CN109587770A - 调度请求的处理方法和终端设备 - Google Patents

调度请求的处理方法和终端设备 Download PDF

Info

Publication number
CN109587770A
CN109587770A CN201710908302.2A CN201710908302A CN109587770A CN 109587770 A CN109587770 A CN 109587770A CN 201710908302 A CN201710908302 A CN 201710908302A CN 109587770 A CN109587770 A CN 109587770A
Authority
CN
China
Prior art keywords
terminal device
logic channel
available
ascending resource
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710908302.2A
Other languages
English (en)
Inventor
徐海博
邝奕如
王键
于海凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201710908302.2A priority Critical patent/CN109587770A/zh
Priority to CN201911296496.0A priority patent/CN110881223B/zh
Priority to EP22214477.6A priority patent/EP4221416A1/en
Priority to AU2018340729A priority patent/AU2018340729B2/en
Priority to JP2020518036A priority patent/JP7074846B2/ja
Priority to US16/651,916 priority patent/US11937121B2/en
Priority to KR1020207012004A priority patent/KR102331620B1/ko
Priority to PCT/CN2018/086898 priority patent/WO2019062142A1/zh
Priority to RU2020114952A priority patent/RU2741327C1/ru
Priority to EP18860257.7A priority patent/EP3687244B1/en
Publication of CN109587770A publication Critical patent/CN109587770A/zh
Priority to AU2021206884A priority patent/AU2021206884B2/en
Priority to AU2023202570A priority patent/AU2023202570B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请实施例提供一种调度请求的处理方法和终端设备。其中,调度请求的处理方法包括:终端设备确定是否有与第一逻辑信道相关联的常规BSR被触发且还未被取消;若与第一逻辑信道相关联的常规BSR被触发且还未被取消,且终端设备没有可用于传输第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行,则终端设备触发SR;其中,第一计时器用于延迟SR的传输。本申请实施例提供的调度请求的处理方法,当终端设备没有可用于传输与BSR相关联的逻辑信道的数据的上行资源时,通过触发SR实现上行资源调度,满足了逻辑信道承载的数据的QoS要求。

Description

调度请求的处理方法和终端设备
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种调度请求的处理方法和终端设备。
背景技术
在未来5G通信系统中,终端设备可以通过将缓冲状态报告(Buffer StatusReport,BSR)填充到媒体接入控制(Media Access Control,MAC)协议数据单元(ProtocolData Unit,PDU)中向网络设备上报终端设备的待发送数据量。相应的,网络设备可以基于终端设备发送的BSR,向终端设备发送上行授权(Uplink grant,UL grant),从而为终端设备分配上行资源。
其中,不同服务质量(Quality of Service,QoS)需求的业务的数据是通过不同的逻辑信道(Logical Channel,LCH)传输的。在未来5G通信系统中,不同的逻辑信道可以支持不同的传输参数集合(可以包括子载波间隔(subcarrier spacing)、循环前缀(cyclicprefix,CP)长度,传输时间长度等)。不同QoS需求的业务在传输时需要通过能够支持相应QoS需求的传输参数集合对应的上行授权来传输。例如,当一个逻辑信道有数据待发送且触发了BSR后,且终端设备有可用的上行授权,则终端设备可以将该BSR填充到MAC PDU中向网络设备上报。网络设备根据该BSR调度该逻辑信道的传输参数集合对应的上行授权给终端设备。终端设备可以通过该上行授权传输该逻辑信道的数据。或者理解为,当终端设备收到网络设备分配的一个上行授权后,如果该上行授权指示的传输数据所用的传输参数集合与逻辑信道相匹配时,终端设备才能通过该上行授权传输该逻辑信道的数据。否则,终端设备无法通过该上行授权传输该逻辑信道的数据。
但是,由于在未来5G通信系统中存在多种传输参数集合,当传输参数集合不同时,调度时间也不同。这样,就会出现网络设备无法及时为逻辑信道分配与逻辑信道匹配的上行资源的问题,导致该逻辑信道承载的数据的时延要求无法得到保证。
发明内容
本申请实施例提供一种调度请求的处理方法和终端设备,满足了逻辑信道承载的数据的QoS需求。
第一方面,本申请实施例提供一种调度请求的处理方法,该方法包括:终端设备确定是否有与第一逻辑信道相关联的常规BSR被触发且还未被取消。若与第一逻辑信道相关联的常规BSR被触发且还未被取消,且终端设备没有可用于传输第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行,则终端设备触发SR。其中,第一计时器用于延迟SR的传输。
通过第一方面提供的调度请求的处理方法,当终端设备有BSR被触发且还未取消、终端设备没有可用于传输与BSR相关联的第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行时,终端设备可以触发SR。从而通过SR实现更快的请求上行资源来传输第一逻辑信道的数据,满足了第一逻辑信道承载的数据的QoS要求,提升了上行调度性能。
可选的,在第一方面的一种可能的实施方式中,与第一逻辑信道相关联的常规BSR为:由于第一逻辑信道有新数据到达而触发的BSR。
可选的,在第一方面的一种可能的实施方式中,与第一逻辑信道相关联的常规BSR为:由于BSR重传计时器超时而触发的BSR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,在第一方面的一种可能的实施方式中,终端设备没有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,和/或,终端设备没有可用于传输第一逻辑信道的数据的第一类上行资源。
可选的,在第一方面的一种可能的实施方式中,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备在第一时间单元内没有任何可用的上行资源。或者,终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,在第一方面的一种可能的实施方式中,终端设备没有可用于传输第一逻辑信道的数据的第一类上行资源,包括:终端设备没有任何可用的第一类上行资源。或者,终端设备有可用的第一类上行资源,但终端设备可用的第一类上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,在第一方面的一种可能的实施方式中,方法还包括:终端设备确定第一逻辑信道或SR对应的SR配置。
可选的,在第一方面的一种可能的实施方式中,方法还包括:对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则终端设备在物理资源上发送SR。
通过该可能的实施方式提供的调度请求的处理方法,在SR被触发之后可以确保SR的及时传输,从而终端设备可以通过SR实现更快的请求上行资源来传输逻辑信道的数据,满足了逻辑信道承载的数据的QoS要求,提升了上行调度性能。
可选的,在第一方面的一种可能的实施方式中,方法还包括:对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则终端设备在物理资源上发送SR。
可选的,在第一方面的一种可能的实施方式中,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,还包括:若终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则终端设备在第一时间单元内可用的上行资源上传输数据。
通过该可能的实施方式提供的调度请求的处理方法,通过终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,可以提升数据传输效率和资源利用率。
可选的,在第一方面的一种可能的实施方式中,终端设备触发SR之后,方法还包括:若终端设备有可用于传输第一逻辑信道的数据的上行资源,则终端设备取消SR。
通过该可能的实施方式提供的调度请求的处理方法,在已经触发了与第一逻辑信道相关联的SR之后,只要终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。节省了资源,避免了资源浪费,同时节省了终端耗电。
可选的,在第一方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
可选的,在第一方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据。
可选的,在第一方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用待传输数据。
第二方面,本申请实施例提供一种调度请求的处理方法,该方法包括:若终端设备有与第一逻辑信道相关联的SR被触发且还未被取消,则终端设备确定第一逻辑信道或者SR对应的SR配置。对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则终端设备在物理资源上发送SR。
通过第二方面提供的调度请求的处理方法,在已经触发了与第一逻辑信道相关联的SR之后,终端设备确定第一逻辑信道或SR对应的SR配置,并在满足预设条件时可以传输SR。本实施例提供的调度请求的处理方法,在SR被触发之后可以确保SR的及时传输,从而终端设备可以通过SR实现更快的请求上行资源来传输逻辑信道的数据,满足了逻辑信道承载的数据的QoS要求,提升了上行调度性能。
可选的,在第二方面的一种可能的实施方式中,与第一逻辑信道相关联的SR为:由于第一逻辑信道有新数据到达而触发的常规BSR所触发的SR。
可选的,在第二方面的一种可能的实施方式中,与第一逻辑信道相关联的SR为:由于BSR重传计时器超时而触发的常规BSR所触发的SR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,在第二方面的一种可能的实施方式中,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备在第一时间单元内没有任何可用的上行资源。或者,终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,在第二方面的一种可能的实施方式中,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,还包括:若终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则终端设备在第一时间单元内可用的上行资源上传输数据。
可选的,在第二方面的一种可能的实施方式中,方法还包括:若终端设备有可用于传输第一逻辑信道的数据的上行资源,则终端设备取消SR。
可选的,在第二方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
可选的,在第二方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用传输数据。
可选的,在第二方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用传输数据。
第三方面,本申请实施例提供一种调度请求的处理方法,该方法包括:终端设备确定是否有与第一逻辑信道相关联的SR被触发且还未被取消。若与第一逻辑信道相关联的SR被触发且还未被取消,且终端设备有可用于传输第一逻辑信道的数据的上行资源,则终端设备取消SR。
通过第三方面提供的调度请求的处理方法,在已经触发了与第一逻辑信道相关联的SR之后,只要终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。节省了资源,避免了资源浪费,同时节省了终端耗电。
第四方面,本申请实施例提供一种终端设备,包括:处理模块,用于确定是否有与第一逻辑信道相关联的常规BSR被触发且还未被取消。若与第一逻辑信道相关联的常规BSR被触发且还未被取消,且终端设备没有可用于传输第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行,则触发SR。其中,第一计时器用于延迟SR的传输。
可选的,在第四方面的一种可能的实施方式中,与第一逻辑信道相关联的常规BSR为:由于第一逻辑信道有新数据到达而触发的BSR。
可选的,在第四方面的一种可能的实施方式中,与第一逻辑信道相关联的常规BSR为:由于BSR重传计时器超时而触发的BSR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,在第四方面的一种可能的实施方式中,终端设备没有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,和/或,终端设备没有可用于传输第一逻辑信道的数据的第一类上行资源。其中,
可选的,在第四方面的一种可能的实施方式中,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备在第一时间单元内没有任何可用的上行资源。或者,终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,在第四方面的一种可能的实施方式中,终端设备没有可用于传输第一逻辑信道的数据的第一类上行资源,包括:终端设备没有任何可用的第一类上行资源。或者,终端设备有可用的第一类上行资源,但终端设备可用的第一类上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,在第四方面的一种可能的实施方式中,处理模块还用于:确定第一逻辑信道或SR对应的SR配置。
可选的,在第四方面的一种可能的实施方式中,还包括收发模块,收发模块用于:对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则在物理资源上发送SR。
可选的,在第四方面的一种可能的实施方式中,还包括收发模块,收发模块用于:对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则在物理资源上发送SR。
可选的,在第四方面的一种可能的实施方式中,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备在第一时间单元内没有任何可用的上行资源。或者,终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,在第四方面的一种可能的实施方式中,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,收发模块还用于:若终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则在第一时间单元内可用的上行资源上传输数据。
可选的,在第四方面的一种可能的实施方式中,处理模块还用于:若终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。
可选的,在第四方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
可选的,在第四方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据。
可选的,在第四方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用待传输数据。
第五方面,本申请实施例提供一种终端设备,包括:处理模块,用于若终端设备有与第一逻辑信道相关联的调度请求SR被触发且还未被取消,则确定第一逻辑信道或者SR对应的SR配置。收发模块,用于在每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则在物理资源上发送SR。
可选的,在第五方面的一种可能的实施方式中,与第一逻辑信道相关联的SR为:由于第一逻辑信道有新数据到达而触发的常规缓存状态报告BSR所触发的SR。
可选的,在第五方面的一种可能的实施方式中,与第一逻辑信道相关联的SR为:由于BSR重传计时器超时而触发的常规BSR所触发的SR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,在第五方面的一种可能的实施方式中,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备在第一时间单元内没有任何可用的上行资源。或者,终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,在第五方面的一种可能的实施方式中,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,收发模块还用于:若终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则在第一时间单元内可用的上行资源上传输数据。
可选的,在第五方面的一种可能的实施方式中,处理模块还用于:若终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。
可选的,在第五方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
可选的,在第五方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用传输数据。
可选的,在第五方面的一种可能的实施方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用传输数据。
第六方面,本申请实施例提供一种终端设备,包括:处理模块,用于确定是否有与第一逻辑信道相关联的调度请求SR被触发且还未被取消。若与第一逻辑信道相关联的SR被触发且还未被取消,且终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。
第七方面,本申请实施例提供一种终端设备,该终端设备包括处理器、存储器和收发器,存储器用于存储指令,收发器用于和其他设备通信,处理器用于执行存储器中存储的指令,以使终端设备执行上述第一方面、第二方面或者第三方面提供的调度请求的处理方法。
结合上述第一方面以及第一方面的各可能的实施方式、第二方面以及第二方面的各可能的实施方式、第三方面以及第三方面的各可能的实施方式、第四方面以及第四方面的各可能的实施方式、第五方面以及第五方面的各可能的实施方式、第六方面以及第六方面的各可能的实施方式、第七方面以及第七方面的各可能的实施方式,SR配置包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。第一类上行资源为网络设备通过无线资源控制层信令为终端设备配置的上行资源,或者为网络设备通过无线资源控制层信令为终端设备配置并通过物理层信令或媒体接入控制层信令激活的上行资源。
第八方面,本申请实施例提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现第一方面、第二方面或者第三方面提供的调度请求的处理方法。
第九方面,本申请实施例提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得终端设备实施第一方面、第二方面或者第三方面提供的调度请求的处理方法。
本申请第十方面提供一种芯片,所述芯片可应用于终端设备,所述芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,所述通信接口、存储器和处理器通过总线互联,所述处理器调用所述存储器中存储的计算机程序,以执行本申请第一方面、第二方面或者第三方面提供的调度请求的处理方法。
本申请实施例提供了一种调度请求的处理方法和终端设备。当终端设备有BSR被触发且还未取消、终端设备没有可用于传输与BSR相关联的第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行时,终端设备可以触发SR。从而通过SR实现更快的请求上行资源来传输逻辑信道的数据,满足了逻辑信道承载的数据的QoS要求。
附图说明
图1为本申请实施例所涉及的一种通信系统的框架图;
图2为现有的无法触发SR的场景示意图;
图3为本申请实施例一提供的调度请求的处理方法的流程图;
图4为本申请实施例一提供的触发SR的场景示意图;
图5为本申请实施例二提供的调度请求的处理方法的流程图;
图6为本申请实施例三提供的调度请求的处理方法的流程图;
图7为现有的无法传输SR的场景示意图;
图8为本申请实施例四提供的调度请求的处理方法的流程图;
图9为本申请实施例四提供的传输SR的场景示意图;
图10为本申请实施例六提供的调度请求的处理方法的流程图;
图11为现有的BSR重传的一种场景的示意图;
图12为现有的BSR重传的另一种场景的示意图;
图13为本申请实施例提供的终端设备的一种结构的结构示意图;
图14为本申请实施例提供的终端设备的另一种结构的结构示意图。
具体实施方式
图1为本申请实施例所涉及的一种通信系统的框架图。如图1所示,该通信系统包括:网络设备01和终端设备02。网络设备01和终端设备02可以进行上下行通信。其中,
网络设备01,可以为任一具有管理无线网络资源的设备,或者各种无线接入点。例如:可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G通信系统中的5G基站(g Node B,gNB)、无线收发设备(NeXt Node,NX),在此并不限定。
终端设备02,可以是手机、平板电脑等无线终端,该无线终端包括向用户提供语音和/或数据服务的设备,终端设备还可以是具有无线连接功能的手持设备、车载设备、可穿戴设备、计算设备,以及各种形式的用户设备UE、移动台(Mobile Station,MS)及终端(terminal),本申请实施例并不限定。
在LTE通信系统及其后续演进通信系统、未来5G通信系统及未来其他通信系统中,终端设备可以通过BSR和调度请求(scheduling request,SR)向网络设备请求上行调度。具体的,终端设备可以将BSR或者SR发送给网络设备。从而,网络设备可以基于终端设备发送的BSR或者SR向终端设备发送上行授权(UL grant),完成上行调度。
下面以LTE通信系统为例,对现有的上行调度过程中涉及的BSR的触发、BSR的重传、SR的触发、SR的传输、SR的取消进行简单的介绍。
1、BSR的触发
在LTE通信系统中,BSR的种类可以有多种,例如,常规BSR(regular BSR)、周期BSR(Periodic BSR)或者附加BSR(Padding BSR)。这里仅介绍常规BSR的触发。
触发常规BSR的条件通常包括如下三种。
1)终端设备的上行数据缓冲(buffer)为空且有新数据到达。
当所有逻辑信道组(Logical Channel Group,LCG)的所有逻辑信道都没有可发送的上行数据时,如果此时属于任意一个LCG的任意一个逻辑信道变得可以发送,则终端设备会触发常规BSR。
2)高优先级的数据到达。
如果终端设备有一个比当前有可用传输数据的逻辑信道有更高优先级且属于一个逻辑信道组的逻辑信道有数据需要到达,则终端设备会触发常规BSR。
3)当BSR重传计时器超时后,并且终端设备的任意一个LCG的任意一个逻辑信道里有数据可以发送时,将会触发常规BSR。
2、BSR的重传
在LTE通信系统中,为了防止BSR的丢失或者BSR的发送顺序和接收顺序不一致导致的网络设备错误理解终端设备的缓存状态,引入了BSR的重传机制。具体如下:
在终端设备侧维护一个BSR重传计时器,该计时器的长度可以与由网络设备配置。
当一个BSR被发送时,会启动或者重启BSR重传计时器。
当终端设备收到一个用于新数据传输的上行授权时,终端设备会重启BSR重传计时器。
当BSR重传计时器时,只要终端设备的任何一个属于一个LCG的逻辑信道有数据传输,那么终端设备会触发常规BSR。
3、SR的触发
在LTE通信系统中,当一个常规BSR被触发后,该常规BSR的状态即视为挂起(pending)状态。
在一个传输时间间隔(Time Transmission Inteveral,TTI)里面,当终端设备有pending的BSR时,如果终端设备在这个TTI里面有针对新数据传输的上行资源时,终端设备可以通过该上行资源来传输BSR。此时不触发SR。
否则,终端设备会进一步触发SR。
4、SR的传输
当一个SR被触发后,该SR的状态即视为挂起(pending)状态。在一个TTI里,如果终端设备没有上行共享信道(Uplink Shared Channel,UL-SCH)资源,那么终端设备会判断当前TTI是否有网络设备为其配置的用于传输SR的物理上行控制信道(Physical UplinkControl Channel,PUCCH)资源。如果有,同时该SR对应的SR禁止计时器没有在运行,终端设备的媒体接入控制(Media Access Control,MAC)层执行如下操作:
通知物理层去传输SR。
将用于记录SR传输次数的变量加1。
开启SR禁止计时器。
5、SR的取消
当满足如下条件时,处于pending状态的SR会被取消。
1)当一个传输的MAC PDU中包含一个BSR,而该BSR包含了直到触发BSR的最近一次事件时的缓存状态,则取消SR。
2)当一个传输的MAC PDU中包含了可用于传输的待传数据时,则取消SR。
在LTE通信系统中,仅有一个传输时间间隔TTI。因此,无论网络设备是基于终端设备发送的BSR来调度上行授权,还是基于终端设备发送的SR来调度上行授权,调度周期都是相同的。终端设备都可以及时获得可以传输上行数据的上行资源。
在未来5G通信系统中,数据在时间域上以时间单元为粒度进行传输。该时间单元可以是子帧、传输时间间隔(一个传输时间间隔等于若干个子帧长度的和,或者若干个传输时间间隔的和等于一个子帧长度)、时隙(slot)、多个时隙聚合、迷你时隙(mini-slot)、多个迷你时隙聚合、迷你时隙和时隙聚合、时域符号、多个时域符号等等。可见,未来5G通信系统中存在多种长度的时间单元。时间单元的长度与频率域上的子载波间隔相关。子载波间隔越小,时域符号越长。也就是说,在未来5G通信系统中存在多种传输参数集合。
在未来5G通信系统中,会出现网络设备无法及时为终端设备的逻辑信道分配与逻辑信道匹配的上行资源的问题,例如,终端设备通过对应第一传输参数集合的UL grant来传输BSR向网络设备上报某一个逻辑信道的上行调度信息,而所述第一传输参数集合对应的UL grant无法满足所述逻辑信道承载的数据的QoS需求,从而导致该逻辑信道承载的数据的时延要求和/或请求资源的控制信令的可靠性要求无法得到保证。在上行调度过程中的各个阶段都可能导致该问题。例如,BSR的重传、SR的触发、SR的传输,等等。
本申请实施例提供的调度请求的处理方法,可以适用于未来5G通信系统及未来其他通信系统,主要应用于上行数据调度。用于实现如何通过能够满足逻辑信道QoS需求的方式来向网络设备请求上行资源。
下面对本申请实施例涉及的数据调度过程中的相关概念进行简单的介绍。
QoS:一个终端设备可能会同时进行多种业务,每种业务具有相应的QoS要求。不同QoS需求的业务在传输时需要通过能够支持相应QoS需求的传输参数集合的上行授权来传输。
协议栈配置方式:协议栈(Protocol Stack)是指网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程。即,由上层协议到底层协议,再由底层协议到上层协议。作为实例而非限定,在本申请实施例中,无线通信所使用的协议栈可以包括以下至少一个协议层或多个协议层的组合:业务数据适配层协议(Service Data AdaptationProtocol,SDAP),分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路控制(Radio Link Control,RLC)层、媒体接入控制(Media Access Control,MAC)层、物理(Physical)层、无线资源管理(Radio Resource Control,RRC)层。其中,每层协议都可以存在多种协议实体以及定义的多种信道资源。
逻辑信道:MAC层在逻辑信道上提供数据传送业务,表示承载的内容是什么。网络设备会为终端设备配置逻辑信道可用的/可映射的传输参数集合。
逻辑信道组LCG:多个逻辑信道组成的集合,通常由网络设备配置。
上行资源:可以理解为上行传输信道UL-SCH或者上行物理信道PUSCH的资源,用于传输终端设备的数据。
物理资源:物理层的资源,包括时域资源和频域资源。
时间单元:在时间域上传输上层数据和/或物理控制信令的时间粒度。
传输参数集合:一个逻辑信道可用的/可映射的传输参数集合中的参数可以包含但不限于仅包含下列中的至少一项:子载波间隔、循环前缀长度、上行资源传输的时间长度、调度上行资源的控制信令与被调度的上行资源传输的时间间隔长度、上行资源所对应的终端设备的服务小区,等等。
SR配置:网络设备会为终端设备配置其每个逻辑信道可用的/可映射的传输参数集合以及每个逻辑信道可用的/可映射的SR配置。一个逻辑信道可以与一个或者多个SR配置相关联。所述SR配置的概念可以有以下情况:
1)所述SR配置中包含SR配置的标识、SR禁止计时器和SR最大传输次数,同时也包含用于确定传输SR所用的物理资源位置的参数。这种情况下,一个逻辑信道会关联/映射到至少一个SR配置。
2)所述SR配置中包含SR配置的标识、SR禁止计时器和SR最大传输次数,但不包含用于确定传输SR所用的物理资源位置的参数。用于确定传输SR所用的物理资源位置的参数包含在另外的SR相关配置中,例如该SR相关配置可以成为SR资源配置。
这种情况下,一个逻辑信道会关联/映射到至少一个SR配置,而一个SR配置又会关联/映射到至少一个SR资源配置。
根据终端设备发送的SR所对应的SR配置(如果是上述情况1)或者对应的SR资源配置(如果是上述情况2),以及SR配置或者SR资源配置与逻辑信道的关联/映射关系,网络设备可以知道终端设备当前需要何种传输参数集合对应的上行授权来传输数据。
此外,在本申请实施例中,在语言描述上,如下技术术语可以相互替换。可用的/映射的,所映射的/所关联的,上行资源/上行授权。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例一
本实施例应用于上行调度过程中的SR触发场景,涉及如何向网络设备请求上行资源以满足逻辑信道的数据的QoS需求。
图2为现有的无法触发SR的场景示意图。假设,终端设备配置了两个逻辑信道,分别为逻辑信道1(LCH1)和逻辑信道2(LCH2)。其中,
1)网络设备为终端设备配置的LCH1可用的/可映射的传输参数集合的取值为第一取值集合,且网络设备为LCH1配置的所映射的/关联的SR配置为第一SR配置。
2)网络设备为终端设备配置的LCH2可用的/可映射的传输参数集合的取值为第二取值集合,且网络设备为LCH2配置的所映射的/关联的SR配置为第二SR配置。
3)LCH2的优先级高于LCH1的优先级。
如图2所示,上行调度过程如下:
在时刻T0,LCH1的数据到达触发了一个常规BSR,标记为BSR1。由于终端设备没有可用的上行资源,所以BSR1可以触发与LCH1关联的SR,标记为SR1。终端设备将包含LCH1的LCG的缓冲大小(buffer size)上报给网络设备。此后,网络设备开始调度对应传输参数集合的取值为第一取值集合的上行资源/上行授权给终端设备。
在时刻T1,LCH2的数据到达触发了一个常规BSR,标记为BSR2。在时刻T1,终端设备有网络设备调度的对应传输参数集合的取值为第一取值集合的上行授权。因此,终端设备可以通过该上行授权将包含LCH2的LCG的缓冲大小上报给网络设备。网络设备收到BSR2后,可以根据BSR2开始调度对应传输参数集合的取值为第二取值集合的上行授权给终端设备。LCH2的数据的时延为:从时刻T1开始到终端设备收到网络设备发送的对应传输参数集合的取值为第二取值集合的上行授权为止的这段时间。时延很大。
在从时刻T1开始直到网络设备收到BSR2并向终端设备发送对应传输参数集合的取值为第二取值集合的上行授权的这段时间内,由于终端设备一直有网络设备调度的对应传输参数集合的取值为第一取值集合的上行授权,即调度LCH1的数据传输的上行授权,因此,根据现有的触发SR的条件,终端设备无法触发与LCH2关联的SR。
可见,在该场景下,尽管终端设备上报了BSR2,但是,LCH1可用的/可映射的传输参数集合的取值为第一取值集合,LCH2可用的/可映射的传输参数集合的取值为第二取值集合,两者并不相同。通过对应传输参数集合的取值为第一取值集合的上行授权传输BSR2来请求上行资源,会导致LCH2的上行数据传输的时延要求得不到满足。而终端设备又无法触发与LCH2关联的SR,因此无法通过发送与LCH2关联的SR来更快的请求上行资源。另一方面,通过传输参数集合的取值为第一取值集合的上行授权来传输BSR2从而来为LCH2请求上行资源,可能也无法满足LCH2对请求上行资源的控制信令的可靠性要求。
本实施例提供了一种调度请求的处理方法,用以解决当BSR被触发后,终端设备有上行资源来传输BSR,但是该上行资源与触发BSR的逻辑信道的传输参数不匹配,从而导致该逻辑信道承载的数据的时延要求和/或请求资源的控制信令的可靠性要求无法得到保证的技术问题。
图3为本申请实施例一提供的调度请求的处理方法的流程图。本实施例提供的调度请求的处理方法,执行主体可以为终端设备。如图3所示,本实施例提供的调度请求的处理方法,可以包括:
S101、终端设备确定是否有与第一逻辑信道相关联的常规BSR被触发且还未被取消。
具体的,一个常规BSR被触发后直至被取消前,该常规BSR的状态可以视为挂起(pending)状态。第一逻辑信道是指与被触发的常规BSR相关联的逻辑信道。常规BSR被触发的场景很多。第一逻辑信道可能是直接触发该常规BSR的那个逻辑信道,也可能不是直接触发该常规BSR的逻辑信道。在不同的触发常规BSR的场景下,第一逻辑信道可能有所不同。
当确定有与第一逻辑信道相关联的常规BSR被触发且还未被取消时,执行S102。
S102、若与第一逻辑信道相关联的常规BSR被触发且还未被取消,且终端设备没有可用于传输第一逻辑信道的数据的上行资源,则终端设备触发SR。
具体的,当同时满足2个条件时,可以触发与第一逻辑信道相关联的SR。这2个条件为:1)有与第一逻辑信道相关联的挂起状态的BSR;2)没有可用于传输第一逻辑信道的数据的上行资源。其中,第一逻辑信道的数据是指终端设备通过第一逻辑信道待传输的数据,或者称为可用传输数据(available data for transmission)。终端设备没有可用于传输第一逻辑信道的数据的上行资源,这里的“上行资源”是针对“第一逻辑信道”而言的。有上行资源或者没有上行资源,要确定是否可用于传输第一逻辑信道的数据。在另一个方面,这里的“上行资源”,可以理解为UL-SCH的资源和/或PUSCH的资源。
可选的,S102中终端设备触发SR还可以包括一个条件,终端设备的第一计时器没有运行,第一计时器用于延迟SR的传输。此时,若与第一逻辑信道相关联的常规BSR被触发且还未被取消,且终端设备没有可用于传输第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行,则终端设备可以触发SR。
在该种实现方式中,当同时满足3个条件时,可以触发与第一逻辑信道相关联的SR。这3个条件为:1)有与第一逻辑信道相关联的挂起状态的BSR;2)没有可用于传输第一逻辑信道的数据的上行资源;3)第一计时器没有运行。即,当第一计时器运行时,将无法触发SR。
对于图2所示场景,在时刻T1,LCH2的数据到达触发了一个常规BSR,标记为BSR2。满足了第1个条件。LCH2为第一逻辑信道。在时刻T1,终端设备有网络设备调度的对应传输参数集合的取值为第一取值集合的上行授权。但是,LCH2可用的/可映射的传输参数集合的取值为第二取值集合。虽然有上行授权,但是该上行授权对于LCH2来说是不可用的。满足了第2个条件。假设第一计时器没有运行,满足了第3个条件。所以,终端设备可以触发与LCH2相关联的SR,标记为SR2。具体的上行调度过程可以参见图4,图4为本申请实施例一提供的触发SR的场景示意图。网络设备收到SR2后,可以根据SR2快速开始调度对应传输参数集合的取值为第二取值集合的上行授权给终端设备。LCH2的数据的时延为:从时刻T1开始到终端设备收到网络设备发送的对应传输参数集合的取值为第二取值集合的上行授权为止的这段时间。相比于图2大大缩短了时延,满足了LCH2的上行数据传输的时延要求,同时满足了LCH2对请求上行资源的控制信令的可靠性要求。
可见,当终端设备有BSR被触发且还未取消、终端设备没有可用于传输与BSR相关联的第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行时,终端设备可以触发SR。从而通过SR实现更快的请求上行资源来传输第一逻辑信道的数据,满足了第一逻辑信道承载的数据的QoS要求,提升了上行调度性能。
可选的,终端设备没有可用于传输第一逻辑信道的数据的上行资源,可以包括:
终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,和/或,终端设备没有可用于传输第一逻辑信道的数据的第一类上行资源。
其中,第一类上行资源为网络设备通过无线资源控制层信令为终端设备配置的上行资源,或者为网络设备通过无线资源控制层信令为终端设备配置并通过物理层信令或媒体接入控制层信令激活的上行资源。
终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,这里的“上行资源”,可以包括第一类上行资源和第二类上行资源。其中,第二类上行资源可以包括网络设备通过终端设备专用的标识,例如小区无线网络临时标识(Cell-RadioNetwork Temporary Identifier,C-RNTI)加扰的PDCCH调度的上行授权。在另一个方面,这里的“上行资源”,可以理解为UL-SCH资源和/或PUSCH资源。
可选的,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,可以包括:
终端设备在第一时间单元内没有任何可用的上行资源;或者,
终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
具体的,终端设备在第一时间单元内没有任何可用的上行资源,或者,终端设备在第一时间单元内有可用的上行资源,这里的“上行资源”是针对“终端设备”而言的,可以包括第一类上行资源和第二类上行资源。可以理解,“终端设备可用的上行资源”与“可用于传输第一逻辑信道的数据的上行资源”是不同的。当终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同时,该上行资源对于“终端设备”来说是可用的,但是对于“第一逻辑信道”来说就是不可用的。在另一个方面,这里的“上行资源”,可以包括UL-SCH和PUSCH。
其中,传输参数集合中可以包括多个参数。只要有一个参数的取值不同,即为不同的传输参数集合。
可选的,终端设备没有可用于传输第一逻辑信道的数据的第一类上行资源,可以包括:
终端设备没有任何可用的第一类上行资源;或者,
终端设备有可用的第一类上行资源,但终端设备可用的第一类上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
具体的,终端设备没有任何可用的第一类上行资源,或者,终端设备有可用的第一类上行资源,这里仅涉及“第一类上行资源”。可以理解,“终端设备可用的第一类上行资源”与“可用于传输第一逻辑信道的数据的第一类上行资源”是不同的。在另一个方面,这里的“上行资源”,可以包括UL-SCH和PUSCH。
综上,终端设备没有可用于传输第一逻辑信道的数据的上行资源,至少可以包括如下的实现方式。
第一种实现方式:终端设备在第一时间单元内没有任何可用的上行资源。
第二种实现方式:终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
第三种实现方式:终端设备没有任何可用的第一类上行资源。
第四种实现方式:终端设备有可用的第一类上行资源,但终端设备可用的第一类上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
第五种实现方式:终端设备在第一时间单元内没有任何可用的上行资源,并且,终端设备没有任何可用的第一类上行资源。
第六种实现方式:终端设备在第一时间单元内没有任何可用的上行资源。并且,终端设备有可用的第一类上行资源,但终端设备可用的第一类上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
第七种实现方式:终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。并且,终端设备没有任何可用的第一类上行资源。
第八种实现方式:终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。并且,终端设备有可用的第一类上行资源,但终端设备可用的第一类上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,若终端设备没有可用于传输第一逻辑信道的数据的上行资源,但是与第一逻辑信道相关联的常规BSR能够被包含在通过所述上行资源传输的MAC PDU中时,也不取消所述与第一逻辑信道相关联的常规BSR。此时,终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。或者,终端设备有可用的第一类上行资源,但终端设备可用的第一类上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
需要说明,第一时间单元可以有多种实现方式,下面通过具体示例详细说明第一时间单元。当然,本实施例中的第一时间单元可以包括但不限定仅有下列的实现方式。而且,本实施例中的其他时间单元,与第一时间单元相似,也可以包括但不限定仅有下列的实现方式。
第一种实现方式:一个默认/预定义的时间长度,例如该时间长度可以为某个参考的子载波间隔所对应的符号长度组成的一个时隙(Slot)的时间长度。所述参考的子载波间隔例如可以为15KHz的子载波间隔。
第二种实现方式:终端设备接收到的上行资源对应的传输时间长度。不同的上行资源可能会使用不同的子载波间隔。因此对应的一个符号的长度可能不相同。而不同上行资源占用的符号个数可能也不同。因此终端设备会接收到传输长度不同的上行资源。
第三种实现方式:调度终端设备的上行资源的下行控制信令对应的传输时间长度。不同的下行控制信令可能会使用不同的子载波间隔。因此对应的一个符号的长度可能不相同。而不同的下行控制信令传输时占用的符号个数可能也不同。因此,终端设备会接收到传输长度不同的下行控制信令。
第四种实现方式:第一逻辑信道可用的/映射的传输参数集合中的子载波间隔所对应的符号长度组成的一个默认/预定义的时间长度。例如,可以为子载波间隔所对应的符号长度组成的一个时隙的时间长度。
第五种实现方式:第一逻辑信道可用的/映射的传输参数集合中的子载波间隔所对应的符号长度和所述逻辑信道的数据传输占用的默认符号数所确定的时间长度。
第六种实现方式:第一逻辑信道可用的/映射的传输参数中的子载波间隔所对应的一个符号的长度。
第七种实现方式:第一逻辑信道所映射的/关联的SR配置中配置的传输SR的物理资源使用的子载波间隔所对应的符号长度组成的一个默认/预定义的时间长度。
第八种实现方式:第一逻辑信道所映射的/关联的SR配置中配置的传输SR的物理资源使用的子载波间隔所对应的符号长度和占用的符号数所确定的时间长度。
第九种实现方式:第一逻辑信道所映射的/关联的SR配置中配置的传输SR的物理资源使用的子载波间隔所对应的一个符号的长度。
可选的,作为一种实现方式,与第一逻辑信道相关联的常规BSR可以为:
由于第一逻辑信道有新数据到达而触发的BSR。
具体的,当终端设备当前配置的一个逻辑信道有数据到达时,如果根据BSR的触发条件可以触发一个常规BSR。该逻辑信道即为第一逻辑信道。可以参见图2或者图4。
可选的,第一逻辑信道属于一个逻辑信道组。
可选的,作为另一种实现方式,与第一逻辑信道相关联的常规BSR可以为:
由于BSR重传计时器超时而触发的BSR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,作为另一种实现方式,与第一逻辑信道相关联的常规BSR可以为:
由于BSR重传计时器超时而触发的BSR,且第一逻辑信道为终端设备当前所有第二逻辑信道中关联的传输参数集合中的如下两个参数的任意一个取值最短的逻辑信道。
参数1:传输上行资源传输的时间长度。
参数2:调度上行资源的控制信令与被调度的上行资源传输的时间间隔长度。
其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
需要说明,BSR重传计时器的作用和原理可以与现有通信系统中的BSR重传计时器相同。
本实施例提供了一种调度请求的处理方法,包括:终端设备确定是否有与第一逻辑信道相关联的常规BSR被触发且还未被取消,若与第一逻辑信道相关联的常规BSR被触发且还未被取消,且终端设备没有可用于传输第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行,则终端设备触发SR。本实施例提供的调度请求的处理方法,在BSR被触发之后还未取消之前,如果终端设备没有可用于传输与BSR相关联的逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行时,终端设备可以通过触发SR实现更快的请求上行资源来传输逻辑信道的数据,满足了逻辑信道承载的数据的QoS要求,提升了上行调度性能。
实施例二
本实施例应用于上行调度过程中的SR传输场景,在上述图3所示实施例一的基础上,涉及在已经触发了SR之后如何进行SR的传输。
图5为本申请实施例二提供的调度请求的处理方法的流程图。如图5所示,本实施例提供的调度请求的处理方法,在S102之后,还可以包括:
S201、终端设备确定第一逻辑信道或触发的SR对应的SR配置。
其中,SR配置可以包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。
所述SR配置的概念可以有以下情况:
1)所述SR配置中包含SR配置的标识、SR禁止计时器和SR最大传输次数,同时也包含用于确定传输SR所用的物理资源位置的参数。这种情况下,一个逻辑信道会关联/映射到至少一个SR配置。
2)所述SR配置中包含SR配置的标识、SR禁止计时器和SR最大传输次数,但不包含用于确定传输SR所用的物理资源位置的参数。用于确定传输SR所用的物理资源位置的参数包含在另外的SR相关配置中,例如该SR相关配置可以成为SR资源配置。这种情况下,一个逻辑信道会关联/映射到至少一个SR配置,而一个SR配置又会关联/映射到至少一个SR资源配置。
以下描述中的SR配置可以理解为上述情况1)对应的SR配置,也可以理解为上述情况2)对应的SR资源配置。
具体的,在触发与第一逻辑信道相关联的SR之后,该SR的状态可以视为挂起(pending)状态。终端设备确定传输该SR使用的SR配置为与第一逻辑信道相关联的SR配置。举例说明,参见图4,终端设备触发了与LCH2相关联的SR2,终端设备可以确定LCH2或SR2对应的SR配置为第二SR配置。
其中,SR配置的标识用于唯一区分不同的SR配置。SR禁止计时器在运行时,无法进行SR的传输。SR最大传输次数指示了可以发送SR的次数的最大值。用于确定传输SR所用的物理资源位置的参数,包括可以确定传输SR所用的物理资源位置的相关参数。其中,物理资源是指时域资源和频率资源。在另一个方面,物理资源可以包括PUCCH。
可选的,本实施例提供的调度请求的处理方法,在一种实现方式中,还可以包括:
对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,终端设备在物理资源上发送SR。
具体的,当同时满足3个条件时,终端设备可以传输与第一逻辑信道相关联的SR。这3个条件为:1)对于每个第一时间单元,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源;2)对于每个第一时间单元,终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源;3)SR禁止计时器没有运行。举例说明,参见图4,在时刻T1,终端设备有对应传输参数集合的取值为第一取值集合的上行授权,但是该上行授权对于LCH2不可用,满足了第1个条件。终端设备在第一时间单元和第二时间单元时间上重叠的时间内有第二SR配置对应的用于传输SR2的物理资源,即图4中指示的物理资源,满足了第2个条件。假设SR禁止计时器没有运行,满足了第3个条件。所以,终端设备可以在物理资源上发送SR2。
其中,“第一时间单元”是针对“挂起状态的常规BSR”而言的,用于指示常规BSR被触发后直至被取消过程中的全部或者部分时间。“第二时间单元”是针对“SR”而言的。第一时间单元和第二时间单元在时间上有重叠的时间,可以包括:1)第一时间单元和第二时间单元为相同的时间单元;2)第一时间单元和第二时间单元为两个时间单元,并且,第一时间单元指示的时间长度与第二时间单元指示的时间长度相同。也可以理解为,第一时间单元和第二时间单元在时间上完全重叠;3)第一时间单元和第二时间单元为两个时间单元,并且,第一时间单元指示的时间长度大于第二时间单元指示的时间长度,或者,第二时间单元指示的时间长度大于第一时间单元指示的时间长度。也可以理解为,第一时间单元和第二时间单元在时间上为一个时间单元指示的时间长度完全覆盖另一个时间单元指示的时间长度;4)第一时间单元和第二时间单元为两个时间单元,并且,第一时间单元指示的时间长度与第二时间单元指示的时间长度部分重叠,或者,第二时间单元指示的时间长度与第一时间单元指示的时间长度部分重叠。也可以理解为,第一时间单元和第二时间单元在时间上为一个时间单元指示的时间长度部分覆盖另一个时间单元指示的时间长度。
可选的,在本实现方式中,终端设备在确定是否可以传输与第一逻辑信道相关联的SR时,除了上述3个条件外,进一步还包含第4条件:即所述第一时间单元和或第二时间单元不属于测量间隔(Measurement Gap)的一部分。
需要说明,第二时间单元可以有多种实现方式,其实现方式的技术原理与图3所示实施例一中第一时间单元相似,此处不再赘述。
可选的,本实施例提供的调度请求的处理方法,在另一种实现方式中,还可以包括:
对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,终端设备在物理资源上发送SR。
具体的,当同时满足3个条件时,终端设备可以传输与第一逻辑信道相关联的SR。这3个条件为:1)对于每个第一时间单元,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源;2)终端设备在第一时间单元内有SR配置对应的用于传输SR的物理资源;3)SR禁止计时器没有运行。在该种实现方式中,仅有第一时间单元这一个时间单元。
可选的,在本实现方式中,终端设备在确定是否可以传输与第一逻辑信道相关联的SR时,除了上述3个条件外,进一步还包含第4条件:即所述第一时间单元和或第二时间单元不属于测量间隔(Measurement Gap)的一部分。
可选的,本实施例提供的调度请求的处理方法,在另一种实现方式中,还可以包括:
对于每个第二时间单元,若终端设备在第一时间单元和第二时间单元时间上重叠的时间内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第二时间单元时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则终端设备在物理资源上发送SR。
所述第一时间单元和所述第二时间单元的含义同上所述。
可选的,在本实现方式中,终端设备在确定是否可以传输与第一逻辑信道相关联的SR时,除了上述3个条件外,还可以进一步包含第4条件:即所述第一时间单元和或第二时间单元不属于测量间隔(Measurement Gap)的一部分。
可选的,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,可以包括:
终端设备在第一时间单元内没有任何可用的上行资源。或者,
终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
其技术原理与图3所示实施例相似,此处不再赘述。
可选的,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,在一种实现方式中,还可以包括:
若终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,终端设备在第一时间单元内可用的上行资源上传输数据。
具体的,第一物理信道和第二物理信道为不同的两个物理信道,分别用于传输数据和上行控制信息。例如,第一物理信道可以为PUSCH,第二物理信道可以为PUCCH。终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,即,终端设备可以在第一物理信道上传输上层数据,同时,也可以在第二物理信道上传输上行控制信息。此时,终端设备在物理资源上发送与第一逻辑信道相关联的SR,同时,终端设备在上行资源上发送数据。举例说明,参见图4,终端设备可以在LCH2的SR资源上传输SR2,同时,可以在LCH1的上行资源上传输BSR2和LCH1的数据。
这里的“数据”包括物理层以上的各种用户面数据和控制面数据以及MAC,RLC,PDCP,SDAP层产生的控制信令。
通过终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,可以提升数据传输效率和资源利用率。
可选的,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,在另一种实现方式中,还可以包括:终端设备不在第一时间单元内可用的上行资源上传输数据,而仅在物理资源上发送SR。
具体的,由于终端设备不支持同时在第一物理信道和第二物理信道上的并行传输,因此仅在物理资源上发送SR,以确保上行资源的及时调度来满足第一逻辑信道的数据的QoS需求。
可选的,终端设备不在第一时间单元内可用的上行资源上传输数据,而仅在物理资源上发送SR,在一种实现方式中,可以包括:
终端设备的MAC层通知PHY层在可用的物理资源上向网络设备发送SR,而MAC层不通知PHY层在可用的PUSCH资源上向网络设备发送数据。
可选的,终端设备不在第一时间单元内可用的上行资源上传输数据,而仅在物理资源上发送SR,在另一种实现方式中,可以包括:
终端设备的MAC层通知PHY层在可用的物理资源上向网络设备发送SR,并在可用的PUSCH资源上向网络设备发送数据。这里的数据可以理解为传输块(Transport Block)。
终端设备的PHY层在可用的物理资源上向网络设备发送SR,而不在可用的PUSCH资源上向网络设备发送数据。PHY层直接丢弃从MAC层收到的数据。
可选的,终端设备不在第一时间单元内可用的上行资源上传输数据,而仅在物理资源上发送SR,在又一种实现方式中,可以包括:
终端设备的MAC层通知PHY层在可用的PUSCH资源上向网络设备发送数据。
终端设备的PHY层在可用的PUSCH资源上向网络设备发送数据。
在PHY传输所述数据的过程中,PHY层收到了MAC层递交的传输所述SR的通知或指示。此时,终端设备的PHY层在可用的物理资源上向网络设备发送SR而对所述正通过PUSCH传输的数据,PHY层可以采取如下两种处理措施。
处理措施一:物理层直接放弃所述数据的传输;
处理措施二:物理层对所述传输的数据进行打孔处理。具体为在与传输的SR重叠的时间内对传输的数据进行打孔处理(Puncture)。
本实施例提供了一种调度请求的处理方法,在已经触发了与第一逻辑信道相关联的SR之后,终端设备确定第一逻辑信道或SR对应的SR配置。本实施例提供的调度请求的处理方法,在SR被触发之后可以确保SR的及时传输,从而终端设备可以通过SR实现更快的请求上行资源来传输逻辑信道的数据,满足了逻辑信道承载的数据的QoS要求,提升了上行调度性能。
实施例三
本实施例应用于上行调度过程中的SR取消场景,在上述实施例一或者实施例二的基础上,涉及在已经触发了SR之后如何取消SR。
图6为本申请实施例三提供的调度请求的处理方法的流程图。如图6所示,本实施例提供的调度请求的处理方法,在S102之后,还可以包括:
S301、若终端设备有可用于传输第一逻辑信道的数据的上行资源,则终端设备取消SR。
具体的,在终端设备触发与第一逻辑信道相关联的SR之后,只要终端设备有可用于传输第一逻辑信道的数据的上行资源,均可以取消SR。从而节省资源,节省终端耗电,同时避免网络设备造成重复调度和调度错误,造成资源浪费。
可选的,在一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,可以包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
可选的,在另一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据。
可选的,在又一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用待传输数据。
其中,传输参数集合中可以包括多个参数。只有所有参数的取值均相同,才为相同的传输参数集合。
本实施例提供了一种调度请求的处理方法,在已经触发了与第一逻辑信道相关联的SR之后,只要终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。节省了资源,避免了资源浪费,同时节省了终端耗电。
实施例四
本实施例应用于上行调度过程中的SR传输场景,涉及在已经触发了SR之后如何进行SR的传输以满足逻辑信道的数据的QoS需求。
图7为现有的无法传输SR的场景示意图。其中,逻辑信道的配置可以参见图2。
如图7所示,上行调度过程如下:
在时刻T0,LCH1的数据到达触发了一个常规BSR,标记为BSR1。由于终端设备没有可用的上行资源,所以BSR1可以触发与LCH1关联的SR,标记为SR1。终端设备将包含LCH1的LCG的缓冲大小(buffer size)上报给网络设备。此后,网络设备开始调度对应传输参数集合的取值为第一取值集合的上行资源/上行授权给终端设备。
在时刻T1,LCH2的数据到达触发了一个常规BSR,标记为BSR2。在时刻T1,网络设备没有为终端设备调度任何的上行授权。因此,终端设备会触发与LCH2关联的SR,标记为SR2。LCH2所映射/关联的SR配置对应的可用于发送SR2的物理资源的下一个最早出现的时刻为时刻T3。但是在从时刻T2直到网络设备收到包含BSR2并发送对应传输参数集合的取值为第二取值集合的上行授权这段时间内,由于终端设备一直有网络设备调度的对应传输参数集合的取值为第一取值集合的上行授权,即调度LCH1的数据传输的上行授权。因此终端设备无法发送由于LCH2有数据到达而触发的SR2。当上述情况发生时,尽管终端设备上报了BSR2,但是通过对应传输参数集合的取值为第一取值集合的上行授权传输BSR2来请求上行资源,无法满足LCH2的时延要求,而终端设备又不能发送与LCH2相关联的SR2来更快的请求上行资源。因此会导致LCH2的上行数据传输的时延要求得不到满足。另一方面,通过传输参数集合的取值为第一取值集合的上行授权来传输BSR2从而来为LCH2请求上行资源,可能也无法满足LCH2对请求上行资源的控制信令的可靠性要求。
本实施例提供了一种调度请求的处理方法,用以解决当SR被触发后由于SR无法传输而导致的逻辑信道承载的数据的时延要求和/或请求资源的控制信令的可靠性要求无法得到保证的技术问题。
图8为本申请实施例四提供的调度请求的处理方法的流程图。本实施例提供的调度请求的处理方法,执行主体可以为终端设备。如图8所示,本实施例提供的调度请求的处理方法,可以包括:
S401、若终端设备有与第一逻辑信道相关联的SR被触发且还未被取消,终端设备确定第一逻辑信道或者所述SR对应的SR配置。
其中,SR配置包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。
所述SR配置的概念可以有以下情况:
1)所述SR配置中包含SR配置的标识、SR禁止计时器和SR最大传输次数,同时也包含用于确定传输SR所用的物理资源位置的参数。这种情况下,一个逻辑信道会关联/映射到至少一个SR配置。
2)所述SR配置中包含SR配置的标识、SR禁止计时器和SR最大传输次数,但不包含用于确定传输SR所用的物理资源位置的参数。用于确定传输SR所用的物理资源位置的参数包含在另外的SR相关配置中,例如该SR相关配置可以成为SR资源配置。这种情况下,一个逻辑信道会关联/映射到至少一个SR配置,而一个SR配置又会关联/映射到至少一个SR资源配置。
以下描述中的SR配置可以理解为上述情况1)对应的SR配置,也可以理解为上述情况2)对应的SR资源配置。
具体的,与第一逻辑信道相关联的SR被触发之后,该SR的状态可以视为挂起(pending)状态。第一逻辑信道是指与被触发的SR相关联的逻辑信道。如果终端设备有与第一逻辑信道相关联的SR被触发且还未被取消,终端设备确定第一逻辑信道或者SR对应的SR配置。举例说明,在图7所示场景中,终端设备触发了与LCH2相关联的SR2,终端设备可以确定LCH2或SR2对应的SR配置为第二SR配置。
其中,SR配置的标识用于唯一区分不同的SR配置。SR禁止计时器在运行时,无法进行SR的传输。SR最大传输次数指示了可以发送SR的次数的最大值。用于确定传输SR所用的物理资源位置的参数,包括可以确定传输SR所用的物理资源位置的相关参数。其中,物理资源是指时域资源和频率资源。在另一个方面,物理资源为PUCCH信道上的物理资源。
需要说明,SR被触发的场景很多。本申请实施例并不限定SR是如何触发的。例如,可以参见图3所示实施例中SR的触发条件。也可以为现有通信系统中的任意可以被触发的SR。
S402、对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,终端设备在物理资源发送SR。
具体的,当同时满足3个条件时,终端设备可以传输与第一逻辑信道相关联的SR。这3个条件为:1)对于每个第一时间单元,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源;2)对于每个第一时间单元,终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源;3)SR禁止计时器没有运行。具体的传输SR的过程可以参见图9,图9为本申请实施例四提供的传输SR的场景示意图。终端设备确定SR2对应的SR配置为第二SR配置。终端设备可以在第二SR配置对应的用于传输SR2的物理资源上发送SR2。相比于图7大大缩短了时延,满足了LCH2的上行数据传输的时延要求,同时满足了LCH2对请求上行资源的控制信令的可靠性要求。
其中,第一时间单元和第二时间单元在时间上有重叠的时间,可以包括:1)第一时间单元和第二时间单元为相同的时间单元;2)第一时间单元和第二时间单元为两个时间单元,并且,第一时间单元指示的时间长度与第二时间单元指示的时间长度相同。也可以理解为,第一时间单元和第二时间单元在时间上完全重叠;3)第一时间单元和第二时间单元为两个时间单元,并且,第一时间单元指示的时间长度大于第二时间单元指示的时间长度,或者,第二时间单元指示的时间长度大于第一时间单元指示的时间长度。也可以理解为,第一时间单元和第二时间单元在时间上为一个时间单元指示的时间长度完全覆盖另一个时间单元指示的时间长度;4)第一时间单元和第二时间单元为两个时间单元,并且,第一时间单元指示的时间长度与第二时间单元指示的时间长度部分重叠,或者,第二时间单元指示的时间长度与第一时间单元指示的时间长度部分重叠。也可以理解为,第一时间单元和第二时间单元在时间上为一个时间单元指示的时间长度部分覆盖另一个时间单元指示的时间长度。
可选的,若第一时间单元和第二时间单元为相同的时间单元,则S402可以描述为:
对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,终端设备在物理资源上发送SR。
可选的,在本实现方式中,终端设备在确定是否可以传输与第一逻辑信道相关联的SR时,除了上述3个条件外,还可以进一步包含第4条件:即所述第一时间单元和/或第二时间单元不属于测量间隔(Measurement Gap)的一部分。
可选的,本实施例提供的调度请求的处理方法,在另一种实现方式中,还可以包括:
对于每个第二时间单元,若终端设备在第一时间单元和第二时间单元时间上重叠的时间内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第二时间单元时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,终端设备在物理资源上发送SR。
可选的,在本实现方式中,终端设备在确定是否可以传输与第一逻辑信道相关联的SR时,除了上述3个条件外,还可以进一步包含第4条件:即所述第一时间单元和或第二时间单元不属于测量间隔(Measurement Gap)的一部分。
可见,本实施例提供的调度请求的处理方法,当终端设备有与第一逻辑信道相关联的SR被触发且还未被取消,终端设备可以确定第一逻辑信道或者SR对应的SR配置,并在满足条件时在物理资源上发送SR。从而通过SR实现更快的请求上行资源来传输第一逻辑信道的数据,满足了第一逻辑信道承载的数据的QoS要求,提升了上行调度性能。
需要说明,第一时间单元和第二时间单元可以有多种实现方式,下面通过具体示例详细说明。当然,本实施例中的时间单元可以包括但不限定仅有下列的实现方式。
第一种实现方式:一个默认/预定义的时间长度,例如该时间长度可以为某个参考的子载波间隔所对应的符号长度组成的一个时隙(Slot)的时间长度。所述参考的子载波间隔例如可以为15KHz的子载波间隔。
第二种实现方式:终端设备接收到的上行资源对应的传输时间长度。不同的上行资源可能会使用不同的子载波间隔。因此对应的一个符号的长度可能不相同。而不同上行资源占用的符号个数可能也不同。因此终端设备会接收到传输长度不同的上行资源。
第三种实现方式:调度终端设备的上行资源的下行控制信令对应的传输时间长度。不同的下行控制信令可能会使用不同的子载波间隔。因此对应的一个符号的长度可能不相同。而不同的下行控制信令传输时占用的符号个数可能也不同。因此,终端设备会接收到传输长度不同的下行控制信令。
第四种实现方式:第一逻辑信道可用的/映射的传输参数集合中的子载波间隔所对应的符号长度组成的一个默认/预定义的时间长度。例如,可以为子载波间隔所对应的符号长度组成的一个时隙的时间长度。
第五种实现方式:第一逻辑信道可用的/映射的传输参数集合中的子载波间隔所对应的符号长度和所述逻辑信道的数据传输默认的占用符号数所确定的时间长度。
第六种实现方式:第一逻辑信道可用的/映射的传输参数中的子载波间隔所对应的一个符号的长度。
第七种实现方式:第一逻辑信道所映射的/关联的SR配置中配置的传输SR的物理资源使用的子载波间隔所对应的符号长度组成的一个默认/预定义的时间长度。
第八种实现方式:第一逻辑信道所映射的/关联的SR配置中配置的传输SR的物理资源使用的子载波间隔所对应的符号长度和占用的符号数所确定的时间长度。
第九种实现方式:第一逻辑信道所映射的/关联的SR配置中配置的传输SR的物理资源使用的子载波间隔所对应的一个符号的长度。
可选的,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,可以包括:
终端设备在第一时间单元内没有任何可用的上行资源。或者,
终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
具体的,终端设备在第一时间单元内没有任何可用的上行资源,或者,终端设备在第一时间单元内有可用的上行资源,这里的“上行资源”是针对“终端设备”而言的,可以包括第一类上行资源和第二类上行资源。可以理解,“终端设备可用的上行资源”与“可用于传输第一逻辑信道的数据的上行资源”是不同的。当终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同时,该上行资源对于“终端设备”来说是可用的,但是对于“第一逻辑信道”来说就是不可用的。在另一个方面,这里的“上行资源”,可以包括UL-SCH和PUSCH。
其中,第一类上行资源为网络设备通过无线资源控制层信令为终端设备配置的上行资源,或者为网络设备通过无线资源控制层信令为终端设备配置并通过物理层信令或媒体接入控制层信令激活的上行资源。第二类上行资源可以包括网络设备调度的上行授权。
其中,传输参数集合中可以包括多个参数。只要有一个参数的取值不同,即为不同的传输参数集合。
可选的,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,在一种实现方式中,还可以包括:
若终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,终端设备在第一时间单元内可用的上行资源上传输数据。
具体的,第一物理信道和第二物理信道为不同的两个物理信道,分别用于传输数据和上行控制信息。例如,第一物理信道可以为PUSCH,第二物理信道可以为PUCCH。终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,即,终端设备可以在第一物理信道上传输上层数据,同时,也可以在第二物理信道上传输上行控制信息。此时,终端设备在物理资源上发送与第一逻辑信道相关联的SR,同时,终端设备在上行资源上发送数据。举例说明,参见图4,终端设备可以在LCH2的SR资源上传输SR2,同时,可以在LCH1的上行资源上传输BSR2和LCH1的数据。
这里的“数据”包括物理层以上的各种用户面数据和控制面数据以及MAC,RLC,PDCP,SDAP层产生的控制信令。
通过终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,可以提升数据传输效率和资源利用率。
可选的,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,在另一种实现方式中,还可以包括:终端设备不在第一时间单元内可用的上行资源上传输数据,而仅在物理资源上发送SR。
具体的,由于终端设备不支持同时在第一物理信道和第二物理信道上的并行传输,因此仅在物理资源上发送SR,以确保上行资源的及时调度来满足第一逻辑信道的数据的QoS需求。
可选的,终端设备不在第一时间单元内可用的上行资源上传输数据,而仅在物理资源上发送SR,在一种实现方式中,可以包括:
终端设备的MAC层通知PHY层在可用的物理资源上向网络设备发送SR,而MAC层不通知PHY层在可用的PUSCH资源上向网络设备发送数据。
可选的,终端设备不在第一时间单元内可用的上行资源上传输数据,而仅在物理资源上发送SR,在另一种实现方式中,可以包括:
终端设备的MAC层通知PHY层在可用的物理资源上向网络设备发送SR,并在可用的PUSCH资源上向网络设备发送数据。这里的数据可以理解为传输块(Transport Block)。
终端设备的PHY层在可用的物理资源上向网络设备发送SR,而不在可用的PUSCH资源上向网络设备发送数据。PHY层直接丢弃从MAC层收到的数据。
可选的,终端设备不在第一时间单元内可用的上行资源上传输数据,而仅在物理资源上发送SR,在又一种实现方式中,可以包括:
终端设备的MAC层通知PHY层在可用的PUSCH资源上向网络设备发送数据。
终端设备的PHY层在可用的PUSCH资源上向网络设备发送数据。
在PHY传输所述数据的过程中,PHY层收到了MAC层递交的传输所述SR的通知或指示。此时,终端设备的PHY层在可用的物理资源上向网络设备发送SR而对所述正通过PUSCH传输的数据,PHY层可以采取如下两种处理措施。
处理措施一:物理层直接放弃所述数据的传输;
处理措施二:物理层对所述传输的数据进行打孔处理。具体为在与传输的SR重叠的时间内对传输的数据进行打孔处理(Puncture)。
可选的,作为一种实现方式,与第一逻辑信道相关联的SR为:
由于第一逻辑信道有新数据到达而触发的常规BSR所触发的SR。
具体的,当终端设备当前配置的一个逻辑信道有数据到达时,如果根据BSR的触发条件可以触发一个常规BSR。该常规BSR可能触发与该逻辑信道相关联的SR。该逻辑信道即为第一逻辑信道。
可选的,第一逻辑信道属于一个逻辑信道组。
可选的,作为另一种实现方式,与第一逻辑信道相关联的SR为:
由于BSR重传计时器超时而触发的常规BSR所触发的SR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道;其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,作为另一种实现方式,与第一逻辑信道相关联的常规BSR可以为:
由于BSR重传计时器超时而触发的BSR,且第一逻辑信道为终端设备当前所有第二逻辑信道中关联的传输参数集合中的如下两个参数的任意一个取值最短的逻辑信道。
参数1:传输上行资源传输的时间长度。
参数2:调度上行资源的控制信令与被调度的上行资源传输的时间间隔长度。
其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
本实施例提供的调度请求的处理方法,相关技术原理和技术效果还可以参照上述实施例二,在此不再赘述。
本实施例提供了一种调度请求的处理方法,在已经触发了与第一逻辑信道相关联的SR之后,终端设备确定第一逻辑信道或SR对应的SR配置。本实施例提供的调度请求的处理方法,在SR被触发之后可以确保SR的及时传输,从而终端设备可以通过SR实现更快的请求上行资源来传输逻辑信道的数据,满足了逻辑信道承载的数据的QoS要求,提升了上行调度性能。
实施例五
本实施例应用于上行调度过程中的SR取消场景,在上述实施例四的基础上,涉及在已经触发了SR之后如何取消SR。
本实施例提供的调度请求的处理方法,还可以包括:
若终端设备有可用于传输第一逻辑信道的数据的上行资源,则终端设备取消SR。
具体的,在终端设备触发与第一逻辑信道相关联的SR之后,只要终端设备有可用于传输第一逻辑信道的数据的上行资源,均可以取消SR。从而节省资源,节省终端耗电,同时避免网络设备造成重复调度和调度错误,造成资源浪费。
可选的,在一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,可以包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
可选的,在另一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据。
可选的,在又一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用待传输数据。
其中,传输参数集合中可以包括多个参数。只有所有参数的取值均相同,才为相同的传输参数集合。
本实施例提供的调度请求的处理方法,相关技术原理和技术效果还可以参照上述实施例三,在此不再赘述。
本实施例提供了一种调度请求的处理方法,在已经触发了与第一逻辑信道相关联的SR之后,只要终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。节省了资源,避免了资源浪费,同时节省了终端耗电。
实施例六
本实施例应用于上行调度过程中的SR取消场景,涉及在已经触发了SR之后如何取消SR。
图10为本申请实施例六提供的调度请求的处理方法的流程图。本实施例提供的调度请求的处理方法,执行主体可以为终端设备。如图10所示,本实施例提供的调度请求的处理方法,可以包括:
S501、终端设备确定是否有与第一逻辑信道相关联的SR被触发且还未被取消。
若终端设备确定有与第一逻辑信道相关联的SR被触发且还未被取消,则执行S502。
S502、若与第一逻辑信道相关联的SR被触发且还未被取消,且终端设备有可用于传输第一逻辑信道的数据的上行资源,则终端设备取消SR。
具体的,与第一逻辑信道相关联的SR被触发之后,只要终端设备有可用于传输第一逻辑信道的数据的上行资源,均可以取消SR。从而节省资源,节省终端耗电,同时避免网络设备造成重复调度和调度错误,造成资源浪费。
可选的,在一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,可以包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
具体的,终端设备有可用的上行资源,这里的“上行资源”是针对“终端设备”而言的,可以包括第一类上行资源和第二类上行资源。可以理解,“终端设备可用的上行资源”与“可用于传输第一逻辑信道的数据的上行资源”是不同的。当终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同时,该上行资源对于“终端设备”来说是可用的,但是对于“第一逻辑信道”来说就是不可用的。在另一个方面,这里的“上行资源”,可以包括UL-SCH和PUSCH。
其中,第一类上行资源为网络设备通过无线资源控制层信令为终端设备配置的上行资源,或者为网络设备通过无线资源控制层信令为终端设备配置并通过物理层信令或媒体接入控制层信令激活的上行资源。第二类上行资源可以包括网络设备调度的上行授权。
其中,传输参数集合中可以包括多个参数。只有所有参数的取值均相同,才为相同的传输参数集合。
可选的,在另一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据。
可选的,在又一种实现方式中,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用待传输数据。
可选的,作为一种实现方式,与第一逻辑信道相关联的SR为:
由于第一逻辑信道有新数据到达而触发的常规BSR所触发的SR。
具体的,当终端设备当前配置的一个逻辑信道有数据到达时,如果根据BSR的触发条件可以触发一个常规BSR。该常规BSR可能触发与该逻辑信道相关联的SR。该逻辑信道即为第一逻辑信道。
可选的,第一逻辑信道属于一个逻辑信道组。
可选的,作为另一种实现方式,与第一逻辑信道相关联的SR为:
由于BSR重传计时器超时而触发的常规BSR所触发的SR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道;其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,作为另一种实现方式,与第一逻辑信道相关联的常规BSR可以为:
由于BSR重传计时器超时而触发的BSR,且第一逻辑信道为终端设备当前所有第二逻辑信道中关联的传输参数集合中的如下两个参数的任意一个取值最短的逻辑信道。
参数1:传输上行资源传输的时间长度。
参数2:调度上行资源的控制信令与被调度的上行资源传输的时间间隔长度。
其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
本实施例提供的调度请求的处理方法,相关技术原理和技术效果还可以参照上述实施例三和实施例五,在此不再赘述。
本实施例提供了一种调度请求的处理方法,在已经触发了与第一逻辑信道相关联的SR之后,只要终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。节省了资源,避免了资源浪费,同时节省了终端耗电。
实施例七
本实施例应用于上行调度过程中的BSR重传场景。
图11为现有的BSR重传的一种场景的示意图,图12为现有的BSR重传的另一种场景的示意图。
如图11和图12所示,终端设备的一个逻辑信道有数据传输从而触发并发送BSR,进而启动BSR重传计时器。当BSR重传计时器在运行时,如果终端设备收到上行资源/上行授权,终端设备会重启BSR重传计时器。而当该上行资源/上行授权对应的传输参数集合的取值并不是触发BSR的LCH的可用的/映射的传输参数集合的取值。由于BSR重传计时器被错误的上行资源/上行授权所重启,从而导致BSR重传计时器的运行时间被延长。因此,如果该BSR发生丢失,那么该BSR被重新触发的时间将被拖延,从而导致触发该BSR的逻辑信道的数据被延迟调度。
本实施例提供了一种调度请求的处理方法,用以解决上述由于BSR被重新触发的时间被拖延而导致的触发该BSR的逻辑信道的数据被延迟调度的技术问题。
本实施例提供的调度请求的处理方法,触发BSR的场景如下。
触发BSR的场景一:针对常规BSR是由于某一个逻辑信道有数据到达而触发的情况。
在某个时刻,终端设备当前配置的一个属于某一个LCG的第一逻辑信道有数据到达,触发一个常规BSR。
在该场景中,所述有数据到达而触发BSR的逻辑信道为第一逻辑信道。
触发BSR的场景二:针对常规BSR是由于BSR重传计时器超时而触发的情况。
在某个时刻,终端设备触发一个BSR。所述BSR可以为周期BSR(Periodic BSR),附加BSR(Padding BSR)或者由于BSR重传计时器超时而触发的常规BSR(Regular BSR)。
在该场景中,所述第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,所述第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
触发BSR的场景三。
由于BSR重传计时器超时而触发的BSR,且第一逻辑信道为终端设备当前所有第二逻辑信道中关联的传输参数集合中的如下两个参数的任意一个取值最短的逻辑信道。
参数1:传输上行资源传输的时间长度。
参数2:调度上行资源的控制信令与被调度的上行资源传输的时间间隔长度。
在该场景中,所述第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
本实施例提供的调度请求的处理方法,可以包括:
终端设备确定是否有触发并且还未取消的BSR。如果终端设备确定有触发并且还未取消的BSR,那么如果在一个时间单元内,终端设备有针对新数据传输的上行资源,终端设备生成BSR MAC CE,并通过所述上行资源传输所述BSR MAC CE。同时,终端设备启动或者重启BSR重传计时器。启动或者重启BSR重传计时器的值/时间长度根据BSR重传计时器的值/时间长度的配置方案而定。
在一个时间单元内,当终端设备接收到上行资源/上行授权时,如果该上行资源的传输参数集合中的参数的取值与第一逻辑信道的可用的/映射的传输参数集合中的参数的取值相同,则终端设备重启所述BSR重传计时器。重启的BSR重传计时器的值/时间长度根据BSR重传计时器的值/时间长度的配置方案而定。否则,终端设备不重启所述BSR重传计时器。
其中,一个逻辑信道可用的/映射的传输参数集合中的参数可以包含但不限于仅包含如下的至少一项:子载波间隔、循环前缀长度、上行资源的时间长度、调度所述上行资源的控制信令与所述上行资源的时间间隔长度、所述上行资源所对应的所述终端设备的服务小区。
其中,所述时间单元可以为但不限于仅为以下任何一种情况:
1)一个默认/预定义的时间长度,例如该时间长度可以为某个参考的子载波间隔所对应的符号长度组成的一个时隙(Slot)的时间长度;所述参考的子载波间隔例如可以为15KHz的子载波间隔。
2)终端设备接收到的上行资源对应的传输时间长度。不同的上行资源可能会使用不同的子载波间隔。因此对应的一个符号的长度可能不相同。而不同上行资源占用的符号个数可能也不同。因此,导致终端设备接收到的上行资源对应的传输时间长度。
3)调度终端设备的上行资源的下行控制信令对应的传输时间长度。不同的下行控制信令可能会使用不同的子载波间隔。因此对应的一个符号的长度可能不相同。而不同的下行控制信令传输时占用的符号个数可能也不同。因此,终端设备会接收到传输长度不同的下行控制信令。
4)所述第一逻辑信道可用的/映射的传输参数集合中的子载波间隔所对应的符号长度组成的一个默认/预定义的时间长度。例如,可以为所述子载波间隔所对应的符号长度组成的一个时隙的时间长度。
5)所述第一逻辑信道可用的/映射的传输参数集合中的子载波间隔所对应的符号长度和所述逻辑信道的数据传输默认的占用符号数所确定的时间长度。
6)所述第一逻辑信道可用的/映射的传输参数中的子载波间隔所对应的一个符号的长度。
其中,所述BSR重传计时器的值由网络设备通过专用信令配置给终端设备。其中,BSR重传计时器的值配置可以有如下可选方案:
方案一:网络设备只给终端设备配置一个BSR重传计时器的值。对应该方案,无论由于哪个逻辑信道有数据到达而触发BSR,终端设备启动或者重启的BSR重传计时器的长度都设为所述网络设备配置的值。
方案二:网络设备为终端设备的每个逻辑信道组配置一个BSR重传计时器的值。对应该方案,当属于某个逻辑信道组的某个逻辑信道有数据到达而触发BSR,终端设备启动或者重启的BSR重传计时器的长度的值设为所述网络设备配置的所述逻辑信道组度的BSR重传计时器的值。
方案三:网络设备为终端设备的每个逻辑信道配置一个BSR重传计时器的值。对应该方案,当属于一个逻辑信道组的某个逻辑信道有数据到达而触发BSR,终端设备启动或者重启的BSR重传计时器的长度的值设为所述网络设备配置的所述逻辑信道的BSR重传计时器的值。
方案四:网络设备为终端设备的每个或者每组逻辑信道所映射/所对应的一个或多个SR配置配置一个关联的BSR重传计时器的值。对应该方案,当属于一个逻辑信道组的某个逻辑信道有数据到达而触发BSR,终端设备启动或者重启的BSR重传计时器的长度的值该逻辑信道所映射/所对应的一个或多个SR配置BSR重传计时器的长度的值设为所述网络设备配置的所述逻辑信道所映射/所对应的一个或多个SR配置关联的BSR重传计时器的值。其中,所述一个逻辑信道所映射的/关联的SR配置中可以包括但不限于仅包括以下参数中的至少一项:所述SR配置的标识、SR禁止计时器、SR最大传输次数、用于确定传输SR所用的物理资源位置的参数。
所述SR配置的概念可以有以下情况:
1)所述SR配置中包含SR配置的标识、SR禁止计时器和SR最大传输次数,同时也包含用于确定传输SR所用的物理资源位置的参数。这种情况下,一个逻辑信道会关联/映射到至少一个SR配置。
2)所述SR配置中包含SR配置的标识、SR禁止计时器和SR最大传输次数,但不包含用于确定传输SR所用的物理资源位置的参数。用于确定传输SR所用的物理资源位置的参数包含在另外的SR相关配置中,例如该SR相关配置可以成为SR资源配置。这种情况下,一个逻辑信道会关联/映射到至少一个SR配置,而一个SR配置又会关联/映射到至少一个SR资源配置。
以下描述中的SR配置可以理解为上述情况1)对应的SR配置,也可以理解为上述情况2)对应的SR资源配置。
需要说明,对于上述方案二、方案三和方案四,终端设备可以只维护/设置一个BSR重传计时器,也可以分别为方案二中的每个逻辑信道组、方案三中的每个逻辑信道和方案四中的每个或者多个SR配置维护/设置一个BSR重传计时器。
本申请实施例提供的调度请求的处理方法,能够避免终端设备由于接收到针对低优先级的逻辑信道的上行资源而导致延迟无法使用所述上行资源来传输数据的高优先级逻辑信道触发的BSR的重传被延迟。从而保证高优先级的逻辑信道触发的BSR能够及时得到重传。另外,通过对不同QoS需求的逻辑信道设置不同的BSR重传计时器时长,也能够保证保证高优先级的逻辑信道触发的BSR能够及时得到重传。
图13为本申请实施例提供的终端设备的一种结构的结构示意图。本申请实施例提供的终端设备,用于执行上述方法实施例一~实施例三任一实施例提供的调度请求的处理方法。如图13所示,本申请实施例提供的终端设备可以包括:收发模块11和处理模块12。
处理模块12,用于确定是否有与第一逻辑信道相关联的常规缓存状态报告BSR被触发且还未被取消。
若与第一逻辑信道相关联的常规BSR被触发且还未被取消,且终端设备没有可用于传输第一逻辑信道的数据的上行资源,且终端设备的第一计时器没有运行,则触发调度请求SR。其中,第一计时器用于延迟SR的传输。
可选的,与第一逻辑信道相关联的常规BSR为:
由于第一逻辑信道有新数据到达而触发的BSR。
可选的,与第一逻辑信道相关联的常规BSR为:
由于BSR重传计时器超时而触发的BSR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,终端设备没有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,和/或,终端设备没有可用于传输第一逻辑信道的数据的第一类上行资源。
其中,第一类上行资源为网络设备通过无线资源控制层信令为终端设备配置的上行资源,或者为网络设备通过无线资源控制层信令为终端设备配置并通过物理层信令或媒体接入控制层信令激活的上行资源。
可选的,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备在第一时间单元内没有任何可用的上行资源。或者,
终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,终端设备没有可用于传输第一逻辑信道的数据的第一类上行资源,包括:
终端设备没有任何可用的第一类上行资源。或者,
终端设备有可用的第一类上行资源,但终端设备可用的第一类上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,处理模块12还用于:
确定第一逻辑信道或SR对应的SR配置。
其中,SR配置包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。
可选的,收发模块11用于:
对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则在物理资源上发送SR。
可选的,收发模块11用于:
对于每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则在物理资源上发送SR。
可选的,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备在第一时间单元内没有任何可用的上行资源。或者,
终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,收发模块11还用于:
若终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则在第一时间单元内可用的上行资源上传输数据。
可选的,处理模块12还用于:
若终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。
可选的,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
可选的,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据。
可选的,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用待传输数据。
本申请实施例提供的终端设备,用于执行上述方法实施例一~实施例三任一实施例提供的调度请求的处理方法,其技术原理和技术效果类似,此处不再赘述。
本申请另一实施例还提供一种终端设备,用于执行上述方法实施例四~实施例五中任一实施例提供的调度请求的处理方法。终端设备的结构可以参见图13。本申请实施例提供的终端设备可以包括:收发模块和处理模块。
处理模块,用于若终端设备有与第一逻辑信道相关联的调度请求SR被触发且还未被取消,则确定第一逻辑信道或者SR对应的SR配置。
收发模块,用于在每个第一时间单元,若终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源、终端设备在第一时间单元和第二时间单元时间上重叠的时间内有SR配置对应的用于传输SR的物理资源,并且SR禁止计时器没有运行,则在物理资源上发送SR。
其中,SR配置包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。
可选的,与第一逻辑信道相关联的SR为:
由于第一逻辑信道有新数据到达而触发的常规缓存状态报告BSR所触发的SR。
可选的,与第一逻辑信道相关联的SR为:
由于BSR重传计时器超时而触发的常规BSR所触发的SR,且第一逻辑信道为终端设备当前所有第二逻辑信道中优先级最高的逻辑信道。其中,第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
可选的,终端设备在第一时间单元内没有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备在第一时间单元内没有任何可用的上行资源。或者,
终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同。
可选的,若终端设备在第一时间单元内有可用的上行资源,但终端设备在第一时间单元内可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值不同,收发模块还用于:
若终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则在第一时间单元内可用的上行资源上传输数据。
可选的,处理模块还用于:
若终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。
可选的,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且缓存状态报告中至少包含第一逻辑信道所属的逻辑信道组的缓存大小。
可选的,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用传输数据。
可选的,终端设备有可用于传输第一逻辑信道的数据的上行资源,包括:
终端设备有可用的上行资源且终端设备可用的上行资源的传输参数集合中的参数的取值与第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,终端设备可用的上行资源可以容纳第一逻辑信道的所有可用待传输数据以及与第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用传输数据。
本申请实施例提供的终端设备,用于执行上述方法实施例四~实施例五中任一实施例提供的调度请求的处理方法,其技术原理和技术效果类似,此处不再赘述。
本申请又一实施例还提供一种终端设备,用于执行上述方法实施例六提供的调度请求的处理方法。终端设备的结构可以参见图13。本申请实施例提供的终端设备可以包括:收发模块和处理模块。
处理模块,用于确定是否有与第一逻辑信道相关联的调度请求SR被触发且还未被取消。
若与第一逻辑信道相关联的SR被触发且还未被取消,且终端设备有可用于传输第一逻辑信道的数据的上行资源,则取消SR。
本申请实施例提供的终端设备,用于执行上述方法实施例六提供的调度请求的处理方法,其技术原理和技术效果类似,此处不再赘述。
本申请又一实施例还提供一种终端设备,用于执行上述方法实施例七提供的调度请求的处理方法。终端设备的结构可以参见图13。本申请实施例提供的终端设备可以包括:收发模块和处理模块。
本申请实施例提供的终端设备,用于执行上述方法实施例七提供的调度请求的处理方法,其技术原理和技术效果类似,此处不再赘述。
图14为本申请实施例提供的终端设备的另一种结构的结构示意图。如图14所示,该终端设备可以包括处理器21、存储器22和收发器23,所述存储器22用于存储指令,所述收发器23用于和其他设备通信,所述处理器21用于执行所述存储器22中存储的指令,以使所述终端设备执行上述方法实施例一~实施例七任一实施例提供的调度请求的处理方法,具体实现方式和技术效果类似,这里不再赘述。
可以理解,本申请中网络设备或者终端设备使用的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的范围。

Claims (35)

1.一种调度请求的处理方法,其特征在于,包括:
终端设备确定是否有与第一逻辑信道相关联的常规缓存状态报告BSR被触发且还未被取消;
若与所述第一逻辑信道相关联的常规BSR被触发且还未被取消,且所述终端设备没有可用于传输所述第一逻辑信道的数据的上行资源,且所述终端设备的第一计时器没有运行,则所述终端设备触发调度请求SR;其中,所述第一计时器用于延迟SR的传输。
2.根据权利要求1所述的方法,其特征在于,所述与第一逻辑信道相关联的常规BSR为:
由于所述第一逻辑信道有新数据到达而触发的BSR;或者,
由于BSR重传计时器超时而触发的BSR,且所述第一逻辑信道为所述终端设备当前所有第二逻辑信道中优先级最高的逻辑信道;其中,所述第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
3.根据权利要求1所述的方法,其特征在于,所述终端设备没有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备在第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源,和/或,所述终端设备没有可用于传输所述第一逻辑信道的数据的第一类上行资源;
其中,所述第一类上行资源为网络设备通过无线资源控制层信令为所述终端设备配置的上行资源,或者为所述网络设备通过无线资源控制层信令为所述终端设备配置并通过物理层信令或媒体接入控制层信令激活的上行资源。
4.根据权利要求3所述的方法,其特征在于,所述终端设备在第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备在所述第一时间单元内没有任何可用的上行资源;或者,
所述终端设备在所述第一时间单元内有可用的上行资源,但所述终端设备在所述第一时间单元内可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同。
5.根据权利要求3所述的方法,其特征在于,所述终端设备没有可用于传输所述第一逻辑信道的数据的第一类上行资源,包括:
所述终端设备没有任何可用的第一类上行资源;或者,
所述终端设备有可用的第一类上行资源,但所述终端设备可用的第一类上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同。
6.根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
所述终端设备确定所述第一逻辑信道或所述SR对应的SR配置;
其中,所述SR配置包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。
7.根据权利要求6所述的方法,其特征在于,所述方法还包括:
对于每个第一时间单元,若所述终端设备在所述第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源、所述终端设备在所述第一时间单元和第二时间单元时间上重叠的时间内有所述SR配置对应的用于传输所述SR的物理资源,并且SR禁止计时器没有运行,则所述终端设备在所述物理资源上发送所述SR。
8.根据权利要求7所述的方法,其特征在于,若所述终端设备在所述第一时间单元内有可用的上行资源,但所述终端设备在所述第一时间单元内可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同,还包括:
若所述终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则所述终端设备在所述第一时间单元内可用的上行资源上传输数据。
9.根据权利要求1-8任一项所述的方法,其特征在于,所述终端设备触发SR之后,所述方法还包括:
若所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,则所述终端设备取消所述SR。
10.根据权利要求9所述的方法,其特征在于,所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且所述缓存状态报告中至少包含所述第一逻辑信道所属的逻辑信道组的缓存大小;或者,
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源可以容纳所述第一逻辑信道的所有可用待传输数据;或者,
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源可以容纳所述第一逻辑信道的所有可用待传输数据以及与所述第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用待传输数据。
11.一种调度请求的处理方法,其特征在于,包括:
若终端设备有与第一逻辑信道相关联的调度请求SR被触发且还未被取消,则所述终端设备确定所述第一逻辑信道或者所述SR对应的SR配置;
对于每个第一时间单元,若所述终端设备在所述第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源、所述终端设备在所述第一时间单元和第二时间单元时间上重叠的时间内有所述SR配置对应的用于传输所述SR的物理资源,并且SR禁止计时器没有运行,则所述终端设备在所述物理资源上发送所述SR;
其中,所述SR配置包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。
12.根据权利要求11所述的方法,其特征在于,所述与第一逻辑信道相关联的SR为:
由于所述第一逻辑信道有新数据到达而触发的常规缓存状态报告BSR所触发的SR;或者,
由于BSR重传计时器超时而触发的常规BSR所触发的SR,且所述第一逻辑信道为所述终端设备当前所有第二逻辑信道中优先级最高的逻辑信道;其中,所述第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
13.根据权利要求11所述的方法,其特征在于,所述终端设备在所述第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备在所述第一时间单元内没有任何可用的上行资源;或者,
所述终端设备在所述第一时间单元内有可用的上行资源,但所述终端设备在所述第一时间单元内可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同。
14.根据权利要求13所述的方法,其特征在于,若所述终端设备在所述第一时间单元内有可用的上行资源,但所述终端设备在所述第一时间单元内可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同,还包括:
若所述终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则所述终端设备在所述第一时间单元内可用的上行资源上传输数据。
15.根据权利要求11-14任一项所述的方法,其特征在于,所述方法还包括:
若所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,则所述终端设备取消所述SR。
16.根据权利要求15所述的方法,其特征在于,所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且所述缓存状态报告中至少包含所述第一逻辑信道所属的逻辑信道组的缓存大小;或者,
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源可以容纳所述第一逻辑信道的所有可用传输数据;或者,
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源可以容纳所述第一逻辑信道的所有可用待传输数据以及与所述第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用传输数据。
17.一种调度请求的处理方法,其特征在于,包括:
终端设备确定是否有与第一逻辑信道相关联的调度请求SR被触发且还未被取消;
若与所述第一逻辑信道相关联的SR被触发且还未被取消,且所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,则所述终端设备取消所述SR。
18.一种终端设备,其特征在于,包括:
处理器,用于确定是否有与第一逻辑信道相关联的常规缓存状态报告BSR被触发且还未被取消;
若与所述第一逻辑信道相关联的常规BSR被触发且还未被取消,且所述终端设备没有可用于传输所述第一逻辑信道的数据的上行资源,且所述终端设备的第一计时器没有运行,则触发调度请求SR;其中,所述第一计时器用于延迟SR的传输。
19.根据权利要求18所述的终端设备,其特征在于,所述与第一逻辑信道相关联的常规BSR为:
由于所述第一逻辑信道有新数据到达而触发的BSR;或者,
由于BSR重传计时器超时而触发的BSR,且所述第一逻辑信道为所述终端设备当前所有第二逻辑信道中优先级最高的逻辑信道;其中,所述第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
20.根据权利要求18所述的终端设备,其特征在于,所述终端设备没有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备在第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源,和/或,所述终端设备没有可用于传输所述第一逻辑信道的数据的第一类上行资源;
其中,所述第一类上行资源为网络设备通过无线资源控制层信令为所述终端设备配置的上行资源,或者为所述网络设备通过无线资源控制层信令为所述终端设备配置并通过物理层信令或媒体接入控制层信令激活的上行资源。
21.根据权利要求20所述的终端设备,其特征在于,所述终端设备在第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备在所述第一时间单元内没有任何可用的上行资源;或者,
所述终端设备在所述第一时间单元内有可用的上行资源,但所述终端设备在所述第一时间单元内可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同。
22.根据权利要求20所述的终端设备,其特征在于,所述终端设备没有可用于传输所述第一逻辑信道的数据的第一类上行资源,包括:
所述终端设备没有任何可用的第一类上行资源;或者,
所述终端设备有可用的第一类上行资源,但所述终端设备可用的第一类上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同。
23.根据权利要求18-22任一项所述的终端设备,其特征在于,所述处理器还用于:
确定所述第一逻辑信道或所述SR对应的SR配置;
其中,所述SR配置包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。
24.根据权利要求23所述的终端设备,其特征在于,还包括收发器,所述收发器用于:
对于每个第一时间单元,若所述终端设备在所述第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源、所述终端设备在所述第一时间单元和第二时间单元时间上重叠的时间内有所述SR配置对应的用于传输所述SR的物理资源,并且SR禁止计时器没有运行,则在所述物理资源上发送所述SR。
25.根据权利要求24所述的终端设备,其特征在于,若所述终端设备在所述第一时间单元内有可用的上行资源,但所述终端设备在所述第一时间单元内可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同,所述收发器还用于:
若所述终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则在所述第一时间单元内可用的上行资源上传输数据。
26.根据权利要求18-25任一项所述的终端设备,其特征在于,所述处理器还用于:
若所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,则取消所述SR。
27.根据权利要求26所述的终端设备,其特征在于,所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且所述缓存状态报告中至少包含所述第一逻辑信道所属的逻辑信道组的缓存大小;或者,
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源可以容纳所述第一逻辑信道的所有可用待传输数据;或者,
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源可以容纳所述第一逻辑信道的所有可用待传输数据以及与所述第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用待传输数据。
28.一种终端设备,其特征在于,包括:
处理器,用于若终端设备有与第一逻辑信道相关联的调度请求SR被触发且还未被取消,则确定所述第一逻辑信道或者所述SR对应的SR配置;
收发器,用于在每个第一时间单元,若所述终端设备在所述第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源、所述终端设备在所述第一时间单元和第二时间单元时间上重叠的时间内有所述SR配置对应的用于传输所述SR的物理资源,并且SR禁止计时器没有运行,则在所述物理资源上发送所述SR;
其中,所述SR配置包括以下参数中的至少一项:SR配置的标识、SR禁止计时器、SR最大传输次数和用于确定传输SR所用的物理资源位置的参数。
29.根据权利要求28所述的终端设备,其特征在于,所述与第一逻辑信道相关联的SR为:
由于所述第一逻辑信道有新数据到达而触发的常规缓存状态报告BSR所触发的SR;或者,
由于BSR重传计时器超时而触发的常规BSR所触发的SR,且所述第一逻辑信道为所述终端设备当前所有第二逻辑信道中优先级最高的逻辑信道;其中,所述第二逻辑信道为有可用传输数据的逻辑信道或者为有可用传输数据且属于一个逻辑信道组的逻辑信道。
30.根据权利要求28所述的终端设备,其特征在于,所述终端设备在所述第一时间单元内没有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备在所述第一时间单元内没有任何可用的上行资源;或者,
所述终端设备在所述第一时间单元内有可用的上行资源,但所述终端设备在所述第一时间单元内可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同。
31.根据权利要求30所述的终端设备,其特征在于,若所述终端设备在所述第一时间单元内有可用的上行资源,但所述终端设备在所述第一时间单元内可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值不同,所述收发器还用于:
若所述终端设备被配置支持在第一物理信道和第二物理信道上的并行传输,则在所述第一时间单元内可用的上行资源上传输数据。
32.根据权利要求28-31任一项所述的终端设备,其特征在于,所述处理器还用于:
若所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,则取消所述SR。
33.根据权利要求32所述的终端设备,其特征在于,所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,包括:
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源传输的数据单元中包含缓存状态报告并且所述缓存状态报告中至少包含所述第一逻辑信道所属的逻辑信道组的缓存大小;或者,
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源可以容纳所述第一逻辑信道的所有可用传输数据;或者,
所述终端设备有可用的上行资源且所述终端设备可用的上行资源的传输参数集合中的参数的取值与所述第一逻辑信道可用的传输参数集合中的参数的取值相同,并且,所述终端设备可用的上行资源可以容纳所述第一逻辑信道的所有可用待传输数据以及与所述第一逻辑信道映射到相同SR配置的其它逻辑信道的所有可用传输数据。
34.一种终端设备,其特征在于,包括:
处理器,用于确定是否有与第一逻辑信道相关联的调度请求SR被触发且还未被取消;
若与所述第一逻辑信道相关联的SR被触发且还未被取消,且所述终端设备有可用于传输所述第一逻辑信道的数据的上行资源,则取消所述SR。
35.一种芯片,其特征在于,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现如权利要求1-10中任一项所述的调度请求的处理方法,或者实现如权利要求11-16中任一项所述的调度请求的处理方法,或者实现如权利要求17所述的调度请求的处理方法。
CN201710908302.2A 2017-09-29 2017-09-29 调度请求的处理方法和终端设备 Pending CN109587770A (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN201710908302.2A CN109587770A (zh) 2017-09-29 2017-09-29 调度请求的处理方法和终端设备
CN201911296496.0A CN110881223B (zh) 2017-09-29 2017-09-29 调度请求的处理方法和终端设备
US16/651,916 US11937121B2 (en) 2017-09-29 2018-05-15 Scheduling request processing method and terminal device
AU2018340729A AU2018340729B2 (en) 2017-09-29 2018-05-15 Scheduling request processing method and terminal device
JP2020518036A JP7074846B2 (ja) 2017-09-29 2018-05-15 スケジューリング要求処理方法および端末デバイス
EP22214477.6A EP4221416A1 (en) 2017-09-29 2018-05-15 Scheduling request processing method and terminal device
KR1020207012004A KR102331620B1 (ko) 2017-09-29 2018-05-15 스케줄링 요청 처리 방법 및 단말 장치
PCT/CN2018/086898 WO2019062142A1 (zh) 2017-09-29 2018-05-15 调度请求的处理方法和终端设备
RU2020114952A RU2741327C1 (ru) 2017-09-29 2018-05-15 Оконечное устройство и способ обработки запроса планирования
EP18860257.7A EP3687244B1 (en) 2017-09-29 2018-05-15 Scheduling request processing method and terminal device
AU2021206884A AU2021206884B2 (en) 2017-09-29 2021-07-23 Scheduling request processing method and terminal device
AU2023202570A AU2023202570B2 (en) 2017-09-29 2023-04-27 Scheduling request processing method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710908302.2A CN109587770A (zh) 2017-09-29 2017-09-29 调度请求的处理方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201911296496.0A Division CN110881223B (zh) 2017-09-29 2017-09-29 调度请求的处理方法和终端设备

Publications (1)

Publication Number Publication Date
CN109587770A true CN109587770A (zh) 2019-04-05

Family

ID=65900488

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710908302.2A Pending CN109587770A (zh) 2017-09-29 2017-09-29 调度请求的处理方法和终端设备
CN201911296496.0A Active CN110881223B (zh) 2017-09-29 2017-09-29 调度请求的处理方法和终端设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911296496.0A Active CN110881223B (zh) 2017-09-29 2017-09-29 调度请求的处理方法和终端设备

Country Status (8)

Country Link
US (1) US11937121B2 (zh)
EP (2) EP3687244B1 (zh)
JP (1) JP7074846B2 (zh)
KR (1) KR102331620B1 (zh)
CN (2) CN109587770A (zh)
AU (3) AU2018340729B2 (zh)
RU (1) RU2741327C1 (zh)
WO (1) WO2019062142A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110720244A (zh) * 2018-04-02 2020-01-21 Oppo广东移动通信有限公司 调度请求触发方法和终端设备
WO2021022508A1 (zh) * 2019-08-07 2021-02-11 富士通株式会社 边链路调度请求的触发方法、装置和系统
CN112753269A (zh) * 2020-11-17 2021-05-04 北京小米移动软件有限公司 上行传输资源的确定方法、装置、通信设备和介质
WO2021232380A1 (zh) * 2020-05-21 2021-11-25 Oppo广东移动通信有限公司 资源传输方法和终端设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3684022B1 (en) * 2017-09-15 2022-12-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuring scheduling request, network device and terminal device
CN111294936B (zh) * 2018-12-06 2023-04-14 大唐移动通信设备有限公司 一种传输方法及终端
EP4190021A1 (en) * 2020-07-27 2023-06-07 LG Electronics, Inc. Method and apparatus for transmitting uplink data based on multiple configured grants in wireless communication system
US11576181B2 (en) 2020-08-10 2023-02-07 International Business Machines Corporation Logical channel management in a communication system
WO2024064169A1 (en) * 2022-09-23 2024-03-28 Apple Inc. Resource allocation for low latency wireless communication

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9043401B2 (en) 2009-10-08 2015-05-26 Ebay Inc. Systems and methods to process a request received at an application program interface
KR101623977B1 (ko) 2009-10-09 2016-05-24 삼성전자주식회사 이동통신 시스템에서 스케줄링 요청 신호를 전송하는 방법 및 장치
JP2011155335A (ja) 2010-01-26 2011-08-11 Sharp Corp 通信システム及び移動局装置及び基地局装置及び処理方法
CN102761967B (zh) * 2011-04-29 2015-09-23 华为技术有限公司 数据发送方法、传输资源分配方法和装置
CN102595603B (zh) 2012-01-17 2014-07-30 大唐移动通信设备有限公司 一种bsr的传输控制方法及装置
EP2811808A1 (en) 2013-04-01 2014-12-10 Innovative Sonic Corporation Method and Apparatus for Triggering a Regular Buffer Status Report (BSR) in Dual Connectivity
PL2802185T3 (pl) 2013-04-01 2020-05-18 Innovative Sonic Corporation Sposób i urządzenie do dodawania komórek obsługujących w systemie komunikacji bezprzewodowej
KR102082000B1 (ko) * 2013-08-07 2020-02-26 주식회사 팬택 무선 통신 시스템에서 버퍼상태보고 전송 방법 및 장치
KR101577254B1 (ko) 2013-10-31 2015-12-22 삼성에스디에스 주식회사 요청 메시지 스케줄링 장치 및 방법과 이를 이용한 기록 매체
CN104661311B (zh) 2013-11-25 2019-07-23 中兴通讯股份有限公司 载波聚合下缓存状态报告处理方法、装置及终端
US10165573B2 (en) 2014-03-19 2018-12-25 Lg Electronics Inc. Method and apparatus for determining priorities of buffer status reports in wireless communication system
KR102236589B1 (ko) 2014-08-08 2021-04-06 주식회사 아이티엘 단말간 통신을 지원하는 무선 통신 시스템에서 버퍼상태보고 운용 방법 및 장치
KR102268754B1 (ko) * 2014-11-05 2021-06-24 엘지전자 주식회사 D2d 통신 시스템에서 사이드링크 버퍼 상태 보고에 의해 트리거된 스케줄링 요청을 취소하는 방법 및 그 장치
KR101726705B1 (ko) * 2014-12-01 2017-04-26 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 스케줄링 요청(sr)에 대한 금지 타이머를 처리하기 위한 방법 및 장치
US20180054807A1 (en) * 2014-12-30 2018-02-22 Lg Electronics Inc. Method and apparatus for allocating recources for bi-directional transmission in wireless communication system
JP2018032887A (ja) * 2015-01-08 2018-03-01 シャープ株式会社 端末装置、基地局装置、制御方法及び集積回路
CN106507497B (zh) * 2015-09-08 2020-09-11 华为技术有限公司 用于上行数据传输的方法、终端设备和网络设备
CN106992846B (zh) * 2016-01-20 2023-01-13 华为技术有限公司 一种数据发送方法、数据接收方法和装置
WO2017139943A1 (en) * 2016-02-18 2017-08-24 Qualcomm Incorporated System and methods for improving performance during radio resource control (rrc) connected state on wireless communication device supporting concurrent radio access technologies
EP3301986A1 (en) * 2016-09-30 2018-04-04 Panasonic Intellectual Property Corporation of America Improved uplink resource allocation among different ofdm numerology schemes
US11425752B2 (en) * 2016-10-19 2022-08-23 Ipla Holdings Inc. Radio interface protocol architecture aspects, quality of service (QOS), and logical channel prioritization for 5G new radio
US11178679B2 (en) * 2016-12-27 2021-11-16 Ntt Docomo, Inc. User terminal and radio communication method
US11032830B2 (en) * 2017-05-05 2021-06-08 Qualcomm Incorporated Scheduling request for wireless systems

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110720244A (zh) * 2018-04-02 2020-01-21 Oppo广东移动通信有限公司 调度请求触发方法和终端设备
CN110720244B (zh) * 2018-04-02 2021-02-26 Oppo广东移动通信有限公司 调度请求取消方法和终端设备
WO2021022508A1 (zh) * 2019-08-07 2021-02-11 富士通株式会社 边链路调度请求的触发方法、装置和系统
WO2021232380A1 (zh) * 2020-05-21 2021-11-25 Oppo广东移动通信有限公司 资源传输方法和终端设备
CN115190628A (zh) * 2020-05-21 2022-10-14 Oppo广东移动通信有限公司 资源传输方法和终端设备
CN115190628B (zh) * 2020-05-21 2024-03-26 Oppo广东移动通信有限公司 资源传输方法和终端设备
CN112753269A (zh) * 2020-11-17 2021-05-04 北京小米移动软件有限公司 上行传输资源的确定方法、装置、通信设备和介质
CN112753269B (zh) * 2020-11-17 2024-03-01 北京小米移动软件有限公司 上行传输资源的确定方法、装置、通信设备和介质

Also Published As

Publication number Publication date
AU2018340729B2 (en) 2021-05-13
KR102331620B1 (ko) 2021-12-01
RU2741327C1 (ru) 2021-01-25
JP2020535762A (ja) 2020-12-03
EP4221416A1 (en) 2023-08-02
AU2023202570A1 (en) 2023-05-18
AU2021206884A1 (en) 2021-08-12
KR20200052967A (ko) 2020-05-15
CN110881223A (zh) 2020-03-13
AU2018340729A1 (en) 2020-04-23
WO2019062142A1 (zh) 2019-04-04
EP3687244A1 (en) 2020-07-29
AU2021206884B2 (en) 2023-02-02
AU2023202570B2 (en) 2024-02-08
US20200267594A1 (en) 2020-08-20
CN110881223B (zh) 2022-04-29
US11937121B2 (en) 2024-03-19
EP3687244B1 (en) 2023-03-01
EP3687244A4 (en) 2020-11-11
JP7074846B2 (ja) 2022-05-24

Similar Documents

Publication Publication Date Title
CN109587770A (zh) 调度请求的处理方法和终端设备
KR102618909B1 (ko) 무선 장치 및 무선 네트워크에서의 스케줄링 요청
US9775064B2 (en) Buffer state reporting method, system, and device
CN108270516B (zh) 一种数据传输方法、装置及系统
EP2824972A1 (en) Resource requests in small cell networks
CN110351898A (zh) 非连续接收的通信方法、装置、通信设备和通信系统
WO2018133669A1 (zh) 一种资源调度方法以及无线接入网设备和终端设备
CN110463291A (zh) 在无线通信系统中传输侧链路同步信号的方法和使用该方法的终端
CN110972317B (zh) 通信方法和装置
US9763263B2 (en) Scheduling method and base station
WO2020200054A1 (zh) 一种通信方法及装置
CN109429306A (zh) 一种通信方法及终端设备
WO2012136101A1 (zh) 一种混合自动重传的处理方法、系统及装置
CN109586854A (zh) 数据传输方法及装置
CN114175798A (zh) 非授权频谱上的数据传输方法、装置、设备及存储介质
WO2022151087A1 (zh) 上行传输方法、装置、终端及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination