CN112753269A - 上行传输资源的确定方法、装置、通信设备和介质 - Google Patents

上行传输资源的确定方法、装置、通信设备和介质 Download PDF

Info

Publication number
CN112753269A
CN112753269A CN202080003339.0A CN202080003339A CN112753269A CN 112753269 A CN112753269 A CN 112753269A CN 202080003339 A CN202080003339 A CN 202080003339A CN 112753269 A CN112753269 A CN 112753269A
Authority
CN
China
Prior art keywords
uplink transmission
transmission resource
uplink
measurement
resource
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080003339.0A
Other languages
English (en)
Other versions
CN112753269B (zh
Inventor
江小威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Xiaomi Mobile Software Co Ltd
Original Assignee
Beijing Xiaomi Mobile Software Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Xiaomi Mobile Software Co Ltd filed Critical Beijing Xiaomi Mobile Software Co Ltd
Publication of CN112753269A publication Critical patent/CN112753269A/zh
Application granted granted Critical
Publication of CN112753269B publication Critical patent/CN112753269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/347Path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种上行传输资源的确定方法、装置、通信设备和介质,属于无线通信技术领域。方法包括:UE基于可用性判断条件确定UE的专属上行传输资源;可用性判断条件包括:上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,上行传输的传输类型与设定类型匹配。由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定上行传输资源的可用性,在上行传输资源可用时,将该上行传输资源作为UE的专属上行传输资源,由此,无需向网络侧设备发送上行信号及接收网络侧设备发送的下行信号,可降低网络开销。

Description

上行传输资源的确定方法、装置、通信设备和介质
技术领域
本公开涉及无线通信技术领域,尤其涉及一种上行传输资源的确定方法、装置、通信设备和介质。
背景技术
在无线通信系统中,当网络侧设备给UE(User Equipment,用户设备)配置专属的上行传输资源后,UE需判断网络侧设备配置的上行传输资源是否可用,只有在确定上行传输资源可用的情况下,UE才能够进行上行传输。具体地,在判断上行传输资源是否可用时,UE需向网络侧设备发送上行信号,网络侧设备根据UE发送的上行信号发送下行信号,比如TAC(Timing Advance Command,定时提前命令),UE根据下行信号,确定网络侧设备配置的上行传输资源是否可用。
然而,在UE没有上行发送需求的情况下,比如UE没有上行数据发送,上述上行传输资源的可用性判断方式,仍然需要UE发送上行信号和接收网络侧设备发送的下行信号,导致了额外的网络开销。
发明内容
本公开第一方面实施例提出了一种上行传输资源的确定方法,应用于UE,包括:基于可用性判断条件,确定所述用户设备的专属上行传输资源;其中,所述可用性判断条件包括:所述上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,上行传输的传输类型与设定类型匹配。
可选地,所述方法还包括:在所述上行传输资源不可用的情况下,释放或挂起所述上行传输资源。
可选地,所述上行传输资源包括上行定时;所述可用性判断条件,还包括:所述上行定时对应的定时器处于运行状态。
可选地,所述上行传输资源,用于空闲态或非激活态下的上行传输。
可选地,所述参考值,是所述网络侧设备配置所述上行传输资源或释放所述用户设备连接之前或之时,所述用户设备对所述下行传输测量得到的;所述测量值,是所述网络侧设备配置所述上行传输资源或释放所述用户设备连接之后,所述用户设备对所述下行传输测量得到的。可选地,测量的设定测量对象包括设定小区、设定波束和设定测量信号中的至少一个。
可选地,测量的设定测量项包括:参考信号接收强度RSRP、参考信号接收质量RSRQ、信干噪比SINR和路损中的一个或多个组合。
可选地,所述测量值和/或所述参考值,是采用设定测量信号测量得到;所述设定测量信号,是根据所述网络侧设备的配置信息确定出的用于小区选择或重选或专用于获得所述测量值和/或所述参考值的测量信号。
可选地,所述配置信息包括频率指示信息、子载波间隔、测量时间间隔、参考信号配置、波束测量阈值、波束最大数量、波束标识和信号标识中的一个或多个组合。
可选地,所述上行传输资源中配置有所述设定测量信号;所述方法还包括:
在确定所述上行传输资源可用的情况下,采用所述上行传输资源中配置的所述设定测量信号进行小区选择或重选;
和/或,在确定所述上行传输资源不可用的情况下,停止采用所述上行传输资源中配置的设定测量信号进行测量。
可选地,所述设定小区的测量结果包括:所述设定小区中测量值大于所述波束测量阈值的各波束的平均测量结果;和/或,所述设定小区各波束中的最大测量结果。
可选地,所述设定波束包括以下任一项或多项:所述设定小区内具有最大测量值的波束;所述上行传输资源对应的波束;所述网络侧设备指示的波束;测量值大于或等于所述波束测量阈值的波束;测量值小于或等于所述波束测量阈值的波束。
可选地,表征所述传输类型的标识包括:承载标识、承载类型标识、数据流标识、会话标识、逻辑信道标识、业务对应的小区组标识和上行发送资源类型中的一个或多个组合。
可选地,所述上行发送资源类型包括上行共享信道PUSCH上的上行传输、上行控制信道PUCCH上的上行传输和上行探测信号中的一个或多个组合。
可选地,将上行授权作为用于所述PUSCH上行传输的所述上行传输资源。
可选地,所述上行传输资源具有对应的频率指示信息;其中,所述频率指示信息,是所述网络侧设备配置的或者所述用户设备预置的;其中,所述频率指示信息包括小区标识、频点标识、带宽、带宽部分标识、小区组标识和定时提前组标识中的一个或多个组合。
本公开第二方面实施例提出了另一种上行传输资源的确定方法,应用于网络侧设备,包括:向用户设备发送配置的上行传输资源;其中,所述上行传输资源,用于所述用户设备基于可用性判断条件,确定所述用户设备的专属上行传输资源;所述可用性判断条件包括:所述上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于设定阈值;和/或,上行传输的传输类型与设定类型匹配。
本公开第三方面实施例提出了一种上行传输资源的确定装置,应用于UE,包括:
确定模块,用于基于可用性判断条件,确定所述用户设备的专属上行传输资源;
其中,所述可用性判断条件包括:所述上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,所述上行传输的传输类型与设定类型匹配。
可选地,所述装置还可以包括:释放模块,用于在所述上行传输资源不可用的情况下,释放或挂起所述上行传输资源。
可选地,所述上行传输资源包括上行定时;所述可用性判断条件,还包括:所述上行定时对应的定时器处于运行状态。
可选地,所述上行传输资源,用于空闲态或非激活态下的上行传输。
可选地,所述参考值,是所述网络侧设备配置所述上行传输资源或释放所述用户设备连接之前或之时,所述用户设备对所述下行传输测量得到的;所述测量值,是所述网络侧设备配置所述上行传输资源或释放所述用户设备连接之后,所述用户设备对所述下行传输测量得到的。可选地,测量的设定测量对象包括设定小区、设定波束和设定测量信号中的至少一个。
可选地,测量的设定测量项包括:参考信号接收强度RSRP、参考信号接收质量RSRQ、信干噪比SINR和路损中的一个或多个组合。
可选地,所述测量值和/或所述参考值,是采用设定测量信号测量得到;所述设定测量信号,是根据所述网络侧设备的配置信息确定出的用于小区选择或重选或专用于获得所述测量值和/或所述参考值的测量信号。
可选地,所述配置信息包括频率指示信息、子载波间隔、测量时间间隔、参考信号配置、波束测量阈值、波束最大数量、波束标识和信号标识中的一个或多个组合。
可选地,所述上行传输资源中配置有所述设定测量信号;所述装置还包括:
处理模块,用于在确定所述上行传输资源可用的情况下,采用所述上行传输资源中配置的所述设定测量信号进行小区选择或重选;和/或,在确定所述上行传输资源不可用的情况下,停止采用所述上行传输资源中配置的设定测量信号进行测量。
可选地,所述设定小区的测量结果包括:所述设定小区中测量值大于所述波束测量阈值的各波束的平均测量结果;和/或,所述设定小区各波束中的最大测量结果。
可选地,所述设定波束包括以下任一项或多项:所述设定小区内具有最大测量值的波束;所述上行传输资源对应的波束;所述网络侧设备指示的波束;测量值大于或等于所述波束测量阈值的波束;测量值小于或等于所述波束测量阈值的波束。
可选地,表征所述传输类型的标识包括:承载标识、承载类型标识、数据流标识、会话标识、逻辑信道标识、业务对应的小区组标识和上行发送资源类型中的一个或多个组合。
可选地中,所述上行发送资源类型包括上行共享信道PUSCH上的上行传输、上行控制信道PUCCH上的上行传输和上行探测信号中的一个或多个组合。
可选地,将上行授权作为用于所述PUSCH上行传输的所述上行传输资源。
可选地,所述上行传输资源具有对应的频率指示信息;其中,所述频率指示信息,是所述网络侧设备配置的或者所述用户设备预置的;其中,所述频率指示信息包括小区标识、频点标识、带宽、带宽部分标识、小区组标识和定时提前组标识中的一个或多个组合。
本公开第四方面实施例提出了另一种上行传输资源的确定装置,应用于网络侧设备,包括:
发送模块,用于向用户设备发送配置的上行传输资源;
其中,所述上行传输资源,用于所述用户设备基于可用性判断条件,确定所述用户设备的专属上行传输资源;所述可用性判断条件包括:所述上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,所述上行传输的传输类型与设定类型匹配。
本公开第五方面实施例提出了一种通信设备,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现本公开第一方面实施例提出的上行传输资源的确定方法,或者,实现本公开第二方面实施例提出的上行传输资源的确定方法。
本公开第六方面实施例提出了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现本公开第一方面实施例提出的上行传输资源的确定方法,或者,实现本公开第二方面实施例提出的上行传输资源的确定方法。
本公开实施例提供的上行传输资源的确定方法、装置、通信设备和介质,通过UE基于可用性判断条件,确定UE的专属上行传输资源,其中,可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,和/或,上行传输的传输类型与设定类型匹配。由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,即可确定出上行传输资源的可用性,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源,由此,UE无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为波束的测量结果的处理流程示意图;
图2为本公开实施例所提供的一种上行传输资源的确定方法的流程示意图;
图3为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图;
图4为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图;
图5为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图;
图6为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图;
图7为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图;
图8为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图;
图9为本公开实施例提供的一种上行传输资源的确定装置的结构示意图;
图10为本公开实施例提供的另一种上行传输资源的确定装置的结构示意图;
图11为本公开实施例所提供的一种UE的框图;
图12为本公开实施例所提供的一种网络侧设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在具体解释本公开实施例之前,为了便于理解,首先对常用技术词进行介绍:
SDT(Small Data Transmission,小数据发送):UE根据网络侧设备配置的上行传输资源,在空闲态(IDEL)或非激活态(INACTIVE)时通过以下方式,将SDT直接发送至网络侧设备:初始接入的4步随机接入过程(4-step RACH)的Msg3;初始接入的2步随机接入过程(2-step RACH)的MsgA;网络侧设备配置的专属的PUSCH(Physical Uplink ControlChannel,物理上行控制信道)资源,例如CG(Configure Grant,配置的上行授权),或PUR(Preallocated Uplink Resource,预配置的上行传输资源)。网络侧设备可以通过以下方式,将SDT直接发送至UE:初始接入的4步随机接入过程的Msg4;初始接入的2步随机接入过程的MsgB;网络侧设备配置的专属的上行传输资源对应的下行反馈资源。
其中,网络侧设备只能配置1个小区给UE,而且只有当网络侧设备配置的专属的上行传输资源对应的上行定时可用的情况下,UE才能使用该专属的上行传输资源。
上行定时:UE在接收到下行信号后,可以确定下行信号子帧的边界位置。由于信号发送的传输延时,为了避免上行信号被干扰,网络需要保证不同UE发送的信号在固定的时刻到达,因此网络侧设备需要给UE的上行传输配置一个上行TA(Timing Advance,定时提前量)。UE在收到该TA值后,如果UE要发送上行信号,则UE以下行子帧位置为参考,在上行子帧发送时间位置提前TA值进行上行信号的发送。
TAG(Timing Advance Group,定时提前组):如果多个不同的小区配置为采用相同的TA值,则上述多个小区属于相同的TAG。其中,TAG的类型可以包括:PTAG(Primary TAG,主定时提前组)和STAG(Secondary TAG,辅定时提前组)。其中,PTAG包括SpCell(SpecialCell,特殊小区)的TAG,例如,MCG(Master Cell Group,主小区组)的PCell(Primary Cell,主小区),或SCG(Secondary Cell Group,辅小区组)的PSCell(Primary Secondary Cell,主辅小区)的TAG。STAG仅包括SCell(Seconary Cell,辅小区)的TAG。
在DC(Dual Connectivity,双连接)架构下,包括MCG和SCG两个小区组。MCG和SCG的TAG相互独立。
对于不同TAG的TA值,网络侧设备会给UE配置用于判断该TA值是否可用的定时器,即TAT(Time Alignment Timer)。UE在接收到网络侧设备发送的TAC(Timing AdvanceCommand,定时提前命令)后,可以启动该TAT或重启该TAT。当该TAT超时或未运行时,UE则确定该TAT对应的TAG的TA值不可用,即上行失步状态。对于上行失步状态的TAG的小区,UE不能发送除了preamble(对于4步随机接入过程)和MSGA(对于2步随机接入过程)之外的任何上行传输。
路损(Pathloss),是指信号传输的路径损耗。在5G系统中,网络侧设备会给UE的上行发送信号配置对应的用于测量路损的下行路损参考信号(Pathloss Reference)。基于上下行发送信号的对称性,UE根据该下行路损参考信号的路损测量结果,对上行信号的发送进行调整,例如,路损越大则UE的上行发送功率增加的越大。其中,UE测量的路损值为网络侧设备指示的信号发送功率减去UE测量到的信号的接收功率,所得的差值。
由于在5G系统中会有多个不同的传输波束,例如,小区-1通过TRP(TransmissionPoint,传输节点)-1的波束-1和TRP-2的波束-2同时发送下行信号,而通过不同的传输节点或传输波束发送的信号,其路径损耗的差异可能会比较大,因此网络侧设备可以给UE的特定上行发送信号配置多个不同的路损参考信号,例如,网络侧设备可以通过RRC信令配置多个不同的路损参考信号。之后,网络侧设备可以通过指示信令,动态的指示上行发送信号采用的路损参考信号,例如,网络侧设备可以通过DCI(Downlink Control Information,下行控制信息)或MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)动态的指示PUCCH(Physical Uplink Control Channel,物理上行控制信道)或PUSCH或SRS(Sounding Reference Signal,探测参考信号)采用的路损参考信号。
测量:在5G系统中,UE对于小区的测量分为空闲态/非激活态(IDLE/INACTIVE)和连接态(CONNECTED)两种。
其中,对于CONNECTED的测量,网络侧设备通过专属RRC(Radio ResourceControl,无线资源控制)信令给UE需要测量的频点或小区配置特定的测量对象。其中,该测量对象的配置信息可以包括:测量频点,例如SSB(Single Side Band,单边带)频率;子载波间隔(Sub carrier Spacing),例如SSB Sub carrier Spacing;测量的时间位置;参考信号配置;能用于推导小区测量结果的波束测量阈值或称为波束测量门限值;能用于推导小区测量结果的波束最大数量。
如图1所示,UE通过层1滤波(Layer1 filtering)后,获得各个波束的测量结果,即图1中的测量结果A,UE对于该通过层1滤波后获得的各个波束的测量结果的处理包括以下两个分支:
第一个分支为获取小区级别的测量结果:UE将超过能用于推导小区测量结果的波束测量阈值的波束测量结果进行线性平均后,获得小区级别的测量结果,即图1中的测量结果B。其中,用于线性平均的波束数量不能超过网络侧设备配置的能用于推导小区测量结果的波束最大数量。然后,UE将该小区测量结果进行层3滤波(Layer3 filtering)后,获得用于评估测量上报的测量结果,即图1中的测量结果C。并在满足测量上报的事件后,将小区测量结果,即图1中的测量结果D上报给网络侧设备。
第二个分支为获取波束级别的测量结果:UE对于各个波束的测量结果,通过层3波束测量结果滤波(L3 Beam filtering)后,获得用于上报的波束测量结果,即图1中的测量结果E。并在满足测量上报的事件后,将波束测量结果,即图1中的测量结果F上报给网络侧设备。
其中,特定波束标识包括以下至少一项:1个或多个SSB(Synchronous SignalBlock,同步信号块)标识、1个或多个CSI-RS(Channel State Information-ReferenceSignal,信道状态信息参考信号)标识。
其中,对于UE的服务小区(serving cell),网络侧设备会配置特定的服务小区测量对象(serving Cell MO(Measuring Object,测量对象))
对于IDLE/INACTIVE的测量,UE会对驻留小区和邻小区进行测量。其中,邻小区的测量信息是通过系统信息将同频(intra-frequency)或异频(inter-frequency)或异系统(inter-RAT)的小区的频点、小区和参考信号的信息提供给UE进行测量。对于多波束下的小区的测量结果有以下两种获取方式:
第一种,对于异系统重选从E-UTRA(Evolved Universal Terrestrial RadioAccess,演进型通用陆地无线接入)到NR(New RAT(Radio Access Technology,无线接入技术),新空口),NR的小区测量结果的推导方式为:UE将超过能用于推导小区测量结果的波束测量阈值的波束测量结果进行线性平均后,获得小区级别的测量结果。
第二种,对于非异系统重选情况,NR的小区测量结果的推导方式为取决于UE实现。
CG:网络侧设备可以通过RRC信令给UE配置PUSCH上行传输的上行授权的配置信息,该配置信息包括了上行授权的发送时间位置和资源,其中,发送时间位置例如可以为周期和起始位置,资源例如可以为PRB(Physical Resource Block,物理资源块)和MCS(Modulation and Coding Scheme,调制和编码方式)。UE在接收到上行授权的配置信息后,可以立即使用上行授权进行上行传输。
现有技术中,当网络侧设备给UE配置专属的上行传输资源,用于空闲态(IDEL)或非激活态(INACTIVE)的UE的上行传输时,该专属上行资源需在其对应的上行定时可用的情况下才能被使用。然而,如果对于空闲态或非激活态的UE采用和连接态一样的TAT定时器,来判断上行定时是否可用的话,则需要UE发送上行信号,网络侧设备在接收到UE发送的上行信号后,可以根据该上行信号发送TAC信令,UE可以根据该TAC信令确定上行定时是否可用,进而确定对应的上行传输资源是否可用。而当UE没有实际的上行发送需求的情况下,例如,UE没有上行数据发送,发送上行信号和接收网络侧的TAC信令,会导致额外的网络开销。
针对上述问题,本公开提供了上行传输资源的确定方法、装置、通信设备和介质。
图2为本公开实施例所提供的一种上行传输资源的确定方法的流程示意图,由UE执行,以由UE确定自身对应的专属上行传输资源。
其中,网络侧设备可以是基站,该基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
如图2所示,该上行传输资源的确定方法可以包括以下步骤:
步骤101,基于可用性判断条件,确定UE的专属上行传输资源。
本公开实施例中,可用性判断条件,用于判断上行传输资源对于上行传输的可用性。其中,上行传输可以为信令、数据、信令/数据混合传输、参考信号。
可选地,上行传输资源可以为网络侧设备配置的,或者,上行传输资源也可以是协议约定的。
可选地,可用性判断条件可以为网络侧设备配置的,UE可以从网络侧设备获取可用性判断条件。或者,可用性判断条件可以通过协议约定,UE预置的,从而UE可获取该可用性判断条件。
在本公开实施例的一种可能的实现方式中,可用性判断条件可以包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值。其中,下行传输可以为信令、数据、信令/数据混合传输、参考信号。
可选地,设定阈值可以通过为网络侧设备配置的,或者,设定阈值也可以为通过协议约定,UE预置的。
在本公开实施例的另一种可能的实现方式中,可用性判断条件可以包括:上行传输的传输类型与设定类型匹配。其中,设定类型可以为上行传输资源配置的传输类型。
在本公开实施例的又一种可能的实现方式中,可用性判断条件可以包括:上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,以及,上行传输的传输类型与设定类型匹配。
本公开实施例中,网络侧设备可以为UE配置上行传输资源,并向UE发送配置的上行传输资源,相应的,UE可以获取上述上行传输资源,并基于可用性判断条件,确定网络侧设备配置的上行传输资源的可用性。或者,还可以通过协议约定上行传输资源,UE可以基于可用性判断条件,确定协议约定的上行传输资源的可用性。
具体地,UE可以根据上行传输资源所对应的下行传输的测量值或上行传输的传输类型,确定上行传输资源对于上行传输的可用性,并且,UE还可以根据上述测量值和上行传输的传输类型,确定上行传输资源对于上行传输的可用性。下面将对几种可能的实现方式分别进行说明。
在本公开实施例的一种可能的实现方式中,当可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值时,UE可以对上行传输资源所对应的下行传输进行测量,确定上行传输资源所对应的下行传输的测量值,并计算测量值与参考值之间的变化量,之后UE可以判断上行传输资源所对应的下行传输的测量值相对于参考值的变化量是否小于或者等于设定阈值,在上行传输资源所对应的下行传输的测量值相对于参考值的变化量小于或者等于设定阈值的情况下,则确定上行传输资源可用,而在上行传输资源所对应的下行传输的测量值相对于参考值的变化量大于设定阈值的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,上述测量值与参考值之间的变化量可以为测量值与参考值之间的相对变化量,或者也可以为测量值与参考值之间的绝对变化量。当测量值与参考值之间的变化量为绝对变化量时,设定阈值为固定数值,而当变化量为相对变化量时,设定阈值的取值与减数和被减数相关,例如,当变化量为测量值减去参考值的数值时,设定阈值可以为阈值1,当变化量为参考值减去测量值的数值时,设定阈值可以为阈值2,其中,阈值1和阈值2的取值可以相同,或者也可以不同,本公开对此并不作限制。
在本公开实施例的另一种可能的实现方式中,当可用性判断条件包括上行传输的传输类型与设定类型匹配时,UE可以判断当前待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,在上行传输的传输类型与上行传输资源对应的设定类型匹配的情况下,则确定上行传输资源可用,而在上行传输的传输类型与上行传输资源对应的设定类型不匹配的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。也就是说,本公开实施例中,可以确定未配置设定类型的上行传输资源,以及确定配置了设定类型,且设定类型与上行传输的传输类型匹配的上行传输资源,将确定的上行传输资源,作为UE的专属上行传输资源。
在本公开实施例的又一种可能的实现方式中,当可用性判断条件同时包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,以及上行传输的传输类型与设定类型匹配时,UE可以判断上行传输资源所对应的下行传输的测量值相对于参考值的变化量是否小于或者等于设定阈值,并且,判断当前待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,在上行传输资源所对应的下行传输的测量值相对于参考值的变化量小于或者等于设定阈值,且上行传输的传输类型与上行传输资源对应的设定类型匹配的情况下,则确定上行传输资源可用,而在上行传输资源所对应的下行传输的测量值相对于参考值的变化量大于设定阈值,和/或,上行传输的传输类型与上行传输资源对应的设定类型不匹配的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
可选地,可以首先判断上行传输资源配置的设定类型与当前待发送的上行传输的传输类型是否匹配,在上行传输资源配置的设定类型与当前待发送的上行传输的传输类型匹配的情况下,可以进一步判断上行传输资源的所对应的下行传输的测量值相对于参考值的变化量,是否大于设定阈值,在变化量小于或者等于设定阈值时,则确定上行传输资源可用,此时,可以将该上行传输资源作为UE的专属上行传输资源。
可选地,可以首先判断判断上行传输资源的所对应的下行传输的测量值相对于参考值的变化量,是否大于设定阈值,在变化量小于或者等于设定阈值时,可以进一步判断上行传输资源配置的设定类型与当前待发送的上行传输的传输类型是否匹配,在上行传输资源配置的设定类型与当前待发送的上行传输的传输类型匹配的情况下,则确定上行传输资源可用,此时,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。
由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,即可确定出上行传输资源的可用性,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源,由此,UE无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
可选地,UE在确定上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源,从而可以采用该专属上行传输资源进行上行传输,而在确定上行传输资源不可用的情况下,UE可以释放上行传输资源,比如可以释放上行传输资源对应的RRC配置,或者,UE还可以挂起该上行传输资源,比如保留该上行传输资源对应的RRC配置,但挂起该上行传输资源。当上行传输资源处于挂起状态时,UE不使用该上行传输资源进行上行传输。
可选地,UE在确定上行传输资源可用的情况下,还可以判断上行传输是否满足上行传输资源对应的发送条件,比如判断上行传输对应的发送数据量是否小于网络侧设备配置的数据量阈值或门限值,在发送数据量小于网络侧设备配置的数据量阈值或门限值的情况下,确定上行传输满足上行传输资源对应的发送条件,此时,UE可以采用该上行传输资源进行上行传输,比如,当UE想要发送特定上行数据时,可以在上行传输资源PUSCH中携带特定承载的上行数据。
本公开实施例的上行传输资源的确定方法,通过UE基于可用性判断条件,确定UE的专属上行传输资源,其中,可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,和/或,上行传输的传输类型与设定类型匹配。由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,即可确定出上行传输资源的可用性,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源,由此,UE无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
本公开实施例提供了另一种上行传输资源的确定方法,图3为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图,由UE执行,以在网络侧设备为UE配置上行传输资源时,由UE确定配置的上行传输资源的可用性。
其中,网络侧设备可以是基站,该基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
如图3所示,该上行传输资源的确定方法可以包括以下步骤:
步骤201,获取可用性判断条件,其中,可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值。
其中,设定阈值可以为网络侧设备配置的,或者,设定阈值也可以为通过协议约定,UE预置的。
其中,可用性判断条件,用于判断上行传输资源对于上行传输的可用性。可选地,可用性判断条件可以为网络侧设备配置的,UE可以从网络侧设备获取可用性判断条件。或者,可用性判断条件可以为通过协议约定,UE预置的,从而UE可获取该可用性判断条件。
其中,上行传输资源可以用于空闲态或非激活态下的上行传输,上行传输可以为信令、数据、信令/数据混合传输、参考信号。
可选地,上行传输资源可以具有对应的频率指示信息,该频率指示信息可以为网络侧设备配置的,或者,该频率指示信息可以为通过协议约定,UE预置的。其中,频率指示信息可以包括:小区标识、频点标识、带宽、BWP(Bandwidth Part,带宽部分)标识、小区组标识和TAG标识中的一个或多个组合。其中,小区标识可以包括PCI(Physical CellIdentifier,物理小区标识)、服务小区标识、SCell(Secondary Cell,辅小区)标识中的一个或多个组合,频点标识例如可以为ARFCN(Absolute Radio Frequency Channel Number,绝对无线频道编号),小区组标识例如可以为MCG或SCG。
其中,参考值可以是网络侧设备配置上行传输资源或释放UE连接之前或之时,UE在连接态(CONNECTED)下对下行传输测量得到的,相应的,测量值可以是网络侧设备配置上行传输资源或释放UE连接之后,UE在空闲态(IDLE)或非激活态(INACTIVE)下对下行传输测量得到的。
举例而言,UE在t时刻通过RRC Release消息接收到网络侧设备配置的上行传输资源,则参考值可以为UE在连接态下,在(t-t1)时刻对下行传输测量得到的可用测量结果。其中,t1为大于等于0且小于或等于tx的值,tx可以为协议约定或网络侧设备配置的。测量值可以为在t时刻之后,UE在空闲态或非激活态下对下行传输测量得到的测量结果。
在本公开实施例的一种可能的实现方式中,参考值可以是网络侧设备配置上行传输资源或释放UE连接之前或之时,且UE距离网络设备配置上行传输资源或释放UE连接的时刻最近一次测量下行传输得到的。
举例而言,UE在t时刻通过RRC Release消息接收到网络侧设备配置的上行传输资源,则参考值可以为UE在连接态下,在(t-t1)时刻对下行传输测量得到的可用测量结果。其中,t-t1为距离时刻t最近一次UE测量得到可用的测量结果所对应的时刻,t1可以为协议约定或网络侧设备配置的。
在本公开实施例的另一种可能的实现方式中,参考值可以是UE最后一次接收到上行传输资源对应的上行定时调整命令之时或之前对下行传输测量得到的。
举例而言,UE在t1时刻接收到网络侧设备发送的对于小区1的上行定时调整命令,其中,该上行定时调整命令可以为UE在接收到网络侧设备配置的上行传输资源之前或之时,UE接收到的对于小区1的最后一个上行定时调整命令。UE在t2时刻接收到网络侧设备发送的为该UE配置的上行传输资源,且上行传输资源对应于小区1,则UE可以将接收到该上行定时调整命令之时或之前,对下行传输测量得到的测量结果作为参考值。
可选地,UE接收到上行定时调整命令之时或之前,对下行传输测量得到的测量结果,为距离接收到该上行定时调整命令的时刻最近一次测量下行传输得到的可用测量结果。
一种可能的实现方式,上述参考值可以是网络侧设备配置上行传输资源或释放UE连接之前或之时,UE在连接态下对下行传输的设定测量对象测量设定测量项得到。
其中,参考值的设定测量对象可以包括设定小区、设定波束、设定测量信号中的至少一个。其中,设定测量信号例如可以为设定路损参考信号,设定测量信号的信号类型可以包括:SSB(Synchronous Signal Block,同步信号块)、CSI-RS(Channel StateInformation–Reference Signal,信道状态信息参考信号)中的至少一个。
其中,设定测量项可以包括:RSRP(Reference Signal Received Power,参考信号接收强度)、RSRQ(Reference Signal Received Quality,参考信号接收质量)、SINR(Signal to Interference and Noise Ratio,信干噪比)、路损中的一个或多个组合。其中,当设定测量项包括路损时,设定测量信号可以为网络侧配置的上行传输资源对应的路损参考信号。例如,网络侧设备的配置信息中可以包括不同时间和/或频率的资源位置,不同资源位置对应不同的路损参考信号。
其中,设定小区可以为网络侧设备配置的,或者通过协议约定,UE预置的。
例如,网络侧设备配置上行传输资源或释放UE连接之前或之时,UE在连接态下对下行传输测量得到的参考值,可以为设定小区的测量结果、或设定波束的测量结果、或路损参考信号的路损参考测量结果。其中,设定小区的测量结果可以包括:网络侧设备指定的设定小区的小区测量结果、网络侧设备指定的设定小区的设定测量对象的测量结果、主小区的服务测量对象的测量结果、主小区的初始BWP的测量结果、上行传输资源对应的小区的测量结果、上行传输资源对应小区的BWP的测量结果。
其中,上述示例中的小区测量结果可以包括:在图1中层3滤波之前的小区测量结果(比如小区测量结果B)、在图1中层3滤波之后的小区测量结果(比如小区测量结果C)、在图1中测量上报的小区测量结果(比如小区测量结果D)。
其中,上述示例中的设定波束的测量结果可以包括:在图1中层3滤波之前的波束测量结果(比如小区测量结果K)、在图1中层3滤波之后的波束测量结果(比如小区测量结果E)、在图1中测量上报的波束测量结果(比如小区测量结果F)、最大测量值的波束对应的测量结果、网络侧设备给UE配置的上行传输资源对应的波束的测量结果、网络侧设备指示的波束的测量结果、测量值大于或等于网络侧配置的或协议约定的波束测量阈值的波束对应的测量结果、测量值小于或等于网络侧配置的或协议约定的波束测量阈值的波束对应的测量结果、UE选择用于上行传输的资源对应的波束的测量结果。
也就是说,本公开实施例中的设定波束可以包括:设定小区内具有最大测量值的波束、网络侧设备配置的上行传输资源对应的波束、网络侧设备指示的波束、测量值大于或等于波束测量阈值的波束、测量值小于或等于波束测量阈值的波束、UE选择用于上行传输的资源对应的波束中的一个或多个组合。其中,波束的标识可以为SSB标识、CSI-RS标识中的至少一个。
一种可能的实现方式,测量值可以是网络侧设备配置上行传输资源或释放UE连接之后,UE在空闲态或非激活态下对下行传输的设定测量对象,测量设定测量项得到。
其中,测量值的设定测量对象可以包括设定小区、设定波束、设定测量信号中的至少一个。设定测量信号的信号类型可以包括SSB、CSI-RS中的至少一个。设定测量项可以包括:RSRP、RSRQ、SINR、路损中的一个或多个组合。
其中,设定测量信号可以为根据网络侧设备的配置信息确定出的用于小区选择或重选或专门用于获得测量值和/或参考值的测量信号。例如,网络侧设备可以通过系统信息配置用于小区选择或重选或专门用于获得测量值和/或参考值的测量信号的配置信息,或者,网络侧可以通过UE专属信令,比如RRC Release消息配置上述配置信息。
其中,网络侧设备的配置信息可以包括频率指示信息、子载波间隔、测量时间间隔、参考信号配置、能用于推导小区测量值的波束测量阈值、能用于推导小区测量值的波束最大数量、波束标识、信号标识(比如路损参考信号的标识)中的一个或多个组合。
其中,设定小区的测量结果可以包括:设定小区中测量值大于波束测量阈值的各波束的平均测量结果,和/或,设定小区各波束中的最大测量结果。其中,用于线性平均的波束数量需小于网络侧设备配置或协议约定的波束数量阈值。
其中,设定波束的测量结果可以包括:设定小区各波束中的最大测量结果、网络侧设备配置的上行传输资源对应的波束的测量结果、设定波束的测量结果(比如网络侧设备通过RRC Release消息指定的波束的测量结果)、测量值大于或者等于网络侧设备配置的或协议约定的波束测量阈值的波束对应的测量结果、测量值小于或者等于网络侧设备配置的或协议约定的波束测量阈值的波束对应的测量结果、UE用于上行传输的资源对应的下行波束的测量结果(比如网络侧设备的配置信息中可以包括不同时间和/或频率的资源位置,不同资源位置对应不同的波束,例如波束-1和波束-2,当UE选择波束-1对应的资源进行上行传输时,波束-1的测量结果可为设定波束的测量结果)。
也就是说,本公开实施例中的设定波束可以包括:设定小区内具有最大测量值的波束、网络侧设备配置的上行传输资源对应的波束、网络侧设备指示的波束、测量值大于或等于波束测量阈值的波束、测量值小于或等于波束测量阈值的波束、UE选择用于上行传输的资源对应的波束中的一个或多个组合。其中,波束的标识可以为SSB标识、CSI-RS标识中的至少一个。
其中,当设定测量项包括路损时,设定测量信号可以为网络侧设备配置的上行传输资源对应的路损参考信号。例如,网络侧设备的配置信息中可以包括不同时间和/或频率的资源位置,不同资源位置对应不同的路损参考信号,比如SSB-1和SSB-2。当UE选择SSB-1对应的资源进行上行传输时,则SSB-1的测量结果可为设定测量信号的测量结果。
可选地,上述实施例中,用于测量得到参考值的设定测量对象与用于测量得到测量值的设定测量对象可以满足以下条件中的至少一个:频率指示信息相同(比如上述参考值为小区-1的初始BWP的测量结果,则上行传输资源所对应的下行传输的测量值也为小区-1的初始BWP的测量结果)、信号类型相同(比如上述参考值为小区-1的SSB的测量结果,则上行传输资源所对应的下行传输的测量值也为小区-1的SSB的测量结果)、设定测量项相同(比如参考值为小区-1的路损的测量结果,则上行传输资源所对应的下行传输的测量值也为路损的测量结果)、设定波束相同(比如参考值为波束SSB-1的测量结果,则上行传输资源所对应的下行传输的测量值也为波束SSB-1的测量结果)、设定测量信号相同(比如参考值为路损参考信号SSB-1的测量结果,则上行传输资源所对应的下行传输的测量值也为路损参考信号SSB-1的测量结果)、波束最大数量相同(即当参考值和测量值为设定小区的测量结果时,能用于推导小区测量结果的波束最大数量相同)、波束测量阈值相同(即当参考值和测量值为设定小区的测量结果时,能用于推导小区测量结果的波束测量阈值相同)。
步骤202,获取网络侧设备配置的上行传输资源。
本公开实施例中,网络侧设备可以为UE配置上行传输资源,并向UE发送上行传输资源,相应的,UE可以获取上述上行传输资源。
需要说明的是,本公开仅以步骤202在步骤201之后执行进行示例,实际应用时,步骤202还可以在步骤201之前执行,或者,步骤202还可以与步骤201并列执行,本公开对此并不作限制。
步骤203,根据可用性判断条件,确定上行传输资源对于上行传输的可用性。
本公开实施例中,UE可以对上行传输资源所对应的下行传输进行测量,确定上行传输资源所对应的下行传输的测量值,并计算测量值与参考值之间的变化量,其中,变化量可以为测量值与参考值之间的相对变化量,或者也可以为测量值与参考值之间的绝对变化量。之后可判断变化量是否小于或等于设定阈值,在变化量小于或等于设定阈值时,可确定上行传输资源可用,而在变化量大于设定阈值时,则确定上行传输资源不可用。
需要说明的是,当测量值与参考值之间的变化量为绝对变化量时,设定阈值为固定数值,而当变化量为相对变化量时,设定阈值的取值与减数和被减数相关,例如,当变化量为测量值减去参考值的数值时,设定阈值可以为阈值1,当变化量为参考值减去测量值的数值时,设定阈值可以为阈值2,其中,阈值1和阈值2的取值可以相同,或者也可以不同,本公开对此并不作限制。
步骤204,在上行传输资源可用的情况下,将上行传输资源作为UE的专属上行传输资源。
可选地,UE在确定上行传输资源可用的情况下,可以将上行传输资源作为UE的专属上行传输资源,从而UE可以采用该专属上行传输资源进行上行传输,而在确定上行传输资源不可用的情况下,UE可以释放上行传输资源,比如可以释放上行传输资源对应的RRC配置,或者,UE还可以挂起该上行传输资源,比如保留该上行传输资源对应的RRC配置,但挂起该上行传输资源。当上行传输资源处于挂起状态时,UE不使用该上行传输资源进行上行传输。
可选地,UE在确定上行传输资源可用的情况下,还可以判断上行传输是否满足上行传输资源对应的发送条件,比如判断上行传输对应的发送数据量是否小于网络侧设备配置的数据量阈值或门限值,在发送数据量小于网络侧设备配置的数据量阈值或门限值的情况下,确定上行传输满足上行传输资源对应的发送条件,此时,UE可以采用该上行传输资源进行上行传输,比如,当UE想要发送特定上行数据时,可以在上行传输资源PUSCH中携带特定承载的上行数据。
在本公开实施例的一种可能的实现方式中,上行传输资源还可以配置有设定测量信号,当网络侧设备为上行传输资源配置了设定测量信号后,在UE确定上行传输资源可用的情况下,可以采用上行传输资源中配置的设定测量信号进行小区选择或重选。例如,UE不再采用系统信息中配置的小区选择或重选的测量信号进行测量,而采用上行传输资源中配置的设定测量信号进行小区选择或重选的测量。
而在UE确定上行传输资源不可用的情况下,可以停止采用上行传输资源中配置的设定测量信号进行测量,例如,可以删除上行传输资源中配置的设定测量信号。
本公开实施例的上行传输资源的确定方法,通过UE获取可用性判断条件,其中,可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,并获取网络侧设备配置的上行传输资源,以根据可用性判断条件,确定上行传输资源对于上行传输的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源。由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,即可确定出上行传输资源的可用性,而无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
本公开实施例提供了另一种上行传输资源的确定方法,图4为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图,由UE执行,以由UE确定自身对应的专属上行传输资源。
其中,网络侧设备可以是基站,该基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
如图4所示,该上行传输资源的确定方法可以包括以下步骤:
步骤301,获取可用性判断条件,其中,可用性判断条件包括上行传输的传输类型与设定类型匹配。
其中,设定类型可以为上行传输资源配置的传输类型。
本公开实施例中,可用性判断条件,用于判断上行传输资源对于上行传输的可用性。可选地,可用性判断条件可以为网络侧设备配置的,UE可以从网络侧设备获取可用性判断条件。或者,可用性判断条件可以通过协议约定,UE预置的,从而UE可获取该可用性判断条件。
其中,上行传输可以为信令、数据、信令/数据混合传输、参考信号。
可选地,上行传输资源可以具有对应的频率指示信息,该频率指示信息可以为网络侧设备配置的,或者,该频率指示信息可以为通过协议约定,UE预置的。其中,频率指示信息可以包括:小区标识、频点标识、带宽、BWP标识、小区组标识和TAG标识中的一个或多个组合。其中,小区标识可以包括PCI、服务小区标识、SCell标识中的一个或多个组合,频点标识例如可以为ARFCN,小区组标识例如可以为MCG或SCG。
本公开实施例中,表征传输类型的标识可以包括:承载(bearer)标识、承载类型标识、数据流标识、会话(Session)标识、LCID(Logic Channel Identifier,逻辑信道标识)、业务对应的小区组标识和上行发送资源类型中的一个或多个组合。其中。承载标识例如可以为DRB(Data Radio Bearer,数据无线承载)标识、承载类型标识例如为MCG bearer、SCGbearer、split bearer(分叉承载)。
其中,上行发送资源类型可以包括PUSCH上的上行传输、PUCCH上的上行传输、上行探测信号中的一个或多个组合。其中,上行探测信号例如可以为SRS(Sounding ReferenceSignal,探测参考信号)。
本公开实施例中,当上行发送资源类型为PUSCH上的上行传输时,可以将上行授权作为用于PUSCH上行传输的上行传输资源。
步骤302,获取上行传输资源。
在本公开实施例的一种可能的实现方式中,网络侧设备可以为UE配置上行传输资源,并向UE发送上行传输资源,相应的,UE可以获取上述上行传输资源。
在本公开实施例的一种可能的实现方式中,上行传输资源还可以通协议约定,UE预置的,从而UE可以获取上行传输资源。
需要说明的是,本公开仅以步骤302在步骤301之后执行进行示例,实际应用时,步骤302还可以在步骤301之前执行,或者,步骤302还可以与步骤301并列执行,本公开对此并不作限制。
步骤303,根据可用性判断条件,确定上行传输资源对于上行传输的可用性。
本公开实施例中,UE可以判断上行传输资源对应的设定类型,是否与待发送的上行传输的传输类型匹配,在设定类型与上行传输的传输类型匹配的情况下,则确定上行传输资源可用,而在设定类型与上行传输的传输类型不匹配的情况下,则确定上行传输资源不可用。
步骤304,在上行传输资源可用的情况下,将上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。也就是说,本公开实施例中,可以确定未配置设定类型的上行传输资源,以及确定配置了设定类型,且设定类型与上行传输的传输类型匹配的上行传输资源,将确定的上行传输资源,作为UE的专属上行传输资源。
可选地,UE在确定上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源,从而UE可以采用该专属上行传输资源进行上行传输,而在确定上行传输资源不可用的情况下,UE可以释放上行传输资源,比如可以释放上行传输资源对应的RRC配置,或者,UE还可以挂起该上行传输资源,比如保留该上行传输资源对应的RRC配置,但挂起该上行传输资源。当上行传输资源处于挂起状态时,UE不使用该上行传输资源进行上行传输。
进一步地,UE在确定上行传输资源可用的情况下,还可以判断上行传输是否满足上行传输资源对应的发送条件,比如判断上行传输对应的发送数据量是否小于网络侧设备配置的数据量阈值或门限值,在发送数据量小于网络侧设备配置的数据量阈值或门限值的情况下,确定上行传输满足上行传输资源对应的发送条件,此时,UE可以采用该上行传输资源进行上行传输,比如,当UE想要发送特定上行数据时,可以在上行传输资源PUSCH中携带特定承载的上行数据。
本公开实施例的上行传输资源的确定方法,通过UE获取可用性判断条件,其中,可用性判断条件包括上行传输的传输类型与设定类型匹配,并获取上行传输资源,以根据可用性判断条件,确定上行传输资源对于上行传输的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源。由此,UE通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,而无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
本公开实施例提供了另一种上行传输资源的确定方法,图5为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图,由UE执行,以由UE确定自身对应的专属上行传输资源。
其中,网络侧设备可以是基站,该基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
如图5所示,该上行传输资源的确定方法可以包括以下步骤:
步骤401,获取可用性判断条件,以及上行传输资源。
其中,上行传输资源可以为网络侧设备配置的,或者,上行传输资源也可以是协议约定的。
需要说明的是,现有技术中,网络侧设备给UE配置上行传输资源时,UE采用该唯一一套上行传输资源发送多个不同传输类型的业务数据。由于数据到达时间的不同,UE使用一套上行传输资源发送不同传输类型的业务数据,可能会增加上行数据的发送延时。
因此,本公开实施例中,为了降低数据的发送时延,网络侧设备给UE配置的上行传输资源可以为多套,或者,协议约定的上行传输资源可以为多套,其中,多套上行传输资源中至少一套上行传输资源设置有对应的设定类型。
本公开实施例中,可用性判断条件,用于判断上行传输资源对于上行传输的可用性。其中,上行传输可以为信令、数据、信令/数据混合传输、参考信号。
可选地,可用性判断条件可以为网络侧设备配置的,UE可以从网络侧设备获取可用性判断条件。或者,可用性判断条件可以通过协议约定,UE预置的,从而UE可获取该可用性判断条件。
在本公开实施例的一种可能的实现方式中,可用性判断条件可以包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值。其中,下行传输可以为信令、数据、信令/数据混合传输、参考信号。
可选地,设定阈值可以通过为网络侧设备配置的,或者,设定阈值也可以为通过协议约定,UE预置的。
在本公开实施例的另一种可能的实现方式中,可用性判断条件可以包括:上行传输的传输类型与设定类型匹配。其中,设定类型可以为上行传输资源配置的传输类型。
在本公开实施例的又一种可能的实现方式中,可用性判断条件可以包括:上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,以及,上行传输的传输类型与设定类型匹配。
步骤402,根据可用性判断条件,确定上行传输资源对于上行传输的可用性。
本公开实施例中,UE可以根据可用性判断条件,确定上行传输资源对应上行传输的可用性。具体地,UE可以根据上行传输资源所对应的下行传输的测量值或上行传输的传输类型,确定上行传输资源对于上行传输的可用性,并且,UE还可以根据上述测量值和上行传输的传输类型,确定上行传输资源对于上行传输的可用性。下面将对几种可能的实现方式分别进行说明。
在本公开实施例的一种可能的实现方式中,当可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值时,UE可以对上行传输资源所对应的下行传输进行测量,确定上行传输资源所对应的下行传输的测量值,并计算测量值与参考值之间的变化量,其中,变化量可以为测量值与参考值之间的相对变化量,或者也可以为测量值与参考值之间的绝对变化量。之后UE可以判断上行传输资源所对应的下行传输的测量值相对于参考值的变化量是否小于或者等于设定阈值,在上行传输资源所对应的下行传输的测量值相对于参考值的变化量小于或者等于设定阈值的情况下,则确定上行传输资源可用,而在上行传输资源所对应的下行传输的测量值相对于参考值的变化量大于设定阈值的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当测量值与参考值之间的变化量为绝对变化量时,设定阈值为固定数值,而当变化量为相对变化量时,设定阈值的取值与减数和被减数相关,例如,当变化量为测量值减去参考值的数值时,设定阈值可以为阈值1,当变化量为参考值减去测量值的数值时,设定阈值可以为阈值2,其中,阈值1和阈值2的取值可以相同,或者也可以不同,本公开对此并不作限制。
在本公开实施例的另一种可能的实现方式中,当可用性判断条件包括上行传输的传输类型与设定类型匹配时,UE可以判断当前待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,在上行传输的传输类型与上行传输资源对应的设定类型匹配的情况下,则确定上行传输资源可用,而在上行传输的传输类型与上行传输资源对应的设定类型不匹配的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。也就是说,本公开实施例中,可以确定未配置设定类型的上行传输资源,以及确定配置了设定类型,且设定类型与上行传输的传输类型匹配的上行传输资源,将确定的上行传输资源,作为UE的专属上行传输资源。
在本公开实施例的又一种可能的实现方式中,当可用性判断条件同时包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,以及上行传输的传输类型与设定类型匹配时,UE可以判断上行传输资源所对应的下行传输的测量值相对于参考值的变化量是否小于或者等于设定阈值,并且,判断当前待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,在上行传输资源所对应的下行传输的测量值相对于参考值的变化量小于或者等于设定阈值,且上行传输的传输类型与上行传输资源对应的设定类型匹配的情况下,则确定上行传输资源可用,而在上行传输资源所对应的下行传输的测量值相对于参考值的变化量大于设定阈值,和/或,上行传输的传输类型与上行传输资源对应的设定类型不匹配的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
可选地,可以首先判断上行传输资源配置的设定类型与当前待发送的上行传输的传输类型是否匹配,在上行传输资源配置的设定类型与当前待发送的上行传输的传输类型匹配的情况下,可以进一步判断上行传输资源的所对应的下行传输的测量值相对于参考值的变化量,是否大于设定阈值,在变化量小于或者等于设定阈值时,则确定上行传输资源可用,此时,可以将该上行传输资源作为UE的专属上行传输资源。
可选地,可以首先判断判断上行传输资源的所对应的下行传输的测量值相对于参考值的变化量,是否大于设定阈值,在变化量小于或者等于设定阈值时,可以进一步判断上行传输资源配置的设定类型与当前待发送的上行传输的传输类型是否匹配,在上行传输资源配置的设定类型与当前待发送的上行传输的传输类型匹配的情况下,则确定上行传输资源可用,此时,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。
步骤403,在上行传输资源可用的情况下,采用上行传输资源中可用的目标资源进行上行传输。
在本公开实施例的一种可能的实现方式中,在可用性判断条件包括:上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值时,目标资源是多套上行传输资源中,测量值相较于参考值的变化量小于设定阈值的上行传输资源。
在本公开实施例的另一种可能的实现方式中,在可用性判断条件包括上行传输的传输类型与设定类型匹配时,目标资源是多套上行传输资源中,对应的设定类型与上行传输的传输类型匹配的上行传输资源。
在本公开实施例的又一种可能的实现方式中,在可用性判断条件同时包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,以及上行传输的传输类型与设定类型匹配时,目标资源是多套上行传输资源中,对应的设定类型与上行传输的传输类型匹配的上行传输资源,和变化量小于设定阈值的上行传输资源。
本公开实施例中,在上行传输资源可用的情况下,可以采用多套上行传输资源中可用的目标资源进行上行传输,以提升数据传输的可靠性。
举例而言,网络侧设备给UE配置了A套上行传输资源,并指定了A套中的B套上行传输资源用于上行信息X的发送,当UE想要发送的上行信息为X时,根据X的传输类型,可以确定A套中的B套上行传输资源配置的传输类型与X的传输类型匹配,则UE可以进一步判断确定出的B套上行传输资源是否可用于传输上行信息X。假如B套配置中的C套配置对应的上行传输资源不可用,则UE可以使用B套配置中除C套配置以外的配置对应的上行传输资源传输上行信息X。
需要说明的是,当目标资源是多套上行传输资源中,对应的设定类型与上行传输的传输类型匹配的上行传输资源时,或者,当目标资源是多套上行传输资源中,对应的设定类型与上行传输的传输类型匹配的上行传输资源,以及变化量小于设定阈值的上行传输资源时,采用设定类型与上行传输的传输类型匹配的目标资源进行上行传输,相较于现有技术中采用一套上行传输资源发送不同传输类型的上行传输的方式而言,可以降低数据发送的时延。
在本公开实施例的一种可能的实现方式中,上行传输资源还可以配置有设定测量信号,当网络侧设备为上行传输资源配置了设定测量信号后,在UE确定上行传输资源可用的情况下,可以采用上行传输资源中配置的设定测量信号进行小区选择或重选。例如,UE不再采用系统信息中配置的小区选择或重选的测量信号进行测量,而采用上行传输资源中配置的设定测量信号进行小区选择或重选的测量。
而在UE确定上行传输资源不可用的情况下,可以停止采用上行传输资源中配置的设定测量信号进行测量,例如,可以删除上行传输资源中配置的设定测量信号。
本公开实施例的上行传输资源的确定方法,通过UE获取可用性判断条件,以及上行传输资源,根据可用性判断条件,确定上行传输资源对于上行传输的可用性,在上行传输资源可用的情况下,采用上行传输资源中可用的目标资源进行上行传输。由此,在降低网络开销的基础上,还可以提升数据传输的可靠性。
本公开实施例提供了另一种上行传输资源的确定方法,图6为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图,由UE执行,以由UE确定自身对应的专属上行传输资源。
其中,网络侧设备可以是基站,该基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
如图6所示,该上行传输资源的确定方法可以包括以下步骤:
步骤501,获取可用性判断条件,以及上行传输资源;其中,上行传输资源包括上行定时,可用性判断条件包括上行定时对应的定时器处于运行状态。
可选地,上行传输资源可以为网络侧设备配置的,或者,上行传输资源也可以是协议约定的。其中,上行传输资源可以包括上行定时。
例如,以上行传输资源为网络侧设备配置的进行示例,网络侧设备可以给UE的上行传输资源配置对应的上行定时,比如,配置上行TA,并且,网络侧设备可以给UE配置用于判断上行定时是否可用的定时器,比如网络侧设备可以给UE配置用于判断TA是否可用的TAT(Time Alignment Timer,时间调整定时器)。UE在接收到网络侧设备发送的TAC后,可以启动上述定时器或重启上述定时器。
本公开实施例中,可用性判断条件,用于判断上行传输资源对于上行传输的可用性,该可用性判断条件可以包括上行定时对应的定时器处于运行状态。其中,上行传输可以为信令、数据、信令/数据混合传输、参考信号。
可选地,可用性判断条件可以为网络侧设备配置的,UE可以从网络侧设备获取可用性判断条件。或者,可用性判断条件可以通过协议约定,UE预置的,从而UE可获取该可用性判断条件。
本公开实施例中,网络侧设备可以为UE配置上行传输资源,并向UE发送配置的上行传输资源,相应的,UE可以获取上述上行传输资源。或者,上行传输资源还可以通过协议约定,UE预置的,从而UE可以获取上行传输资源。
步骤502,根据可用性判断条件,确定上行传输资源对于上行传输的可用性。
本公开实施例中,UE可以判断上行传输资源中的上行定时对应的定时器是否处于运行状态,当上行定时对应的定时器未处于运行状态时,则确定上行传输资源不可用(或上行传输资源的上行定时不可用),而当上行定时对应的定时器处于运行状态时,则可以确定上行传输资源可用。
进一步地,UE还可以同时判断上行定时对应的定时器是否超时,以及判断上行定时对应的定时器是否处于运行状态,在上行定时对应的定时器超时或者未处于运行状态的情况下,则确定上行传输资源不可用(或上行传输资源的上行定时不可用),而上行定时对应的定时器未超时且处于运行状态的情况下,则确定上行传输资源可用。
可选地,当上行传输资源的上行定时不可用时,例如上行失步状态,可以通过协议约定上行传输资源也不再可用,比如,可以释放上行传输资源。
步骤503,在上行传输资源可用的情况下,将上行传输资源作为UE的专属上行传输资源。
可选地,UE在确定上行传输资源可用的情况下,可以将上行传输资源作为UE的专属上行传输资源,从而UE可以采用该专属上行传输资源进行上行传输,而在确定上行传输资源不可用的情况下,UE可以释放上行传输资源,比如可以释放上行传输资源对应的RRC配置,或者,UE还可以挂起该上行传输资源,比如保留该上行传输资源对应的RRC配置,但挂起该上行传输资源,当上行传输资源处于挂起状态时,UE不使用该上行传输资源进行上行传输。其中,上行传输可以为信令、数据、信令/数据混合传输、参考信号。
进一步地,UE在确定上行传输资源可用的情况下,还可以判断上行传输是否满足上行传输资源对应的发送条件,比如判断上行传输对应的发送数据量是否小于网络侧设备配置的数据量阈值,在发送数据量小于网络侧设备配置的数据量阈值的情况下,确定上行传输满足上行传输资源对应的发送条件,此时,可以采用该上行传输资源进行上行传输,比如,当UE想要发送特定上行数据时,可以在上行传输资源PUSCH中携带特定承载的上行数据。
本公开实施例的上行传输资源的确定方法,通过UE获取可用性判断条件,以及上行传输资源;其中,上行传输资源包括上行定时,可用性判断条件包括上行定时对应的定时器处于运行状态,以根据可用性判断条件,确定上行传输资源对于上行传输的可用性,在上行传输资源可用的情况下,将上行传输资源作为UE的专属上行传输资源。由此,UE通过判断上行传输资源中的上行定时对应的定时器是否处于运行状态,即可确定出上行传输资源的可用性,而无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
本公开实施例提供了另一种上行传输资源的确定方法,图7为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图,由UE执行,以由UE确定自身对应的专属上行传输资源。
其中,网络侧设备可以是基站,该基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
如图7所示,该上行传输资源的确定方法可以包括以下步骤:
步骤601,获取可用性判断条件,以及上行传输资源;其中,上行传输资源包括上行定时,可用性判断条件包括上行定时对应的定时器处于运行状态。
可选地,上行传输资源可以为网络侧设备配置的,或者,上行传输资源也可以是协议约定的。其中,上行传输资源可以包括上行定时。
例如,以上行传输资源为网络侧设备配置的进行示例,网络侧设备可以给UE的上行传输资源配置对应的上行定时,比如,配置上行TA,并且,网络侧设备可以给UE配置用于判断上行定时是否可用的定时器,比如网络侧设备可以给UE配置用于判断TA是否可用的TAT。UE在接收到网络侧设备发送的TAC后,可以启动上述定时器或重启上述定时器。
本公开实施例中,可用性判断条件,用于判断上行传输资源对于上行传输的可用性,该可用性判断条件可以包括上行定时对应的定时器处于运行状态。其中,上行传输可以为信令、数据、信令/数据混合传输、参考信号。
可选地,可用性判断条件可以为网络侧设备配置的,UE可以从网络侧设备获取可用性判断条件。或者,可用性判断条件可以通过协议约定,UE预置的,从而UE可获取该可用性判断条件。
本公开实施例中,网络侧设备可以为UE配置上行传输资源,并向UE发送配置的上行传输资源,相应的,UE可以获取上述上行传输资源。或者,上行传输资源还可以通过协议约定,UE预置的,从而UE可以获取上行传输资源。
步骤602,根据可用性判断条件,确定上行传输资源对于上行传输的可用性;其中,可用性判断条件还包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,上行传输的传输类型与设定类型匹配。
本公开实施例中,UE可以首先确定上行传输资源中的上行定时对应的定时器是否处于运行状态,当上行定时对应的定时器未处于运行状态时,则确定上行传输资源不可用,而当上行定时对应的定时器处于运行状态时,可以进一步判断上行传输资源所对应的下行传输的测量值相较于参考值的变化量是否小于或等于设定阈值,和/或上行传输的传输类型是否与设定类型匹配,以根据判断结果确定上行传输资源是否可用。
可选地,UE还可以同时判断上行定时对应的定时器是否超时,以及判断上行定时对应的定时器是否处于运行状态,在上行定时对应的定时器超时或者未处于运行状态的情况下,则确定上行传输资源不可用,而上行定时对应的定时器未超时且处于运行状态的情况下,则可以进一步判断上行传输资源所对应的下行传输的测量值相较于参考值的变化量是否小于或等于设定阈值,和/或上行传输的传输类型是否与设定类型匹配,以根据判断结果确定上行传输资源是否可用。
在本公开实施例的一种可能的实现方式中,当可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值时,在上行传输资源中的上行定时对应的定时器处于运行状态的情况下,UE可以对上行传输资源所对应的下行传输进行测量,确定上行传输资源所对应的下行传输的测量值,并计算测量值与参考值之间的变化量,其中,变化量可以为测量值与参考值之间的相对变化量,或者也可以为测量值与参考值之间的绝对变化量。之后UE可以判断上行传输资源所对应的下行传输的测量值相对于参考值的变化量是否小于或者等于设定阈值,在上行传输资源所对应的下行传输的测量值相对于参考值的变化量小于或者等于设定阈值的情况下,则确定上行传输资源可用,而在上行传输资源所对应的下行传输的测量值相对于参考值的变化量大于设定阈值的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当测量值与参考值之间的变化量为绝对变化量时,设定阈值为固定数值,而当变化量为相对变化量时,设定阈值的取值与减数和被减数相关,例如,当变化量为测量值减去参考值的数值时,设定阈值可以为阈值1,当变化量为参考值减去测量值的数值时,设定阈值可以为阈值2,其中,阈值1和阈值2的取值可以相同,或者也可以不同,本公开对此并不作限制。
在本公开实施例的另一种可能的实现方式中,当可用性判断条件包括上行传输的传输类型与设定类型匹配时,在上行传输资源中的上行定时对应的定时器处于运行状态的情况下,UE可以判断当前待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,在上行传输的传输类型与上行传输资源对应的设定类型匹配的情况下,则确定上行传输资源可用,而在上行传输的传输类型与上行传输资源对应的设定类型不匹配的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。也就是说,本公开实施例中,可以确定未配置设定类型的上行传输资源,以及确定配置了设定类型,且设定类型与上行传输的传输类型匹配的上行传输资源,将确定的上行传输资源,作为UE的专属上行传输资源。
在本公开实施例的又一种可能的实现方式中,当可用性判断条件同时包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,以及上行传输的传输类型与设定类型匹配时,在上行传输资源中的上行定时对应的定时器处于运行状态的情况下,UE可以判断上行传输资源所对应的下行传输的测量值相对于参考值的变化量是否小于或者等于设定阈值,并且,判断当前待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,在上行传输资源所对应的下行传输的测量值相对于参考值的变化量小于或者等于设定阈值,且上行传输的传输类型与上行传输资源对应的设定类型匹配的情况下,则确定上行传输资源可用,而在上行传输资源所对应的下行传输的测量值相对于参考值的变化量大于设定阈值,和/或,上行传输的传输类型与上行传输资源对应的设定类型不匹配的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
可选地,可以首先判断上行传输资源配置的设定类型与当前待发送的上行传输的传输类型是否匹配,在上行传输资源配置的设定类型与当前待发送的上行传输的传输类型匹配的情况下,可以进一步判断上行传输资源的所对应的下行传输的测量值相对于参考值的变化量,是否大于设定阈值,在变化量小于或者等于设定阈值时,则确定上行传输资源可用,此时,可以将该上行传输资源作为UE的专属上行传输资源。
可选地,可以首先判断判断上行传输资源的所对应的下行传输的测量值相对于参考值的变化量,是否大于设定阈值,在变化量小于或者等于设定阈值时,可以进一步判断上行传输资源配置的设定类型与当前待发送的上行传输的传输类型是否匹配,在上行传输资源配置的设定类型与当前待发送的上行传输的传输类型匹配的情况下,则确定上行传输资源可用,此时,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。
可选地,UE在确定上行传输资源可用的情况下,可以采用该上行传输资源进行上行传输,而在确定上行传输资源不可用的情况下,UE可以释放上行传输资源,比如可以释放上行传输资源对应的RRC配置,或者,UE还可以挂起上行传输资源,比如保留上行传输资源对应的RRC配置,但挂起该上行传输资源。当上行传输资源处于挂起状态时,UE不使用该上行传输资源进行上行传输。
进一步地,UE在确定上行传输资源可用的情况下,还可以判断上行传输是否满足上行传输资源对应的发送条件,比如判断上行传输对应的发送数据量是否小于网络侧设备配置的数据量阈值或门限值,在发送数据量小于网络侧设备配置的数据量阈值或门限值的情况下,确定上行传输满足上行传输资源对应的发送条件,此时,UE可以采用该上行传输资源进行上行传输,比如,当UE想要发送特定上行数据时,可以在上行传输资源PUSCH中携带特定承载的上行数据。
在本公开实施例的一种可能的实现方式中,上行传输资源还可以配置有设定测量信号,当网络侧设备为上行传输资源配置了设定测量信号后,在UE确定上行传输资源可用的情况下,可以采用上行传输资源中配置的设定测量信号进行小区选择或重选。例如,UE不再采用系统信息中配置的小区选择或重选的测量信号进行测量,而采用上行传输资源中配置的设定测量信号进行小区选择或重选的测量。
而在UE确定上行传输资源不可用的情况下,可以停止采用上行传输资源中配置的设定测量信号进行测量,例如,可以删除上行传输资源中配置的设定测量信号。
本公开实施例的上行传输资源的确定方法,UE通过判断上行传输资源中的上行定时对应的定时器是否处于运行状态,并通过对上行传输资源所对应的下行传输进行测量,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,而无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
本公开实施例提供了另一种上行传输资源的确定方法,图8为本公开实施例提供的另一种上行传输资源的确定方法的流程示意图,由网络侧设备执行,为UE配置上行传输资源。
其中,网络侧设备可以是基站,该基站可以包括多个为UE提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
如图8所示,该上行传输资源的确定方法可以包括以下步骤:
步骤701,向UE发送配置的上行传输资源;其中,上行传输资源,用于UE基于可用性判断条件,确定UE的专属上行传输资源;可用性判断条件包括:上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,上行传输的传输类型与设定类型匹配。
在本公开实施例的一种可能的实现方式中,网络侧设备可以为UE配置上行传输资源,并向UE发送配置的上行传输资源,相应的,UE可以获取上述上行传输资源,并根据可用性判断条件,确定上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源。
在本公开实施例的一种可能的实现方式中,上行传输资源还可以通过协议约定,UE预置的,从而UE可以获取上行传输资源,并根据可用性判断条件,确定上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源。
其中,上行传输可以为信令、数据、信令/数据混合传输、参考信号。下行传输可以为信令、数据、信令/数据混合传输、参考信号。
其中,可用性判断条件可以为网络侧设备配置的,UE可以从网络侧设备获取可用性判断条件。或者,可用性判断条件可以通过协议约定,UE预置的,从而UE可获取该可用性判断条件。
其中,设定阈值可以通过为网络侧设备配置的,或者,设定阈值也可以为通过协议约定,UE预置的。
其中,设定类型可以为上行传输资源配置的传输类型。
本公开实施例中,UE可以根据可用性判断条件,确定上行传输资源对应上行传输的可用性。具体地,UE可以根据上行传输资源所对应的下行传输的测量值或上行传输的传输类型,确定上行传输资源对于上行传输的可用性,并且,UE还可以根据上述测量值和上行传输的传输类型,确定上行传输资源对于上行传输的可用性。下面将对几种可能的实现方式分别进行说明。
在本公开实施例的一种可能的实现方式中,当可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值时,UE可以对上行传输资源所对应的下行传输进行测量,确定上行传输资源所对应的下行传输的测量值,并计算测量值与参考值之间的变化量,其中,变化量可以为测量值与参考值之间的相对变化量,或者也可以为测量值与参考值之间的绝对变化量。之后UE可以判断上行传输资源所对应的下行传输的测量值相对于参考值的变化量是否小于或者等于设定阈值,在上行传输资源所对应的下行传输的测量值相对于参考值的变化量小于或者等于设定阈值的情况下,则确定上行传输资源可用,而在上行传输资源所对应的下行传输的测量值相对于参考值的变化量大于设定阈值的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当测量值与参考值之间的变化量为绝对变化量时,设定阈值为固定数值,而当变化量为相对变化量时,设定阈值的取值与减数和被减数相关,例如,当变化量为测量值减去参考值的数值时,设定阈值可以为阈值1,当变化量为参考值减去测量值的数值时,设定阈值可以为阈值2,其中,阈值1和阈值2的取值可以相同,或者也可以不同,本公开对此并不作限制。
在本公开实施例的另一种可能的实现方式中,当可用性判断条件包括上行传输的传输类型与设定类型匹配时,UE可以判断当前待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,在上行传输的传输类型与上行传输资源对应的设定类型匹配的情况下,则确定上行传输资源可用,而在上行传输的传输类型与上行传输资源对应的设定类型不匹配的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。也就是说,本公开实施例中,可以确定未配置设定类型的上行传输资源,以及确定配置了设定类型,且设定类型与上行传输的传输类型匹配的上行传输资源,将确定的上行传输资源,作为UE的专属上行传输资源。
在本公开实施例的又一种可能的实现方式中,当可用性判断条件同时包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,以及上行传输的传输类型与设定类型匹配时,UE可以判断上行传输资源所对应的下行传输的测量值相对于参考值的变化量是否小于或者等于设定阈值,并且,判断当前待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,在上行传输资源所对应的下行传输的测量值相对于参考值的变化量小于或者等于设定阈值,且上行传输的传输类型与上行传输资源对应的设定类型匹配的情况下,则确定上行传输资源可用,而在上行传输资源所对应的下行传输的测量值相对于参考值的变化量大于设定阈值,和/或,上行传输的传输类型与上行传输资源对应的设定类型不匹配的情况下,则确定上行传输资源不可用。
本公开实施例中,在上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源。
可选地,可以首先判断上行传输资源配置的设定类型与当前待发送的上行传输的传输类型是否匹配,在上行传输资源配置的设定类型与当前待发送的上行传输的传输类型匹配的情况下,可以进一步判断上行传输资源的所对应的下行传输的测量值相对于参考值的变化量,是否大于设定阈值,在变化量小于或者等于设定阈值时,则确定上行传输资源可用,此时,可以将该上行传输资源作为UE的专属上行传输资源。
可选地,可以首先判断判断上行传输资源的所对应的下行传输的测量值相对于参考值的变化量,是否大于设定阈值,在变化量小于或者等于设定阈值时,可以进一步判断上行传输资源配置的设定类型与当前待发送的上行传输的传输类型是否匹配,在上行传输资源配置的设定类型与当前待发送的上行传输的传输类型匹配的情况下,则确定上行传输资源可用,此时,可以将该上行传输资源作为UE的专属上行传输资源。
需要说明的是,当上行传输资源未配置设定类型时,则可以确定上行传输的传输类型,与该上行传输资源的设定类型匹配。
由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,即可确定出上行传输资源的可用性,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源,由此,UE无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号,可以降低网络开销。
可选地,UE在确定上行传输资源可用的情况下,可以将该上行传输资源作为UE的专属上行传输资源,从而UE可以采用该专属上行传输资源进行上行传输,而在确定上行传输资源不可用的情况下,UE可以释放上行传输资源,比如可以释放上行传输资源对应的RRC配置,或者,UE还可以挂起上行传输资源,比如保留上行传输资源对应的RRC配置,但挂起该上行传输资源。当上行传输资源处于挂起状态时,UE不使用该上行传输资源进行上行传输。
进一步地,UE在确定上行传输资源可用的情况下,还可以判断上行传输是否满足上行传输资源对应的发送条件,比如判断上行传输对应的发送数据量是否小于网络侧设备配置的数据量阈值或门限值,在发送数据量小于网络侧设备配置的数据量阈值或门限值的情况下,确定上行传输满足上行传输资源对应的发送条件,此时,UE可以采用该上行传输资源进行上行传输,比如,当UE想要发送特定上行数据时,可以在上行传输资源PUSCH中携带特定承载的上行数据。
本公开实施例的上行传输资源的确定方法,通过网络侧设备向UE发送配置的上行传输资源,相应的,UE在接收到上行传输资源后,基于可用性判断条件,确定UE的专属上行传输资源,其中,可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,上行传输的传输类型与设定类型匹配。由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,即可确定出上行传输资源的可用性,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源,由此,UE无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
与上述图2至图7实施例提供的上行传输资源的确定方法相对应,本公开还提供一种上行传输资源的确定装置,由于本公开实施例提供的上行传输资源的确定装置与上述图2至图7实施例提供的上行传输资源的确定方法相对应,因此在上行传输资源的确定方法的实施方式也适用于本实施例提供的上行传输资源的确定装置,在公开本实施例中不再详细描述。
图9为本公开实施例提供的一种上行传输资源的确定装置的结构示意图。装置应用于UE。
如图9所示,该上行传输资源的确定装置900可以包括:确定模块901,其中:
确定模块901,用于基于可用性判断条件,确定UE的专属上行传输资源。
其中,可用性判断条件包括:上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,上行传输的传输类型与设定类型匹配。
在本公开的一些实施例中,上行传输资源的确定装置900还可以包括:
释放模块,用于在上行传输资源不可用的情况下,释放或挂起上行传输资源。
在本公开的一些实施例中,上行传输资源包括上行定时;可用性判断条件,还包括:上行定时对应的定时器处于运行状态。
在本公开的一些实施例中,上行传输资源,用于空闲态或非激活态下的上行传输。
在本公开的一些实施例中,参考值,是网络侧设备配置上行传输资源或释放用户设备连接之前或之时,且用户设备距离网络设备配置上行传输资源或释放用户设备连接的时刻最近一次测量下行传输得到的;或参考值,是用户设备最后一次接收到上行传输资源对应的上行定时调整命令之时或之前对下行传输测量得到的。在本公开的一些实施例中,测量的设定测量对象包括设定小区、设定波束和设定测量信号中的至少一个。
在本公开的一些实施例中,测量的设定测量项包括:参考信号接收强度RSRP、参考信号接收质量RSRQ、信干噪比SINR和路损中的一个或多个组合。
在本公开的一些实施例中,测量值和/或参考值,是采用设定测量信号测量得到;设定测量信号,是根据网络侧设备的配置信息确定出的用于小区选择或重选或专于获得测量值和/或参考值的测量信号。
在本公开的一些实施例中,配置信息包括频率指示信息、子载波间隔、测量时间间隔、参考信号配置、波束测量阈值、波束最大数量、波束标识和信号标识中的一个或多个组合。
在本公开的一些实施例中,上行传输资源中配置有设定测量信号。
上行传输资源的确定装置900还可以包括:
处理模块,用于在确定上行传输资源可用的情况下,采用上行传输资源中配置的设定测量信号进行小区选择或重选;和/或,在确定上行传输资源不可用的情况下,停止采用上行传输资源中配置的设定测量信号进行测量。
在本公开的一些实施例中,设定小区的测量结果包括:设定小区中测量值大于波束测量阈值的各波束的平均测量结果;和/或,设定小区各波束中的最大测量结果。
在本公开的一些实施例中,设定波束包括以下任一项或多项:设定小区内具有最大测量值的波束;上行传输资源对应的波束;网络侧设备指示的波束;测量值大于或等于波束测量阈值的波束;测量值小于或等于波束测量阈值的波束。
在本公开的一些实施例中,表征传输类型的标识包括:承载标识、承载类型标识、数据流标识、会话标识、逻辑信道标识、业务对应的小区组标识和上行发送资源类型中的一个或多个组合。
在本公开的一些实施例中,上行发送资源类型包括上行共享信道PUSCH上的上行传输、上行控制信道PUCCH上的上行传输和上行探测信号中的一个或多个组合。
在本公开的一些实施例中,将上行授权作为用于PUSCH上行传输的上行传输资源。
在本公开的一些实施例中,上行传输资源具有对应的频率指示信息;其中,频率指示信息,是网络侧设备配置的或者用户设备预置的;其中,频率指示信息包括小区标识、频点标识、带宽、带宽部分标识、小区组标识和定时提前组标识中的一个或多个组合。
本公开实施例的上行传输资源的确定装置,通过UE基于可用性判断条件,确定UE的专属上行传输资源,其中,可用性判断条件包括上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值,和/或,上行传输的传输类型与设定类型匹配。由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,即可确定出上行传输资源的可用性,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源,由此,UE无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
与上述图8实施例提供的上行传输资源的确定方法相对应,本公开还提供一种上行传输资源的确定装置,由于本公开实施例提供的上行传输资源的确定装置与上述图8实施例提供的上行传输资源的确定方法相对应,因此在图8实施例提供的上行传输资源的确定方法的实施方式也适用于本实施例提供的上行传输资源的确定装置,在公开本实施例中不再详细描述。
图10为本公开实施例提供的另一种上行传输资源的确定装置的结构示意图。装置应用于网络侧设备。
如图10所示,该上行传输资源的确定装置1000可以包括:发送模块1001,其中:
发送模块1001,用于向用户设备发送配置的上行传输资源。
其中,上行传输资源,用于用户设备基于可用性判断条件,确定UE的专属上行传输资源;可用性判断条件包括:上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,上行传输的传输类型与设定类型匹配。
本公开实施例的上行传输资源的确定装置,通过网络侧设备向UE发送配置的上行传输资源,相应的,UE在接收到上行传输资源后,基于可用性判断条件,确定UE的专属上行传输资源,其中,可用性判断条件包括上行传输所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;和/或,上行传输的传输类型与设定类型匹配。由此,UE仅需通过对上行传输资源所对应的下行传输进行测量,即可确定出上行传输资源的可用性,和/或,通过判断待发送的上行传输的传输类型是否与上行传输资源对应的设定类型匹配,即可确定出上行传输资源的可用性,在上行传输资源可用的情况下,将该上行传输资源作为UE的专属上行传输资源,由此,UE无需向网络侧设备发送上行信号以及接收网络侧设备发送的下行信号来确定上行传输资源的可用性,可以降低网络开销。
为了实现上述实施例,本公开还提出一种通信设备。
本公开实施例提供的通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时执行前述图2至图7任一实施例对应的上行传输资源的确定方法,或者,执行前述图8实施例对应的上行传输资源的确定方法。
该通信设备可为前述的UE或者网络侧设备。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。这里,所述通信设备包括UE或者网络侧设备。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至图8的至少其中之一。
为了实现上述实施例,本公开还提出一种计算机存储介质。
本公开实施例提供的计算机存储介质,存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述上行传输资源的确定方法,例如,如图2至图8的至少其中之一。
图11是本公开实施例所提供的一种UE的框图。例如,UE1100可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,UE1100可以包括以下至少一个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1110,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制UE1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1102可以包括至少一个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括至少一个模块,便于处理组件1102和其他组件之间的交互。例如,处理组件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在UE1100的操作。这些数据的示例包括用于在UE1100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为UE1100的各种组件提供电力。电源组件1106可以包括电源管理系统,至少一个电源,及其他与为UE1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在所述UE1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像头。当UE1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1110被配置为输出和/或输入音频信号。例如,音频组件1110包括一个麦克风(MIC),当UE1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1110还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括至少一个传感器,用于为UE1100提供各个方面的状态评估。例如,传感器组件1114可以检测到设备1100的打开/关闭状态,组件的相对定位,例如所述组件为UE1100的显示器和小键盘,传感器组件1114还可以检测UE1100或UE1100一个组件的位置改变,用户与UE1100接触的存在或不存在,UE1100方位或加速/减速和UE1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于UE1100和其他设备之间有线或无线方式的通信。UE1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1100可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述图2至图7任一方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令可由UE1100的处理器1120执行以完成上述图2至图7任一方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图12所示,为本公开实施例所提供的一种网络侧设备的结构示意图。例如,网络侧设备1200可以被提供为一网络设备。参照图12,网络侧设备1200包括处理组件1222,其进一步包括至少一个处理器,以及由存储器1232所代表的存储器资源,用于存储可由处理组件1222的执行的指令,例如应用程序。存储器1232中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1222被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图8所示方法。
网络侧设备1200还可以包括一个电源组件1226被配置为执行网络侧设备1200的电源管理,一个有线或无线网络接口1250被配置为将网络侧设备1200连接到网络,和一个输入输出(I/O)接口1258。网络侧设备1200可以操作基于存储在存储器1232的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (21)

1.一种上行传输资源的确定方法,其特征在于,用于用户设备,所述方法包括:
基于可用性判断条件,确定所述用户设备的专属上行传输资源;
所述可用性判断条件包括:
所述上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;
和/或,上行传输的传输类型与设定类型匹配。
2.根据权利要求1所述的确定方法,其特征在于,所述方法还包括:
在所述上行传输资源不可用的情况下,释放或挂起所述上行传输资源。
3.根据权利要求1所述的确定方法,其特征在于,所述上行传输资源包括上行定时;所述可用性判断条件,还包括:
所述上行定时对应的定时器处于运行状态。
4.根据权利要求1所述的确定方法,其特征在于,所述上行传输资源,用于空闲态或非激活态下的上行传输。
5.根据权利要求1所述的确定方法,其特征在于,
所述参考值,是所述网络侧设备配置所述上行传输资源或释放所述用户设备连接之前或之时,对所述下行传输测量得到的;
所述测量值,是所述网络侧设备配置所述上行传输资源或释放所述用户设备连接之后,对所述下行传输测量得到的。
6.根据权利要求5所述的确定方法,其特征在于,
测量的设定测量对象包括设定小区、设定波束和设定测量信号中的至少一个。
7.根据权利要求5所述的确定方法,其特征在于,测量的设定测量项包括参考信号接收强度RSRP、参考信号接收质量RSRQ、信干噪比SINR和路损中的一个或多个组合。
8.根据权利要求5所述的确定方法,其特征在于,所述测量值和/或所述参考值,是采用设定测量信号测量得到;
所述设定测量信号,是根据所述网络侧设备的配置信息确定出的用于小区选择或重选或专用于获得所述测量值和/或所述参考值的测量信号。
9.根据权利要求8所述的确定方法,其特征在于,
所述配置信息包括频率指示信息、子载波间隔、测量时间间隔、参考信号配置、波束测量阈值、波束最大数量、波束标识和信号标识中的一个或多个组合。
10.根据权利要求8所述的确定方法,其特征在于,所述上行传输资源中配置有所述设定测量信号;所述方法还包括:
在确定所述上行传输资源可用的情况下,采用所述上行传输资源中配置的所述设定测量信号进行小区选择或重选;
和/或,在确定所述上行传输资源不可用的情况下,停止采用所述上行传输资源中配置的设定测量信号进行测量。
11.根据权利要求6所述的确定方法,其特征在于,所述设定小区的测量结果包括:
所述设定小区中测量值大于所述波束测量阈值的各波束的平均测量结果;
和/或,所述设定小区各波束中的最大测量结果。
12.根据权利要求6所述的确定方法,其特征在于,所述设定波束包括以下任一项或多项:
所述设定小区内具有最大测量值的波束;
所述上行传输资源对应的波束;
所述网络侧设备指示的波束;
测量值大于或等于所述波束测量阈值的波束;
测量值小于或等于所述波束测量阈值的波束。
13.根据权利要求1-12任一项所述的确定方法,其特征在于,表征所述传输类型的标识包括:承载标识、承载类型标识、数据流标识、会话标识、逻辑信道标识、业务对应的小区组标识和上行发送资源类型中的一个或多个组合。
14.根据权利要求13所述的确定方法,其特征在于,所述上行发送资源类型包括上行共享信道PUSCH上的上行传输、上行控制信道PUCCH上的上行传输和上行探测信号中的一个或多个组合。
15.根据权利要求14所述的确定方法,其特征在于,
将上行授权作为用于所述PUSCH上行传输的所述上行传输资源。
16.根据权利要求1所述的确定方法,其特征在于,所述上行传输资源具有对应的频率指示信息;其中,所述频率指示信息,是所述网络侧设备配置的或者所述用户设备预置的;
其中,所述频率指示信息包括小区标识、频点标识、带宽、带宽部分标识、小区组标识和定时提前组标识中的一个或多个组合。
17.一种上行传输资源的确定方法,其特征在于,用于网络侧设备,所述方法包括:
向用户设备发送配置的上行传输资源;
其中,所述上行传输资源,用于所述用户设备基于可用性判断条件,确定所述用户设备的专属上行传输资源;
所述可用性判断条件包括:
所述上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;
和/或,上行传输的传输类型与设定类型匹配。
18.一种上行传输资源的确定装置,其特征在于,用于用户设备,所述装置包括:
确定模块,用于基于可用性判断条件,确定所述用户设备的专属上行传输资源;
其中,所述可用性判断条件包括:
所述上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;
和/或,上行传输的传输类型与设定类型匹配。
19.一种上行传输资源的确定装置,其特征在于,用于网络侧设备,所述装置包括:
发送模块,用于向用户设备发送配置的上行传输资源;
其中,所述上行传输资源,用于所述用户设备基于可用性判断条件,确定所述用户设备的专属上行传输资源;
所述可用性判断条件包括:
所述上行传输资源所对应的下行传输的测量值相较于参考值的变化量小于或等于设定阈值;
和/或,上行传输的传输类型与设定类型匹配。
20.一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1至16或17任一项所述的方法。
21.一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至16或17任一项所述的方法。
CN202080003339.0A 2020-11-17 2020-11-17 上行传输资源的确定方法、装置、通信设备和介质 Active CN112753269B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129477 WO2022104549A1 (zh) 2020-11-17 2020-11-17 上行传输资源的确定方法、装置、通信设备和介质

Publications (2)

Publication Number Publication Date
CN112753269A true CN112753269A (zh) 2021-05-04
CN112753269B CN112753269B (zh) 2024-03-01

Family

ID=75651192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080003339.0A Active CN112753269B (zh) 2020-11-17 2020-11-17 上行传输资源的确定方法、装置、通信设备和介质

Country Status (6)

Country Link
US (1) US20230422288A1 (zh)
EP (1) EP4250849A4 (zh)
JP (1) JP2023549278A (zh)
KR (1) KR20230104286A (zh)
CN (1) CN112753269B (zh)
WO (1) WO2022104549A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236629A1 (zh) * 2021-05-10 2022-11-17 北京小米移动软件有限公司 数据传输方法、装置及通信设备
WO2023000185A1 (zh) * 2021-07-20 2023-01-26 北京小米移动软件有限公司 一种定位方法和装置
WO2023010529A1 (en) * 2021-08-06 2023-02-09 Qualcomm Incorporated Small data transfer communications
WO2024098573A1 (en) * 2023-02-16 2024-05-16 Zte Corporation Systems, methods, and non-transitory processor-readable media for transmission during random access procedure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263627A (zh) * 2011-08-11 2011-11-30 中兴通讯股份有限公司 一种载波聚合配置方法及装置
US20170171882A1 (en) * 2015-12-09 2017-06-15 Qualcomm Incorporated Conditional uplink grant
CN108289335A (zh) * 2017-01-10 2018-07-17 中兴通讯股份有限公司 数据发送方法及装置、终端
CN108347779A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 上行数据发送方法、接收方法、用户终端和网络侧设备
CN109561511A (zh) * 2017-09-27 2019-04-02 夏普株式会社 无线通信方法和设备
CN109587770A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 调度请求的处理方法和终端设备
WO2020167102A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 사전 설정된 상향링크 자원을 통한 상향링크 데이터 전송 방법 및 이에 대한 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110198565A (zh) * 2018-02-26 2019-09-03 普天信息技术有限公司 一种小带宽系统中上行资源的分配方法及装置
CN110896560B (zh) * 2018-09-13 2022-06-07 维沃移动通信有限公司 上行信号发送方法和终端
MX2021003582A (es) * 2018-09-27 2021-05-28 Ericsson Telefon Ab L M Soporte para transmision en recursos de ul preconfigurados.
CN111479323B (zh) * 2019-01-23 2023-05-09 中国移动通信有限公司研究院 一种物理上行控制信道的传输资源确定方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263627A (zh) * 2011-08-11 2011-11-30 中兴通讯股份有限公司 一种载波聚合配置方法及装置
US20170171882A1 (en) * 2015-12-09 2017-06-15 Qualcomm Incorporated Conditional uplink grant
CN108289335A (zh) * 2017-01-10 2018-07-17 中兴通讯股份有限公司 数据发送方法及装置、终端
CN108347779A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 上行数据发送方法、接收方法、用户终端和网络侧设备
CN109561511A (zh) * 2017-09-27 2019-04-02 夏普株式会社 无线通信方法和设备
CN109587770A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 调度请求的处理方法和终端设备
WO2020167102A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 사전 설정된 상향링크 자원을 통한 상향링크 데이터 전송 방법 및 이에 대한 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236629A1 (zh) * 2021-05-10 2022-11-17 北京小米移动软件有限公司 数据传输方法、装置及通信设备
WO2023000185A1 (zh) * 2021-07-20 2023-01-26 北京小米移动软件有限公司 一种定位方法和装置
WO2023010529A1 (en) * 2021-08-06 2023-02-09 Qualcomm Incorporated Small data transfer communications
WO2024098573A1 (en) * 2023-02-16 2024-05-16 Zte Corporation Systems, methods, and non-transitory processor-readable media for transmission during random access procedure

Also Published As

Publication number Publication date
WO2022104549A1 (zh) 2022-05-27
EP4250849A4 (en) 2024-01-03
CN112753269B (zh) 2024-03-01
EP4250849A1 (en) 2023-09-27
JP2023549278A (ja) 2023-11-22
KR20230104286A (ko) 2023-07-07
US20230422288A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
CN112753269B (zh) 上行传输资源的确定方法、装置、通信设备和介质
CN111095824B (zh) 波束测量方法及波束测量装置
CN110115096B (zh) 随机接入方法、装置及计算机可读存储介质
CN108521883B (zh) 控制网络接入的方法及装置
US20210336737A1 (en) Measurement configuration method, apparatus, devices, system, and storage medium
CN109314875B (zh) 辅服务小区波束失败的上报方法,装置和存储介质
EP3860234A1 (en) Uplink signal transmission method and device
CN113994765A (zh) 一种bwp切换方法、装置及存储介质
CN114731522A (zh) 用户辅助信息处理方法及装置、通信设备及存储介质
CN108702689B (zh) 小区接入方法、装置及存储介质
EP3902318A1 (en) Measuring method and device in dc operation
US20210029735A1 (en) Data transmission method, device, system and storage medium
US9420605B2 (en) Method and apparatus for cell coordination in heterogeneous cellular networks
RU2817412C1 (ru) Способ и устройство для определения ресурса передачи восходящего канала, устройство связи и носитель информации
CN113424614A (zh) 定位测量结果发送方法、接收方法、及其装置、通信设备
CN109691180B (zh) 传输配置信息的方法及装置
CN109496448B (zh) 网络参数配置方法、装置及计算机可读存储介质
CN115039480A (zh) 波束的确定方法、装置、通信设备及计算机存储介质
RU2788195C1 (ru) Способ и устройство для предоставления отчета о сбое луча вторичной обслуживающей соты, и носитель информации
US20240178901A1 (en) Method and apparatus for determining default beam, and communication device
US12022417B2 (en) Uplink signal transmission based on timing advance adjustment
US12022305B2 (en) Measuring method and device in DC operation
EP4236528A1 (en) Uplink scheduling method, apparatus, and storage medium
US10492115B2 (en) Mobility management method and apparatus
CN118120195A (zh) 一种上行波形的配置方法、装置及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant