的剪力方程系数,kMn为第n个应变电桥的弯矩方程系数,kTn为第n个应变电桥的扭矩方程系数。

Claims (6)

1.一种飞机翼面载荷校准区域加载试验方法,其特征在于,所述试验方法包括:
步骤1,区域加载工况设计:对待测翼面结构进行传力分析,分别确定待测翼面建模区域及验模区域的加载工况个数;
对待测翼面结构局部进行强度分析,确定待测翼面测载剖面的剪力、弯矩与扭矩限制载荷;根据待测翼面测载剖面的限制载荷,确定区域加载工况的加载位置及对应载荷大小和方向;
步骤2,区域加载工况实施:所述区域加载工况通过液压作动器连接垫板对待测翼面进行载荷施加;
步骤3,数据采集与分析:在对待测翼面进行试验加载时,实时同步记录待测翼面结构的应变响应及各区域加载工况的施加载荷;采用多元线性回归的方法建立待翼面结构的应变响应与施加的区域加载工况载荷的载荷模型;步骤1中,所述区域加载工况包括剪力、弯矩与扭矩加载工况;步骤1中,所述区域加载工况包括纯弯、纯扭、纯剪加载工况,可通过多区域加载方法实现纯弯、纯扭、纯剪加载工况;用以减少多种载荷对结构应变计的耦合影响。
2.根据权利要求1所述的试验方法,其特征在于,区域加载工况为纯弯工况时,待测翼面所受的剪力与扭矩为0,弯矩为设计值,用于消除剪力、扭矩对测载剖面应变电桥的影响。
3.根据权利要求1所述的试验方法,其特征在于,区域加载工况为纯剪工况时,待测翼面所受的弯矩与扭矩为0,剪力为设计值,用于消除弯矩、扭矩对测载剖面应变电桥的影响。
4.根据权利要求1所述的试验方法,其特征在于,区域加载工况为纯扭工况时,待测翼面所受的剪力与弯矩为0,扭矩为设计值,用于消除剪力、弯矩对测载剖面应变电桥的影响。
5.根据权利要求1所述的试验方法,其特征在于,所述载荷模型的公式为,
其中,Q为剪力,M为弯矩,T为扭矩,εn为翼面测载剖面第n个应变电桥响应值;kQn为第n个应变电桥的剪力方程系数;kMn为第n个应变电桥的弯矩方程系数;kTn为第n个应变电桥的扭矩方程系数。
6.根据权利要求1所述的试验方法,其特征在于,对待测翼面结构进行传力分析,确定翼面结构的传力路径及翼面结构的应变计布置;并根据传力路径及应变计布置分别确定建模区域、验模区域的加载工况个数。
CN202011551797.6A 2020-12-24 2020-12-24 一种飞机翼面载荷校准区域加载试验方法 Active CN112763345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011551797.6A CN112763345B (zh) 2020-12-24 2020-12-24 一种飞机翼面载荷校准区域加载试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011551797.6A CN112763345B (zh) 2020-12-24 2020-12-24 一种飞机翼面载荷校准区域加载试验方法

Publications (2)

Publication Number Publication Date
CN112763345A CN112763345A (zh) 2021-05-07
CN112763345B true CN112763345B (zh) 2024-05-24

Family

ID=75694126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011551797.6A Active CN112763345B (zh) 2020-12-24 2020-12-24 一种飞机翼面载荷校准区域加载试验方法

Country Status (1)

Country Link
CN (1) CN112763345B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237661B (zh) * 2021-05-10 2022-02-25 中国商用飞机有限责任公司 一种翼吊发动机的动力学试验载荷测量装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802205A (zh) * 2015-11-26 2017-06-06 中国飞行试验研究院 一种消除剖面内载荷影响的飞行载荷测量方法
CN107766612A (zh) * 2017-09-08 2018-03-06 中国飞行试验研究院 一种连接翼结构形式机翼载荷测量方法
CN109911245A (zh) * 2019-03-08 2019-06-21 郑州市傅立叶电子科技有限公司 一种飞行器结构的疲劳部件监测系统及其监测方法
CN211401512U (zh) * 2019-03-26 2020-09-01 会田工程技术有限公司 用于压力机的压力载荷测量装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802205A (zh) * 2015-11-26 2017-06-06 中国飞行试验研究院 一种消除剖面内载荷影响的飞行载荷测量方法
CN107766612A (zh) * 2017-09-08 2018-03-06 中国飞行试验研究院 一种连接翼结构形式机翼载荷测量方法
CN109911245A (zh) * 2019-03-08 2019-06-21 郑州市傅立叶电子科技有限公司 一种飞行器结构的疲劳部件监测系统及其监测方法
CN211401512U (zh) * 2019-03-26 2020-09-01 会田工程技术有限公司 用于压力机的压力载荷测量装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Strain Gage Loads Calibration Testing of the Active Aeroelastic Wing F/A-18 Aircraft;Lokos WA等;AIAA2002-2926;第1-12页 *
刘文珽.结构可靠性设计手册.国防工业出版社,2008,第307-313页. *
基于多点协调加载试验的机翼飞行载荷模型研究;何发东;机械科学与技术;第34卷(第11期);第1800-1804页 *
飞机全动式鸭翼载荷飞行测量技术;曹景涛;;航空学报;20150430;第36卷(第4期);第1135-1141页 *

Also Published As

Publication number Publication date
CN112763345A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2019047529A1 (zh) 一种纤维增强复合材料动态剪切本构模型的构建方法
CN105956216B (zh) 大跨钢桥基于均匀温度响应监测值的有限元模型修正方法
CN102175511B (zh) 材料性能评估方法和系统
CN108168774B (zh) 一种空间矢量力校准方法
CN106644711B (zh) 一种延性材料单轴本构关系测试方法
CN108844824B (zh) 一种基于圆锥形压头的已知材料残余应力测定方法
CN109100073B (zh) 一种基于应变反演的六维力传感器及其测量方法
CN112763345B (zh) 一种飞机翼面载荷校准区域加载试验方法
CN104655505B (zh) 一种基于仪器化球压入技术的残余应力检测方法
CN104636543B (zh) 一种基于有限差分法的重型龙门铣床横梁重力变形预测方法
CN104714478B (zh) 基于有限差分法的重型双柱立车横梁重力变形预测方法
CN106021685A (zh) 一种考虑测量误差的退化可靠性分析方法
CN107766612B (zh) 一种连接翼结构形式机翼载荷测量方法
CN110414086A (zh) 一种基于灵敏度的综合应力加速因子计算方法
CN109490334B (zh) 一种运用残余应力预测模型的t字型锻件无损测试方法
CN108548729A (zh) 一种测量材料最大弯曲应力的方法和装置
CN111855057A (zh) 基于盲孔法的复合材料板材的残余应力分布测量方法
CN112378809A (zh) 一种链式液压布氏硬度计示值的校准方法
Zuccarello et al. Numerical-experimental method for the analysis of residual stresses in cold-expanded holes
CN116067592A (zh) 预制拼装梁桥纵桥向损伤快速诊断方法
CN113094953B (zh) 一种带机翼变形的铰链力矩天平的有限元分析方法
CN105699043B (zh) 一种提高风洞传感器测量稳定性和精准度的方法
CN114496124A (zh) 一种高速工况下gissmo材料失效模型参数测量方法
CN112179550A (zh) 一种四支点压电测力仪的优化布置方法
CN110501177A (zh) 基于自由端倾角影响线曲率的悬臂梁损伤识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant