CN112739992A - 用于操作科里奥利测量设备的方法和科里奥利测量设备 - Google Patents

用于操作科里奥利测量设备的方法和科里奥利测量设备 Download PDF

Info

Publication number
CN112739992A
CN112739992A CN201980041059.6A CN201980041059A CN112739992A CN 112739992 A CN112739992 A CN 112739992A CN 201980041059 A CN201980041059 A CN 201980041059A CN 112739992 A CN112739992 A CN 112739992A
Authority
CN
China
Prior art keywords
component
time
measuring tube
sensor
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980041059.6A
Other languages
English (en)
Inventor
朱浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of CN112739992A publication Critical patent/CN112739992A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明涉及一种用于操作科里奥利测量设备(1)的方法(100),该设备用于测量流过至少一个测量管的、包含至少两种不可混合成分的介质的质量流量和/或流速,其中,至少两个传感器(11)记录由至少一个激励器(12)激励的测量管振荡,其中,所述传感器在测量管中心线(10.3)的方向上一个接一个地布置,其中,第一传感器(11.1)检测测量管振荡的至少一个第一入口侧振荡特征(SE1),并且其中,第二传感器(11.2)检测测量管振荡的至少一个第二出口侧振荡特征(SE2),其中,至少一种另外的第二成分的局部浓度波动或频率波动在局部浓度波动或频率波动的区域中影响测量管振荡,其中,在第一方法步骤(101)中,借助于至少两个传感器检测局部浓度波动或频率波动的前向移动,其中,在第二方法步骤(102)中,基于局部浓度波动或频率波动的所检测的前向移动来计算至少一个设定成分的速率。

Description

用于操作科里奥利测量设备的方法和科里奥利测量设备
技术领域
本发明涉及一种用于操作科里奥利测量设备的方法,该科里奥利测量设备用于测量流过至少一个测量管并且包含至少两种不可混合成分的介质的质量流量和/或流速。
背景技术
诸如例如在WO2006010687A1中描述的科里奥利测量设备适合于测量流过测量设备的至少一个测量管的介质的质量流量以及密度。
对于仅由一种物质构成或仅具有多种可相互混合的物质的介质的情况,这种测量设备可提供准确的结果。
但是,存在不同的使用领域,在这种使用领域的情况下不能满足此附加条件。例如,在加工牛奶的情况下,可以存在一种介质,该介质主要是液体,但也包含气态和/或固态成分。在这些附加成分以低浓度存在且分布不均匀的情况下,则这种不均匀性可能会使流量或密度测量变得困难。
发明内容
因此,本发明的目的是提供一种避免上述问题的用于操作科里奥利测量设备的方法和科里奥利测量设备。
该目的通过独立权利要求1中限定的方法以及独立权利要求10中限定的装置来实现。
在本发明的用于操作科里奥利测量设备的方法中,该科里奥利测量设备用于测量流过至少一个测量管的、包含至少两种不可混合成分的介质的质量流量和/或流速,每个测量管具有入口和出口,
至少两个传感器记录由至少一个激励器激励的测量管振荡,
所述传感器沿着测量管中心线一个接一个地布置,其中,第一传感器记录在第一传感器位置处的测量管振荡的第一入口侧振荡特性,并且其中,第二传感器记录在第二传感器位置处的测量管振荡的第二出口侧振荡特性,
至少一个附加成分,即,首先是第二成分,的局部浓度波动或发生率波动(incidence fluctuation)在局部浓度波动或发生率波动的区域内影响测量管振荡,
该影响导致测量管振荡的幅度和/或相位的变化,
其中,在第一方法步骤中,借助于至少两个传感器记录局部浓度波动或发生率波动的偏离,
其中,在第二方法步骤中,基于局部浓度波动或发生率波动的所记录的偏离来计算第二成分的速率。
在这种情况下,可用的振荡特性例如是振荡幅度或振荡相位或振荡频率。在计量上,例如可以通过根据时间记录传感器信号并随后进行信号评估来确定振荡幅度、振荡相位或振荡频率。通常,科里奥利测量设备的振荡传感器包括永磁体装置和线圈装置,它们通过振荡而相对彼此移动,由此可测量的电压,即可通过电子测量/操作电路评估的电压,在线圈中被感应。例如,振荡特性可以是振荡传感器的相位或在两个振荡传感器之间的相位差。然而,根据时间跟随的变量也可以是从传感器信号导出的变量,诸如例如质量流量。
在一个实施例中,将第一振荡特性的第一时间函数与第二振荡特性的第二时间函数进行比较,
其中,第一时间函数的变化相对于第二时间函数的变化的时间偏移发生被用于指示第二成分的局部浓度波动或发生率波动的存在,
其中,第二成分的速率是基于变化发生的时间偏移来计算的。
例如,在借助于科里奥利效应测量的质量流量的合理性检查中,可以考虑第二成分的速率。
为了可以检测到由浓度波动引起的变化的时间偏移,该时间偏移必须大于对应传感器之间沿测量管中心线的路径长度与介质中或者在第一成分中的声速的比率。在这种情况下,本领域技术人员也可以使用基于经验的值。一旦时间偏移小于该比率或小于基于经验的值,就浓度波动的检测而言,可以认为该偏移不存在。在检测到例如叠加在传感器流量信号上的变化时,可以应用信号处理的常规技术,诸如例如信号边缘检测、信号滤波——诸如例如傅里叶变换、或自相关。
在一个实施例中,第三传感器记录在第三传感器位置处的测量管振荡的第三振荡特性,其中,第三传感器位置位于第一传感器位置和第二传感器位置之间,
其中,比较以下时间函数中的至少两个:
第一振荡特性的第一时间函数、第二振荡特性的第二时间函数、第三振荡特性的第三时间函数,
其中,时间函数的变化相对于另一时间函数的变化的时间偏移发生被用于指示第二成分的局部浓度波动或发生率波动的存在,
其中,基于变化的发生的时间偏移来计算第二成分的速率,和/或
其中,形成第一振荡特性和第三振荡特性之间的第一差以及第三振荡特性和第二振荡特性之间的第二差,
其中,第一差的第四时间函数相对于第二差的第五时间函数的时间偏移变化被用于指示第二成分的局部浓度波动或发生率波动的存在,
其中,第二成分的速率是基于差的变化的发生的时间偏移来计算的。
利用三个传感器,类似于利用两个传感器,在每种情况下,都可以考虑两个不同传感器之间的偏移。但是,也可以形成在两个顺序的传感器之间的信号特性的两个差,并且在每种情况下,可以考虑差的变化以检测浓度波动。因此,局部浓度波动导致在差的情况下的变化。例如,这可以在两个连续传感器之间的常规科里奥利流量测量的情况下付诸实践,在这种情况下,基于科里奥利效应的测量管振荡的振荡特性被记录。
在一个实施例中,比较振荡特性的时间函数并确定变化的时间偏移是基于以下中的至少一个:
形成时间函数的互相关,
确定变化的至少一个极值的位置。
通过互相关,可以记录不同时间函数的相似性,并且可以可靠地计算时间函数的特性的时间偏移。
在实施例中,至少一个测量管至少部分地弯曲,其中,第一传感器位置在流动方向上在弯曲之前或在弯曲的开始区域中,并且其中,第二传感器位置在流动方向上在弯曲之后或在弯曲的结束区域中,
其中,考虑在不同时间函数的变化之间的至少一个差,以便确定至少第二成分的至少一个特征,
其中,考虑变化的以下特征中的至少一个:
幅度、宽度、不对称性。
弯曲可导致与第一成分和第二成分之间的离心力相关的偏离。与第一时间函数的变化相比,这种偏离进而可以导致第二时间函数或第三时间函数的变化的特性改变。例如,可以将液态第一成分中的气态第二成分推向弯曲的内部。以这种方式,例如,可以获得关于第一成分的粘度或关于斯托克斯数与第一成分的粘度的比率的信息。
在实施例中,第一成分是液体,其中,第二成分是液体、固体或气体。
在实施例中,第一成分是可混合物质的混合物,和/或
其中,第二成分是可混合物质的混合物。
在实施例中,在第三方法步骤中,根据第二成分的速率确定第一成分的速率,
其中,以下变量中的至少一个被考虑用于确定第一成分的速率:
至少一个测量管相对于重力的倾斜角,
第一成分的粘度,
第一成分和/或第二成分的质量密度,
斯托克斯数
第一成分中的第二成分的特性直径。
在确定第一成分的流速时,可以考虑在第一成分中的第二成分的流动特征。因此,在倾斜的测量管的情况下,由于向上指向的力,液态第一成分中的气态第二成分相对于测量管具有与第一成分不同的速率。例如,这在第一成分的较低粘度的情况下是相关的。可以考虑的另一个相关变量是斯托克斯数,特别是与第一成分的粘度有关的斯托克斯数,其中,斯托克斯数表达第一介质成分中第二介质成分的惯性的含义。替代地,也可以考虑第二成分的累积的特性直径作为斯托克斯数的替代。
在实施例中,借助于质量密度以及第一成分的速率和/或第二成分的质量密度以及第二成分的速率来确定介质的质量流量。
本发明的科里奥利测量设备包括:
用于输送介质的至少一个测量管;
至少一个激励器,其适于激励测量管以执行振荡;
至少两个传感器,其适于记录测量管的振荡;
电子测量/操作电路,其适于操作激励器以及传感器,并且确定并输出质量流量或流速或密度测量值,以及执行本发明的方法;
其中,测量设备尤其是包括用于容纳电子测量/操作电路的电子器件壳体。
在实施例中,测量设备在至少一个测量管的入口以及出口处在每种情况下包括固定装置,该固定装置在每种情况下适于限定外振荡节点的位置,
其中,固定装置包括例如至少一个板,该板至少部分地包围至少一个测量管。
附图说明
现在将基于在附图中呈现的实施例的示例来描述本发明,附图中的图示出如下:
图1示出了作为示例的测量管上的传感器和激励器的根据本发明的布置。
图2是作为示例的传感器信号。
图3是本发明的处理流程。
图4是作为示例的本发明的科里奥利测量设备。
具体实施方式
图1示例性地示出了在科里奥利测量设备的测量管10上的本发明的传感器、激励器装置。因此,第一传感器11.1布置在测量管10的入口侧10.1上,第二传感器11.2布置在测量管10的出口侧10.2上,并且第三传感器10.3布置在测量管10的中央。借助于激励器12激励测量管以执行振荡。在每个测量管的端部一个的固定装置20限定外振荡节点。固定装置在每种情况下都可以包括板21,如这里所示。流过测量管的介质包括主要的第一成分K1,其至少携带第二成分K2。在足够低的浓度的情况下,第二成分可以局部不均匀地分布,从而发生对振荡测量管的局部影响。可以利用局部影响,以便借助于传感器记录第二成分的向前运动速率。可以根据其补充地导出第一成分的流速。传感器以及激励器的布置是出于说明的目的,而不应理解为限制性的。本发明的方法还可以用两个传感器或者用这里示出的三个以上的传感器来执行。
在第一传感器位置处的第一传感器适于记录测量管振荡的至少第一入口侧振荡特性。第二出口侧传感器以及居中布置的第三传感器也是如此。由传感器记录的振荡特性例如是幅度、相位或振荡频率。
可以以不同的方式进行局部浓度波动或发生率波动的记录。例如,可以将利用传感器记录为时间函数的振荡特性与通过另一个传感器记录为时间函数的振荡特性进行比较,其中,时间函数的变化相对于另一个时间函数的变化的时间偏移发生被用来指示第二成分的局部浓度波动或发生率波动的存在。因此,在存在两个传感器的情况下,可以将由第一传感器记录为时间函数的第一振荡特性与由第二传感器记录为时间函数的第二振荡特性进行比较。因此,在存在三个或更多个传感器的情况下,可以记录第三时间函数和对应的其他时间函数,并相互比较。
然而,在存在三个或更多个传感器的情况下,还可以形成在不同的时间函数之间的差。在存在至少一个附加的成分——即,首先是第二成分——的局部浓度波动或发生率波动时的不同差的比较可以对应地考虑以用于计算至少第二成分的向前运动速率。
基于变化发生的时间偏移计算第二成分的速率。为了检测到由浓度波动引起的变化的时间偏移,该时间偏移必须大于对应传感器之间沿测量管中心线的路径长度与介质或第一成分中的声速的比率。本领域技术人员还可以使用基于经验的值。一旦时间偏移小于该比率或小于基于经验的值,就浓度波动的检测而言,可以认为该偏移不存在。在检测到例如叠加在传感器流量信号上的变化时,可以应用常规的信号处理,诸如例如信号边缘检测、信号滤波——诸如例如傅里叶变换、或自相关。
图1所示的测量管10包括弯曲10.4,其具有开始区域10.41以及结束区域10.42。弯曲可导致在第一成分和第二成分之间的与离心力有关的偏离。这种移动可以导致第二时间函数的变化或第三时间函数的变化与第一时间函数的变化相比的特性改变。例如,液态第一成分中的气态第二成分可以朝弯曲的内部移动。通过将第一传感器11.1布置在弯曲的开始区域中或弯曲之前,并且将第二传感器11.2布置在弯曲的远端区域或弯曲之后,可以测量和评估变化的特性改变。以这种方式,例如,可以获得关于第一成分的粘度或关于斯托克斯数与第一成分的粘度的比率的信息。
本发明不限于具有一个测量管的科里奥利测量设备,而是还适用于具有任何数量的测量管的科里奥利测量设备,例如两个测量管或四个测量管,四个测量管可以例如成对排列。本发明也不限于具有弯曲的测量管。本领域技术人员也可以将本发明应用于具有至少一个直的测量管的科里奥利测量设备。
图2以简化的方式示出了由不同传感器11记录的测量管的振荡特性的两对时间函数,其中,在较上一对的情况下,在介质的第二成分K2的局部浓度波动或发生率波动的情况下,在变化V之间发生大的时间偏移,其中,时间偏移可用于计算前向移动速率。在较下一对的情况下,仅存在较小的时间偏移。因此,这里关注的不是第二成分的局部浓度波动或发生率波动。相反,流量改变可以是造成变化的原因。图2所示的时间函数可以是由传感器记录的振荡特性的时间函数或者由传感器记录的振荡特性的差的时间函数。
通常,科里奥利测量设备的振荡传感器包括永磁体装置和线圈装置,它们通过振荡相对于彼此移动,由此在线圈中感应出可测量的电压,即,可通过电子测量/操作电路77评估的电压,参见图4。例如,振荡特性可以是振荡传感器的相位或两个振荡传感器之间的相位差。
为了检测到由浓度波动引起的变化的时间偏移,该时间偏移必须大于对应传感器之间沿测量管中心线的路径长度与介质或第一成分中声速的比率。在这种情况下,本领域技术人员也可以使用基于经验的值。一旦时间偏移小于该比率或经验值,就检测浓度波动而言,可以认为该偏移不存在。在检测到例如叠加在传感器流量信号上的变化时,可以使用常规的信号处理,诸如例如信号边缘检测、信号滤波——诸如例如傅里叶变换、或自相关。
图3示出了本发明的方法100,在这种情况下,在第一方法步骤101中借助于至少两个传感器记录局部浓度波动或发生率波动的偏离。
在第二方法步骤102中,基于局部浓度波动或发生率波动的所记录的偏离来计算第二成分的速率。
在第三方法步骤103中,根据第二成分的速率确定第一成分的速率,
其中,为了确定第一成分的速率,考虑以下变量中的至少一个:
至少一个测量管相对于重力的倾斜角,
第一成分的粘度,
第一成分和/或第二成分的质量密度。
图4以示例的方式示出了本发明的科里奥利测量设备1,其具有两个测量管10,每个测量管具有入口10.1和出口10.2。三个传感器11.1、11.2和11.3适于记录由激励器产生的测量管振荡。科里奥利测量设备包括电子测量/操作电路77,其适于操作激励器和传感器,并确定输出质量流量或流速或密度测量值,并且其中,测量设备具有电子器件壳体80,用于容纳电子测量/操作电路。测量设备在两个测量管的入口10.1以及出口10.2处在每种情况下包括固定装置20。固定装置20适于限定测量管振荡的外振荡节点的位置。可替代地,测量设备例如可以仅具有一个测量管,在另一种情况下甚至具有四个测量管。本发明不限于测量管的任何特定数量。本发明还可以应用于直的测量管的情况。
附图标记列表
1 科里奥利测量设备
10 测量管
10.1 入口
10.2 出口
10.3 测量管中心线
10.4 弯曲
10.41 弯曲的开始区域
10.42 弯曲的结束区域
11 传感器
11.1 第一传感器
11.2 第二传感器
11.3 第三传感器
12 激励器
20 固定装置
21 板
77 电子测量/操作电路
80 壳体
100 方法
101 第一方法步骤
102 第二方法步骤
103 第三方法步骤
K1 第一成分
K2 第二成分
V 变化。

Claims (12)

1.一种用于操作科里奥利测量设备(1)的方法(100),所述科里奥利测量设备(1)用于测量流过至少一个测量管的、包含至少两种不可混合成分的介质的质量流量和/或流速,
其中,每个测量管(10)具有入口(10.1)和出口(10.2),
其中,至少两个传感器(11)记录由至少一个激励器(12)激励的测量管振荡,
其中,所述传感器沿测量管中心线(10.3)一个接一个地布置,其中,第一传感器(11.1)记录在第一传感器位置处的测量管振荡的至少第一入口侧振荡特性,并且其中,第二传感器(11.2)记录在第二传感器位置处的所述测量管振荡的至少第二出口侧振荡特性,
其中,至少一个附加成分——即,首先是第二成分(K2)——的局部浓度波动或发生率波动在所述局部浓度波动或发生率波动的区域内影响所述测量管振荡,
其中,所述影响导致所述测量管振荡的幅度和/或相位和/或振荡频率的变化,
其中,在第一方法步骤(101)中,借助于所述至少两个传感器记录所述局部浓度波动或发生率波动的偏离,
其中,在第二方法步骤(102)中,基于所述局部浓度波动或发生率波动的所记录的偏离来计算所述第二成分的速率。
2.根据权利要求1所述的方法,
其中,将由所述第一传感器记录的所述振荡特性的时间函数与由所述第二传感器记录的所述振荡特性的第二时间函数进行比较,
其中,所述第一时间函数的变化相对于所述第二时间函数的变化的时间偏移发生被用于指示所述第二成分的局部浓度波动或发生率波动的存在,
其中,所述第二成分的速率是基于所述变化发生的所述时间偏移来计算的。
3.根据权利要求2所述的方法,
其中,第三传感器(11.3)记录在第三传感器位置处的所述测量管振荡的振荡特性,其中,所述第三传感器位置位于所述第一传感器位置和所述第二传感器位置之间,
其中,比较以下时间函数中的至少两个:
所述第一时间函数、所述第二时间函数、第三时间函数,
其中,时间函数的变化相对于另一时间函数的变化的时间偏移发生被用于指示所述第二成分的局部浓度波动或发生率波动的存在,
其中,基于所述变化发生的所述时间偏移来计算所述第二成分的速率,和/或
其中,形成所述第一时间函数和所述第三时间函数之间的第一差以及所述第三时间函数和所述第二时间函数之间的第二差,
其中,所述第一差的第四时间函数相对于所述第二差的第五时间函数的时间偏移变化被用于指示所述第二成分的局部浓度波动或发生率波动的存在,
其中,基于所述差的所述变化发生的所述时间偏移来计算所述第二成分的速率。
4.根据权利要求2或3所述的方法,
其中,所述时间函数的比较和确定变化的所述时间偏移是基于以下中的至少一个:
形成所述时间函数的互相关,
确定所述变化的至少一个极值的位置。
5.根据权利要求2至4中的一项所述的方法,
其中,所述至少一个测量管在静止状态下至少局部弯曲,其中,所述第一传感器位置在流动方向上在所述弯曲(10.4)之前或在所述弯曲的开始区域(10.41)中,并且其中,所述第二传感器位置在所述流动方向上在所述弯曲之后或在所述弯曲的结束区域(10.42)中,
其中,考虑在不同时间函数的变化之间的至少一个差,以便确定至少第二成分的至少一个特征,
其中,考虑所述变化的以下特征中的至少一个:
幅度、宽度、不对称性。
6.根据前述权利要求中的一项所述的方法,
其中,所述第一成分是液体,其中,所述第二成分是液体、固体或气体。
7.根据前述权利要求中的一项所述的方法,
其中,所述第一成分是可混合物质的混合物,和/或
其中,所述第二成分是可混合物质的混合物。
8.根据前述权利要求中的一项所述的方法,
其中,在第三方法步骤(103)中,根据所述第二成分的速率确定所述第一成分的速率,
其中,以下变量中的至少一个被考虑用于确定所述第一成分的速率:
所述至少一个测量管相对于重力的倾斜角,
所述第一成分的粘度,
所述第一成分和/或所述第二成分的质量密度,
斯托克斯数,
特性直径。
9.根据权利要求8所述的方法,
其中,借助于所述第一成分的速率以及质量密度和/或所述第二成分的质量密度以及所述第二成分的速率来确定所述介质的质量流量。
10.一种用于实现根据前述权利要求中的一项所述的方法的科里奥利测量设备,包括:
用于输送介质的至少一个测量管(10),其中,每个测量管具有入口(10.1)和出口(10.2);
至少一个激励器(12),所述至少一个激励器(12)适于激励所述测量管以执行振荡;
至少两个传感器(11),所述至少两个传感器(11)适于记录所述测量管的所述振荡;
电子测量/操作电路(77),所述电子测量/操作电路(77)适于操作所述激励器以及所述传感器,以及确定并输出质量流量或流速或密度测量值以及执行所述方法;
其中,所述测量设备尤其是包括用于容纳所述电子测量/操作电路的电子器件壳体(80)。
11.根据权利要求10所述的科里奥利测量设备,
其中,所述测量设备在所述至少一个测量管的所述入口(10.1)和所述出口(10.2)处在每种情况下包括固定装置(20),所述固定装置(20)适于在每种情况下限定外振荡节点的位置,
其中,所述固定装置包括例如至少一个板(21),所述板至少部分地包围至少一个测量管。
12.根据权利要求10或11所述的科里奥利测量设备,
其中,所述至少一个测量管在静止状态下至少局部弯曲,
其中,所述第一传感器位置在流动方向上在所述弯曲(10.4)之前或在所述弯曲的开始区域(10.41)中,并且其中,所述第二传感器位置在所述流动方向上在所述弯曲之后或在所述弯曲的结束区域(10.42)中。
CN201980041059.6A 2018-06-20 2019-05-10 用于操作科里奥利测量设备的方法和科里奥利测量设备 Pending CN112739992A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018114796.1A DE102018114796A1 (de) 2018-06-20 2018-06-20 Verfahren zum Betreiben eines Coriolis-Messgeräts sowie ein Coriolis-Messgerät
DE102018114796.1 2018-06-20
PCT/EP2019/062103 WO2019242935A1 (de) 2018-06-20 2019-05-10 Verfahren zum betreiben eines coriolis-messgeräts sowie ein coriolis-messgerät

