CN112739480A - 形成混合铝基复合涂层的方法和组合物 - Google Patents

形成混合铝基复合涂层的方法和组合物 Download PDF

Info

Publication number
CN112739480A
CN112739480A CN201980061846.7A CN201980061846A CN112739480A CN 112739480 A CN112739480 A CN 112739480A CN 201980061846 A CN201980061846 A CN 201980061846A CN 112739480 A CN112739480 A CN 112739480A
Authority
CN
China
Prior art keywords
substrate
composite coating
powder
aluminum
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980061846.7A
Other languages
English (en)
Other versions
CN112739480B (zh
Inventor
陈铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
His Majesty King Of Canada Represented By Minister Of Natural Resources Of Canada
Original Assignee
Canada Minister of Natural Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canada Minister of Natural Resources filed Critical Canada Minister of Natural Resources
Publication of CN112739480A publication Critical patent/CN112739480A/zh
Application granted granted Critical
Publication of CN112739480B publication Critical patent/CN112739480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

形成复合涂层的方法和由此形成的复合涂层。提供一种在基体的表面形成金属基复合涂层的方法。所述基体为铝合金。所述金属复合涂层通过激光沉积用包含铝、硅和石墨的填充材料在所述基体上形成。形成金属基复合涂层的微粒是在原位上用填充材料形成的。另外还提供一种通过所述激光沉积方法用在原位形成微粒而获得的金属基复合涂层。

Description

形成混合铝基复合涂层的方法和组合物
技术领域
本发明涉及用于形成铝基体金属复合涂层的方法。更具体地,本发明涉及通过激光沉积在原位形成复合涂层从而在铝合金基体上形成金属基复合材料的方法。
背景技术
铝合金拥有优越的性能,比如强度重量比大、密度低、塑性和延展性好以及耐腐蚀性好。这些合金在汽车、航天和高速火车等领域得到了广泛的应用。
然而由于硬度低和耐磨性较差,铝合金在重型环境的应用受到限制。例如,在应用于由磨损效应或热效应,以及磨损和热效应而受压的系统如发动机部件时,铝合金暴露出对功能面上额外修正的需要。因而在其他原因之外,希望能开发出先进的材料和方法技术来提高铝合金的耐磨性。
不同的表面工程技术已经被应用在铝合金上来提高耐磨性。例如,出于提高发动机气缸孔表面耐磨性的考虑,热喷涂涂层已经被广泛应用在发动机气缸孔中。然而,由于与基体较差的机械附着力和大量的孔隙,热喷涂涂层很容易脱落。
另一方面,激光表面沉积(合金化或喷镀),以下称为沉积,相比热喷涂方法拥有许多优势。事实上,激光沉积提供了厚而密的涂层,该涂层可以与基体冶金地结合,具有低应力和低变形,并具有精细的显微结构。
再则,已经证实微粒增强的铝-金属基复合材料(Al-MMCs)能显著提高铝合金的强度和硬度,从而提高耐磨性。一个典型的例子是碳化硅SiC微粒增强的铝基复合材料,这种材料在过去的20年里得到了广泛的研究,目前广泛应用于航空航天、汽车和电子工业。铝-金属基复合材料(Al-MMC)表现出了轻质、高比模量和优异的耐磨性等优良性能。
此外,当铝合金用于不能使用油类和润滑脂的高温环境时,润滑难题一直是一个问题。为了解决这个问题,石墨被作为一种固体润滑剂添加到铝合金或Al/SiC块金属基复合材料中,以形成在宽的温度范围内具有良好自润滑性能的高级混合铝-金属基复合材料(Al-MMC)。相比需要定期使用润滑剂的传统材料,自润滑金属基复合材料提供了许多改进。
与传统的整体合金相比,上述材料的一些主要缺点是:成本高,生产方法复杂。
一般来说,SiC微粒增强的铝基复合材料可以使用数种非原位方法来制造,如熔融搅拌、渗透和流变铸造技术。在微粒金属基复合材料的制造方法中,熔融搅拌法因其成本低、简单和生产率高而最为常用。在这种方法中,预热后的SiC微粒被注入铝液中,叶轮的高速旋转是熔融混合的驱动力。然而,由于增强微粒对金属熔体的可湿性较低,将其均匀分散在金属熔体中是非常困难的。而且,由于基体与增强体界面的孔隙和分离,界面结合可能被削弱。
目前,已知的制造SiC/Al合涂层的方法包括激光沉积。已知的生产大块SiC/Al金属基复合材料(SiC/Al MMC)的方法包括粉末冶金、液态铸造或气压渗透法。可惜的是,所合成的材料有许多缺点。在激光沉积过程中,SiC微粒与铝基体之间的界面反应不可避免,因而导致形成软脆的三碳化四铝(Al4C3)相。这对复合材料的力学性能是有害的。此外,Al4C3在潮湿环境中经历快速腐蚀,产生非晶态铝氧化合物,由于水合过程中体积增加在铝基中引起相当大的应变。由于Al4C3的脆性和高应力,Al4C3与基体之间及Al4C3内部经常形成裂纹。增强剂与基体之间的可湿性差是已知的非原位方法的另一个主要问题,导致在涂层中形成孔隙。
综上所述,需要改进的方法技术来合成增强剂更稳定的金属基复合材料。这种方法技术最好能在提供牢固界面结合和更均匀基体的同时带来更少的降级。
发明内容
本发明提供了一种在基体上形成金属基复合涂层的方法。
在第一方面,本发明提供一种在基体表面形成金属基复合涂层的方法,所述方法包括:
a)用高能量功源熔化所述基体表面的第一部分,以在熔化区域形成一个熔体池;
b)将填充材料加进所述熔化区域里,其中所述填充材料包含铝粉、硅粉和石墨粉;
c)将所述熔化区域和所述填充材料置于所述高能量功源下,以实现原位反应并在所述基体所述表面的所述第一部分形成一个固态沉积;
d)在所述基体所述表面的多个相邻部分上重复步骤a)到c),以提供连续的固态沉积层,从而形成所述金属基复合涂层。
在第二方面,本发明提供了一种表面的表面上的金属基复合涂层,其中所述金属基复合涂层通过以下形成:
a)用高能量功源熔化所述基体表面的第一部分,以在熔化区域形成一个熔体池;
b)将填充材料加进所述熔化区域里,其中所述填充材料包含铝粉、硅粉和石墨粉;
c)将所述熔化区域和所述填充材料置于所述高能量源下,以实现原位反应并在所述基体所述表面的所述第一部分形成一个固态沉积;
d)在所述基体所述表面的多个相邻部分上重复步骤a)到c),以提供连续的固态沉积层,形成所述金属基复合涂层。
附图说明
现参照下列图来描述本发明,其中相同的参考数字指代相同的要素,其中:
图1(a)-(b)是根据本发明一个实施例中复合涂层的微观结构的扫描电子显微镜(SEM)图像;
图2(a)-(f)是根据本发明一个实施例中复合涂层的显微结构、元素图和选定区域衍射的透射电子小孢子(TEM)图像。
具体实施方式
为了解决传统非原位方法的问题,许多原位方法技术被开发出来用于合成金属基复合材料。在这些技术中,增强剂是通过材料系统中所含元素之间的化学反应在基体中合成的。与非原位法制备的铝基复合材料相比,原位技术制备的复合材料显示出以下优点:(a)原位法制备的增强剂在基体上是热稳定的,从而在高温条件下降解更少:(b)增强剂和基体的界面干净,从而有牢固的界面弯曲;(c)原位形成的增强微粒尺寸更精细,在基体中它们的分布更均匀。
在一个方面,本发明提供了一种在基体表面形成金属基复合涂层的方法。特别地,本发明提供了一种形成以原位生成的SiC和Al4SiC4微粒来增强的自润滑铝-金属基复合涂层的方法,和一种由此制得的复合涂层。
应该清楚的是,可用于本发明的基体可以是铝合金,例如铸造A356合金。所述基体在进行本发明的涂层方法之前可以被提交到预备步骤。例如,基体的表面可以进行清洗、拉丝、喷砂,提交到超声处理或任何已知的预备技术。
填充材料用于以微粒的形式和金属基体在原位形成增强剂。所述填充材料可以是粉末的形式。所述填充材料可以是铝(Al)粉、硅(Si)粉和石墨粉的混合物。粉末粒度可为20~200μm,最好为30~50μm。混合粉末的成分可以主要由铝(按摩尔分数30%到大约65%)、硅(20%到大约50%)和石墨(10%到大约30%)组成。
在一个实施例中,填充材料粉末的混合是由混合器来完成的。然而,任何已知的混合技术或装置都可以被使用。在一个例子中,所述粉末在所述沉积方法之前要混合超过一个小时。在一种实施例中,球磨机被用于混合和研磨所述粉末超过三个小时。在所述涂层沉积于所述基体上时,可以通过给料机将所述混合粉末形式的所述填充材料送入同轴喷嘴或多边喷嘴。
在另一个实施例中,所述填充材料粉末的混合可以与所述涂层在所述基体上的沉积同时进行。为了在原位混合所述粉末,可以使用三台粉末给料机,同轴喷嘴或多向喷嘴可以有多个入口。当使用三入口喷嘴时,至少一个入口可以用于供给所述铝粉。另外两个进料口可分别用于供给硅粉和石墨粉。可以通过调整单种粉末的供给速率来调整组合物中各种填充材料之间的比例。
本发明的方法还包括将所述基体的所述表面的一部分置于高能量功源以使所述表面的一部分浅层熔化从而在一个熔化区域形成一个熔体池的步骤。然后,所述填充材料会以预先混合的粉末的形式或通过如上所述的分离入口被送入所述熔化区域。
所述填充材料被添加到所述熔化区域后,带有已添加填充材料的所述熔体池被在高能量源下进一步暴露以实现原位反应并在所述基体所述表面的所述部分形成一个固态沉积。所述反应涉及在原位形成SiC微粒和Al4SiC4板或类板,这为所述基体提供了用于所述表面固态沉积成型的增强剂。所述固态沉积可以是复合材料珠的形式。然后可以重复所述方法来形成多个相邻的珠,这些多个相邻的珠在所述基体上形成一个连续的金属基复合材料层。这种制作连续层的方法可以重复多次,从而用多个层来获得有一定厚度的所述金属基复合涂层。
在另一个实施例中,所述方法和所述组合物可以被用来逐层沉积从头开始生成铝基复合零件或者包含原位SiC和Al4SiC4增强剂的原型,而不是在所述基体上产生涂层。从而提供了生成复杂形状、功能梯度或客户定制的零件的机会,这些零件可用于各种工程应用。
本发明方法中所述的高能量功源可以是激光器。在一些实施例中,激光功率可以是100W到5000W,最好是500W到3000W。激光焦点的尺寸可以是1毫米到5毫米,但最好是2毫米到3毫米。沉积速度可以是2mm/s到15mm/s,最好是5mm/s到10mm/s。
在另一个实施例中,可以采用预先混合铝-硅-石墨粉的粉末层融合3D打印技术来生产包含原位SiC和Al4SiC4增强剂的部件或原型,而不是用铝-硅-石墨粉的激光粉末沉积方法。粉末粒度可以相应地降低到粉末层融合3D打印方法的标准范围。
在另一实施例中,部分石墨粉可被石墨烯或碳纳米管代替。
在另一实施例中,除铝、硅、石墨外,还可在所述粉末中加入少量的合金元素,比如铜、镁、锰、镍、钛、铬、铁和硼,来形成更强的铝合金基体。
在另一实施例中,为了防止由于碳扩散到热影响区域和铝发生反应而在所述热影响区域形成Al4C3,一种最低含硅重量百分比20%的铝硅混合粉(没有石墨)可以被用于激光沉积中的第一层。
本发明方法所形成的金属基复合涂层提供了更稳定的增强微粒,导致更少的降解。此外,原位形成的增强剂尺寸更细,在基体中分布更均匀。本发明方法形成的增强剂-基体界面提供了牢固的界面结合。最后,金属基复合涂层中石墨的存在给予基体自润滑性能。
示例
将名义成分为Al-7%Si-Mg-Fe的商品A 356铸造合金板(50mm x 100mm x 4mm)用作基体。在激光沉积之前,用不锈钢刷毛刷洗基体表面,并在丙酮超声波清洗器中清洗20分钟。用混合机制作Al-12Si粉(44-105μm,METCOTM 52C-NS),硅粉(44-200μm)和石墨粉(78-150μm)的混合粉末,实现成分为Al-Si重量百分比32%-C重量百分比11%(AlSi28C21摩尔比)。所述混合粉末被储存在60℃的烘箱中以防止粉末受潮。使用3kW的连续波光纤激光器(IPG YLS-3000)以3kW的激光功率和8mm/s的速度进行激光沉积。在使用200mm聚焦透镜在焦点处进行沉积的过程中,将粉末通过同轴喷嘴(Fraunhofer COAXTM 8)在目标区域外距离15mm处供给到所述熔体池中。焦点处的射束点尺寸为3mm。氩气分别以20l/min和2l/min的流速用作保护气和运载气体,以防止所述熔体池氧化。
沉积后,将样品切割和抛光以进行金相评估和描述。从图1(a)可以看出,原位形成的SiC的体积百分比估计约为25%至35%。原位形成的SiC显示出块状的和拉长的两种SiC形态。大多数原位形成的SiC微粒的尺寸在1-6μm的范围内,有些在纳米级,而拉长的SiC长10-45μm,宽2-5μm。如图1(b)所示,可以观察到部分分解的石墨粉和再沉淀的羽毛状石墨。同样,除了原位形成的SiC之外,Al4SiC4相也在原位形成。最重要的是,与已知的非原位Al-MMC涂层相反,本方法未显示出Al(Si)基体与原位形成的SiC微粒之间的有害反应产物,如图2(a)-(f)。图2(a)-(f)是所得涂层的微观结构图像。
硬度测试表明,所述涂层的平均硬度为HV 180,几乎是未处理的基体A 356T6基体硬度(HV 99)的两倍。根据ASTM G99的针-盘磨损测试表明,所述涂层比未处理的基体A356T6约好3.5倍。另外,相比于未处理的A356 T6基体的摩擦系数0.6,带有本发明所述涂层的基体的摩擦系数降低至0.5以下。
理解本发明的人现在可以想到上述内容的替代结构和实施例或对以上的变化,它们均落入所附权利要求书限定的本发明范围内。

Claims (12)

1.一种在基体表面形成金属基复合涂层的方法,所述方法包括:
a)用高能量功源熔化所述基体表面的第一部分,以在熔化区域形成一个熔体池;
b)将填充材料加进所述熔化区域里,其中所述填充材料包含铝粉、硅粉和石墨粉;
c)将所述熔化区域和所述填充材料置于所述高能量功源下,以实现原位反应并在所述基体所述表面的所述第一部分形成一个固态沉积;
d)在所述基体所述表面的多个相邻部分上重复步骤a)到c),以提供连续的固态沉积层,从而形成所述金属基复合涂层。
2.根据权利要求1所述的方法,其中所述基体为铝合金。
3.根据权利要求1所述的方法,其中所述高能量源为一个激光器。
4.根据权利要求1所述的方法,其中所述填充材料在被添加进所述熔化区域以前被混合。
5.根据权利要求1所述的方法,其中所述填充材料通过至少一个给料喷嘴添加。
6.根据权利要求1所述的方法,其中所述填充材料各自通过分离的给料喷嘴入口添加。
7.根据权利要求1所述的方法,其中所述填充材料有以下的摩尔分数成分比:
-铝大约30%到大约65%;
-硅大约20%到大约50%;
-石墨大约10%到大约30%。
8.根据权利要求1所述的方法,其中步骤c)中的所述原位反应提供SiC微粒和Al4SiC4板的形成。
9.根据权利要求8所述的方法,其中所述SiC微粒和所述Al4SiC4板为铝基体提供了形成所述固态沉积的增强剂。
10.根据权利要求1所述的方法,进一步包括重复步骤a)到d)以在所述连续层上形成一个第二层。
11.根据权利要求1所述的方法,进一步包括多次重复步骤a)到d)以在所述连续层上形成多个层。
12.一种表面的表面上的金属基复合涂层,其中所述金属基复合涂层由以下步骤形成:
a)用高能量功源熔化所述基体表面的第一部分,以在熔化区域形成一个熔体池;
b)将填充材料加进所述熔化区域里,其中所述填充材料包含铝粉、硅粉和石墨粉;
c)将所述熔化区域和所述填充材料置于所述高能量源下,以实现原位反应并在所述基体所述表面的所述第一部分形成一个固态沉积;
d)在所述基体所述表面的多个相邻部分上重复步骤a)到c),以提供连续的固态沉积层,形成所述金属基复合涂层。
CN201980061846.7A 2018-09-20 2019-09-18 形成混合铝基复合涂层的方法和组合物 Active CN112739480B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862734242P 2018-09-20 2018-09-20
US62/734,242 2018-09-20
PCT/CA2019/051321 WO2020056505A1 (en) 2018-09-20 2019-09-18 Process and composition for formation of hybrid aluminum composite coating

Publications (2)

Publication Number Publication Date
CN112739480A true CN112739480A (zh) 2021-04-30
CN112739480B CN112739480B (zh) 2023-05-02

Family

ID=69886796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980061846.7A Active CN112739480B (zh) 2018-09-20 2019-09-18 形成混合铝基复合涂层的方法和组合物

Country Status (7)

Country Link
US (1) US11453088B2 (zh)
EP (1) EP3852959A4 (zh)
JP (1) JP7394113B2 (zh)
KR (1) KR20210060437A (zh)
CN (1) CN112739480B (zh)
CA (1) CA3108090C (zh)
WO (1) WO2020056505A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151820B (zh) * 2021-03-03 2023-01-20 江苏翰纳激光科技有限公司 一种以膨胀石墨为碳源原位合成碳化物增强增韧金属基复合涂层的制备方法
CN113878119A (zh) * 2021-09-18 2022-01-04 航发优材(镇江)增材制造有限公司 一种高铁用密接车钩磨损的激光直接沉积修复方法
CN113878120A (zh) * 2021-09-18 2022-01-04 航发优材(镇江)增材制造有限公司 一种飞机用滚筒槽尖磨损的激光直接沉积修复工艺方法
CN114774751B (zh) * 2021-10-21 2023-05-09 北京机科国创轻量化科学研究院有限公司 一种激光熔覆高红硬性粉末及热冲压模具熔覆方法
CN114086175B (zh) * 2021-11-24 2022-12-23 上海交通大学 一种提高激光熔化沉积铝合金成形件强韧性的方法
WO2023168615A1 (en) * 2022-03-09 2023-09-14 Hui Chen In-situ ultrasound aided laser directed-energy-deposition method and device for aluminium alloy powder process
CN115383129B (zh) * 2022-08-16 2024-03-19 燕山大学 原位合成金属间化合物增强铝基梯度复合材料制备方法及复合材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080085368A1 (en) * 2006-10-10 2008-04-10 Gauthier Ben M Method and Apparatus for Coating a Substrate
CN104480460A (zh) * 2014-11-24 2015-04-01 北京航空航天大学 一种钛合金表面激光熔覆原位自生制备耐磨自润滑涂层
CN105925978A (zh) * 2016-05-17 2016-09-07 武汉大学 一种铝基复合材料基板及其制备方法
CN106350816A (zh) * 2016-11-18 2017-01-25 无锡明盛纺织机械有限公司 一种铝合金激光熔覆Si‑Cr‑B‑W‑Al耐磨涂层的方法
CN106756985A (zh) * 2016-11-18 2017-05-31 无锡明盛纺织机械有限公司 一种铝合金激光熔覆SiC‑Si‑Cr‑B‑Al耐磨涂层的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1248691A4 (en) 1999-11-16 2003-01-08 Triton Systems Inc LASER PRODUCTION OF DISCONTINUOUSLY REINFORCED METAL-MATRIX COMPOSITE
KR100427975B1 (ko) * 2001-08-01 2004-04-27 한국기계연구원 내마모성이 우수한 알루미늄합금 및 그 제조방법
GB2465950B (en) * 2007-10-10 2012-10-03 Ronald Peter Whitfield Laser cladding device with an improved nozzle
US8618434B2 (en) * 2010-03-22 2013-12-31 Siemens Energy, Inc. Superalloy repair welding using multiple alloy powders
CN106893880A (zh) 2017-03-13 2017-06-27 陕西科技大学 原位热压生成碳化硅颗粒增强铝基复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080085368A1 (en) * 2006-10-10 2008-04-10 Gauthier Ben M Method and Apparatus for Coating a Substrate
CN104480460A (zh) * 2014-11-24 2015-04-01 北京航空航天大学 一种钛合金表面激光熔覆原位自生制备耐磨自润滑涂层
CN105925978A (zh) * 2016-05-17 2016-09-07 武汉大学 一种铝基复合材料基板及其制备方法
CN106350816A (zh) * 2016-11-18 2017-01-25 无锡明盛纺织机械有限公司 一种铝合金激光熔覆Si‑Cr‑B‑W‑Al耐磨涂层的方法
CN106756985A (zh) * 2016-11-18 2017-05-31 无锡明盛纺织机械有限公司 一种铝合金激光熔覆SiC‑Si‑Cr‑B‑Al耐磨涂层的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU: "Laser processing to create in-situ Al-SiCp surface metal matrix composites", 《JOURNAL OF MATERIALS SCIENCE》 *
李世伟: "基于铝粉为原料制备的三元碳化物Al4SiC4的研究进展", 《陶瓷科学与艺术》 *

Also Published As

Publication number Publication date
JP2022500551A (ja) 2022-01-04
JP7394113B2 (ja) 2023-12-07
US20210316398A1 (en) 2021-10-14
CA3108090C (en) 2023-07-04
CN112739480B (zh) 2023-05-02
KR20210060437A (ko) 2021-05-26
US11453088B2 (en) 2022-09-27
EP3852959A4 (en) 2022-02-09
WO2020056505A1 (en) 2020-03-26
CA3108090A1 (en) 2020-03-26
EP3852959A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
CN112739480B (zh) 形成混合铝基复合涂层的方法和组合物
US8893954B2 (en) Friction stir fabrication
Reddy et al. Friction surfacing: novel technique for metal matrix composite coating on aluminium–silicon alloy
US7553563B2 (en) Composite material consisting of intermetallic phases and ceramics and production method for said material
US20200230746A1 (en) Composite components fabricated by in-situ reaction synthesis during additive manufacturing
JP2004510050A (ja) 機械的合金化した粉末のピストンリング用熱塗布コーティング
CN101139709A (zh) 一种用于钛合金表面获得高适配耐磨钛基复合材料的方法
Gui et al. Aluminum hybrid composite coatings containing SiC and graphite particles by plasma spraying
Kalra et al. Processing and characterization of hybrid metal matrix composites
CN1929991B (zh) 耐磨材料
Tailor et al. A review on plasma sprayed Al-SiC composite coatings
Sachit et al. Effect of particle size on mechanical and tribological behavior of LM4/SiCp based MMC
RU2350441C2 (ru) Способ получения методом наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне
de Rojas Candela et al. Wear behavior of additively manufactured 316L/SiCp composites with up to 60 wt% SiCp
JP6866964B1 (ja) Ni基合金、Ni基合金粉末、Ni基合金部材、およびNi基合金部材を備えた製造物
CN115976390B (zh) 镍基碳化钨复合合金粉及其应用以及镍基碳化钨复合涂层的制备方法
Mahamani et al. Synthesis, quantitative elemental analysis, microstructure characteristics and micro hardness analysis of AA2219 aluminum alloy matrix composite reinforced by in-situ TiB 2 and sub-micron ZrB 2 particles
RU2205094C2 (ru) Способ электронно-лучевой наплавки
KR20100113816A (ko) 가스분무공정을 이용한 금속복합분말의 제조방법
EP0513238B1 (en) Arc spraying of rapidly solidified aluminum base alloys
Al-Hamdani et al. Deposition of Multi-Ceramic Aluminium-Matrix Composite Coating by Direct Laser Deposition
JP4452779B2 (ja) 被膜形成材料および金属材料の製造方法
Gunasekaran et al. The Effect of Various Reinforcements on Aluminium Alloy (Al7075)–A Review
Emamian et al. Study on laser parameters effect on morphology of in-situ F e-TiC particles deposition on mild steel using laser cladding process
Kumaran DESIGN, DEVELOPMENT AND MECHANICAL CHARACTERIZATION OF POLYMER REINFORCED METAL MATRIX COMPOSITES

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20230419

Address after: Booth street, Ottawa, Ontario, Canada

Applicant after: His Majesty the King of Canada, represented by the Minister of Natural Resources of Canada

Address before: Booth street, Ottawa, Ontario, Canada

Applicant before: HER MAJESTY THE QUEEN IN RIGHT OF CANADA as represented by THE MINISTER OF NATURAL RESOURCES

TA01 Transfer of patent application right