Publications (1)

Publication Number Publication Date
CN112739992A true CN112739992A (zh) 2021-04-30

Family

ID=66530052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980041059.6A Pending CN112739992A (zh) 2018-06-20 2019-05-10 用于操作科里奥利测量设备的方法和科里奥利测量设备

Country Status (5)

Country Link
US (1) US20210285805A1 (zh)
EP (1) EP3811037B1 (zh)
CN (1) CN112739992A (zh)
DE (1) DE102018114796A1 (zh)
WO (1) WO2019242935A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115560815A (zh) * 2022-12-06 2023-01-03 沃森测控技术(河北)有限公司 一种多流量管科氏流量计

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240210227A1 (en) * 2020-03-20 2024-06-27 Endress+Hauser Flowtec Ag Method for operating a coriolis measuring device
DE102021134269A1 (de) 2021-12-22 2023-06-22 Endress+Hauser Flowtec Ag Verfahren zum Bestimmen einer charakteristischen Durchlaufzeit einer Komponente eines heterogenen Mediums in einem schwingenden Messrohr eines Coriolis-Massedurchflussmessgerätes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693654A2 (de) * 2005-02-16 2006-08-23 Krohne AG Verfahren zum Betreiben eines Coriolismassendurchflussmessgeräts
CN1890535A (zh) * 2003-12-09 2007-01-03 多相仪表公司 用于确定多相流体成分的流量的方法和流量计
CN1934425A (zh) * 2004-03-19 2007-03-21 恩德斯+豪斯流量技术股份有限公司 科里奥利质量流量测量仪表
CN101198843A (zh) * 2005-05-18 2008-06-11 恩德斯+豪斯流量技术股份有限公司 科里奥利质量流量/密度测量装置以及在该装置中补偿测量误差的方法
RU2336500C1 (ru) * 2007-02-08 2008-10-20 ОАО "Техприбор" Система измерения покомпонентного массового расхода трехкомпонентного потока нефтяных скважин
US20100281998A1 (en) * 2009-05-08 2010-11-11 Endress + Hauser Flowtec Method for detecting blockage in a cariolis flow measuring device
CN102016520A (zh) * 2008-05-01 2011-04-13 微动公司 用于确定多相流流体的一个或多个流流体特性的振动流量计
US20110184667A1 (en) * 2010-01-28 2011-07-28 Krohne Ag Method for determining at least one characteristic for the correction of measurements of a coriolis mass flowmeter
CN102187185A (zh) * 2008-10-06 2011-09-14 恩德斯+豪斯流量技术股份有限公司 在线测量仪表
US20150226590A1 (en) * 2013-02-12 2015-08-13 Endress + Hauser Flowtec Ag Coriolis Mass Flow Measuring Device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035971A1 (de) 2004-07-23 2006-02-16 Endress + Hauser Flowtec Ag Meßaufnehmer vom Vibrationstyp zum Messen von in zwei Mediumsleitungen strömenden Medien sowie In-Line-Meßgerät mit einem solchen Meßaufnehmer
US7360453B2 (en) * 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
WO2010085980A1 (de) * 2009-01-30 2010-08-05 Siemens Aktiengesellschaft Coriolis-massendurchflussmesser und verfahren zur berechnung des gasanteils in einer flüssigkeit
EP2609402B1 (en) * 2010-08-24 2021-02-17 Schneider Electric Systems USA, Inc. Multiphase flow metering

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890535A (zh) * 2003-12-09 2007-01-03 多相仪表公司 用于确定多相流体成分的流量的方法和流量计
CN1934425A (zh) * 2004-03-19 2007-03-21 恩德斯+豪斯流量技术股份有限公司 科里奥利质量流量测量仪表
EP1693654A2 (de) * 2005-02-16 2006-08-23 Krohne AG Verfahren zum Betreiben eines Coriolismassendurchflussmessgeräts
CN101198843A (zh) * 2005-05-18 2008-06-11 恩德斯+豪斯流量技术股份有限公司 科里奥利质量流量/密度测量装置以及在该装置中补偿测量误差的方法
RU2336500C1 (ru) * 2007-02-08 2008-10-20 ОАО "Техприбор" Система измерения покомпонентного массового расхода трехкомпонентного потока нефтяных скважин
CN102016520A (zh) * 2008-05-01 2011-04-13 微动公司 用于确定多相流流体的一个或多个流流体特性的振动流量计
CN102187185A (zh) * 2008-10-06 2011-09-14 恩德斯+豪斯流量技术股份有限公司 在线测量仪表
US20100281998A1 (en) * 2009-05-08 2010-11-11 Endress + Hauser Flowtec Method for detecting blockage in a cariolis flow measuring device
CN102422131A (zh) * 2009-05-08 2012-04-18 恩德斯+豪斯流量技术股份有限公司 用于检测科里奥利流量测量装置中的堵塞的方法
US20110184667A1 (en) * 2010-01-28 2011-07-28 Krohne Ag Method for determining at least one characteristic for the correction of measurements of a coriolis mass flowmeter
US20150226590A1 (en) * 2013-02-12 2015-08-13 Endress + Hauser Flowtec Ag Coriolis Mass Flow Measuring Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115560815A (zh) * 2022-12-06 2023-01-03 沃森测控技术(河北)有限公司 一种多流量管科氏流量计

Also Published As

Publication number Publication date
US20210285805A1 (en) 2021-09-16
EP3811037B1 (de) 2022-11-09
WO2019242935A1 (de) 2019-12-26
DE102018114796A1 (de) 2019-12-24
EP3811037A1 (de) 2021-04-28

Similar Documents

Publication Publication Date Title
CN112739992A (zh) 用于操作科里奥利测量设备的方法和科里奥利测量设备
US8396674B2 (en) Vibration-type measuring device
JP2859591B2 (ja) コリオリ式の質量流量検出器
KR101744477B1 (ko) 진동 유량계 및 제로 체크 방법
KR100436483B1 (ko) 코리올리 유량계용 계기 전자부품, 및 그것에 의해 사용되는 흐름 교정 계수를 검증하는 방법
US9086308B2 (en) Method for operating a coriolis mass flow rate meter and coriolis mass flow rate meter
JP2007078681A (ja) 質量流量計のテスト方法
US11255766B2 (en) Vibronic sensor and measuring assembly for monitoring a flowable medium
KR20120084255A (ko) 유체 밀도 측정 장치
US8631712B2 (en) Method for detecting plugging in a coriolis flow measuring device
EP2926096A1 (en) Detection of a change in the cross - sectional area of a fluid tube in a vibrating meter by determining a lateral mode stiffness
EP3164679A1 (en) Fluid momentum detection method and related apparatus
CN114787585A (zh) 用于操作具有至少一种液相的介质的流量测量点的方法
US20230168115A1 (en) Method for operating a coriolis measurement device
CN112534218B (zh) 确定何时校验流量计的刚度系数的方法
US11326919B2 (en) Coriolis mass flow meter having a central vibration sensor and method for determining the viscosity of the medium using Coriolis mass flow meter
CN110998252B (zh) 流量计错误总计消除装置和方法
CN112513583B (zh) 确定计量器组件的衰减特性
JP7170049B2 (ja) 溶解を監視する方法及び装置
CN112534214A (zh) 确定计量组件的阻尼
US7248974B2 (en) Measuring instrument and method of measuring flows
CA3238148A1 (en) Coriolis flowmeter external magnetic field quantification apparatus and method
WO2023239353A1 (en) Coriolis flowmeter with detection of an external magnetic field
JP2001108502A (ja) コリオリ質量流量計
HU219251B (en) Method and apparatus for compensated measurement of mass flow

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination