CN112733285B - 一种确定大断面含锰合金钢连铸拉速的方法 - Google Patents

一种确定大断面含锰合金钢连铸拉速的方法 Download PDF

Info

Publication number
CN112733285B
CN112733285B CN202011538104.XA CN202011538104A CN112733285B CN 112733285 B CN112733285 B CN 112733285B CN 202011538104 A CN202011538104 A CN 202011538104A CN 112733285 B CN112733285 B CN 112733285B
Authority
CN
China
Prior art keywords
alloy steel
manganese
continuous casting
blank
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011538104.XA
Other languages
English (en)
Other versions
CN112733285A (zh
Inventor
赵新凯
王德龙
刘世义
尚明
丁秀中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Shouguang Juneng Special Steel Co ltd
Original Assignee
Shandong Shouguang Juneng Special Steel Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Shouguang Juneng Special Steel Co ltd filed Critical Shandong Shouguang Juneng Special Steel Co ltd
Priority to CN202011538104.XA priority Critical patent/CN112733285B/zh
Publication of CN112733285A publication Critical patent/CN112733285A/zh
Application granted granted Critical
Publication of CN112733285B publication Critical patent/CN112733285B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/12Timing analysis or timing optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本发明涉及到慢速凝固领域,解决现有技术中存在的大断面含锰合金钢连铸拉速的问题,降低表面微裂纹的敏感性。本发明所述的方法包括如下步骤:建立初生坯壳“晶粒优势区”图,将该模型作为优化参数的工具,对各生产参数进行搭配分析,获得拉速和铜管长度关系的关键控制参数。本发明方法简洁可行,按照本发明的方法确定各关键控制参数的配合关系,减少了工业试验周期,大大降低了试验成本,有效抑制了大断面含锰合金钢表面微裂纹,具有显著经济效益。

Description

一种确定大断面含锰合金钢连铸拉速的方法
技术领域
本发明属于冶金技术领域,涉及一种确定大断面含锰合金钢连铸拉速的方法。
背景技术
在连铸生成过程中,铸坯表面缺陷往往对下游工序造成严重影响,甚至有的缺陷会遗传至成材。概括来说,这些表面缺陷包括纵裂、横裂、表裂、角裂、皮下裂纹等等,这些裂纹往往在生成中不易发现,呆成材检验或成品使用中才暴露出来,造成的直接或间接损失不可估量。这些缺陷中,以横裂和表裂的危害最为严重,因为这两张缺陷往往隐藏在铸坯氧化铁皮之下,深度0.1-5mm,呈横向或无方向性,无法宏观辨识,导致无法修磨处理。
中碳含锰合金钢为横裂和表裂的易发钢种,当该钢种包含微合金化元素后,裂纹敏感性会大大增强。原因在于,较高的锰含量使包晶点左移,导致δ铁素体转变的稳定奥氏体温度升高,晶粒极易发生长大。坯料凝固过程中,微合金化元素(主要以Ti(CN)和AlN为主)易在粗大的晶粒晶界位置析出,诱发先共析铁素体的析出,导致晶界脆性,在弯曲或矫直过程中形成表面微裂纹。在连铸行业中,小型断面的坯料,因表面晶粒较为细密,表面微裂纹缺陷不明显,而大型断面坯料,因表层凝固凝固速率较慢,表层晶粒具备长大的条件,导致表面微裂纹的现象较为突出。目前行业内,利用大断面铸机生产含锰合金钢的企业,往往受表面裂纹问题的困扰。
目前针对这一问题,主要开展的工作有二冷副切工艺、大倒角结晶器工艺、足辊区强冷工艺、优化保护渣工艺等等。这些工艺的出发点各不相同,二冷副切和大倒角结晶器工艺主要是提高角部温度,避开第三脆性“口袋”;足辊区强冷工艺的出发点是高冷却速率使得微合金化元素呈细小、弥散状析出,从而抑制先共析铁素体的析出。但是这些工艺也有局限性,一方面这些工艺在宽厚板上取得了一定效果,但是在方矩型坯上效果甚微;另一方面这些工艺也有使用局限性。例如,足辊区强冷工艺会带来冷却不均问题,特别是大断面坯料,结果往往适得其反。保护渣技术是各企业解决含锰合金钢表面微裂纹的主要技术手段,通过大量实践总结发现,保护渣技术改善效果存在极限,基本消除的目标无法达到,此外存在着容易反复发生的弊端。
发明内容
为了克服以上技术的不足,本发明总结出了一种控制大断面含锰合金钢连铸坯表面微裂纹的方法。经过大量实践,发现大断面坯料存在明显的晶粒粗化现象,极容易产生表面微裂纹,晶粒粗化的主要原因是初始坯壳长时间处在> 1200℃,该温度范围恰好处在奥氏体晶粒敏感长大范围内,导致晶粒充分发生长大、熟化。为了克服这一现象,本发明所采取的技术方案是:一种确定大断面含锰合金钢连铸拉速的方法,利用拉速控制铸坯表层晶粒处于“晶粒优势区”,从而降低其裂纹敏感性,
建立初生坯壳“晶粒优势区”图,将“晶粒优势区”图用做工艺优化的工具;根据“晶粒优势区”图,确定合理拉速,抑制坯壳晶粒再结晶粗化。
进一步地,建立初生坯壳“晶粒优势区”图步骤1中,通过传热计算,提取固定工况下凝固前沿区域冷却速率(T*)。
进一步地,建立初生坯壳“晶粒优势区”图步骤2中,通过与步骤1耦合微观偏析计算,提取固定工况下凝固前沿奥氏体稳定温度(Tγ)。
进一步地,建立初生坯壳“晶粒优势区”图步骤3中,实际测量表面横向深度10mm下,该固定工况下铸坯表层的等效晶粒尺寸(D)。
进一步地,建立初生坯壳“晶粒优势区”图步骤4中,将T*、Tγ和 D三者信息,按照复合指数函数的形式统一在一个二维Tγ—T*图上,其中D用等值线的形式体现。
在此基础上,利用“晶粒优势区”图,可以对关键控制参数铜管(坯壳) 长度和拉速进行辩证分析,确定拉速和铜管(坯壳)长度之间的关系。
所述的一种确定大断面含锰合金钢连铸拉速的方法,其特征在于:按照重量百分比,碳含量在0.15%-0.85%范围内,锰含量在0.3%-1.8%范围内;适用的坯型为断面面积为≥300×300mm2的方矩形坯或
Figure BDA0002853774520000021
的圆坯。
与现有技术相比,本发明的有益效果为:本发明跳出了常规的细化晶粒、抑制析出物、抑制先共析铁素体、提高矫直温度等传统思路,从最本质的晶粒晶粒敏感区入手,控制拉钢时间,避免晶粒长时间处于敏感区,从而发生异常长大;本发明利用“晶粒敏感区”图确定关键的控制参数,大大降低了寻求最优参数的时间和实践成本;本发明避免了采用强冷方式带来的其它缺陷,降低了足辊喷淋区对水流、水压、支管路等喷淋装置的机械要求,大大降低了生成或改造成本。本专利方法是解决此类表面微裂纹问题最经济和简捷的方式。
附图说明
图1晶粒优势区示意图
图2拉速变动下的晶粒长大
图3拉速与铜管长度示意图
具体实施方式
为了本领域技术人员理解、实施本发明,下面结合实例对本发明进一步的详细描述。需要说明的是,本描述仅用于说明和解释本发明,不限定本发明。
发明所针对的钢种为,按照重量百分比,碳含量在0.15%-0.85%范围内,锰含量在0.3%-1.8%范围内;适用的坯型为断面面积为≥300×300mm2的方矩形坯或
Figure BDA0002853774520000031
的圆坯。以Φ600断面为例,生产中采用转炉炼钢、LF 精炼、VD精炼、大圆坯连铸、铸坯入坑缓冷工艺。生产中采取常规控制措施,包括:炼钢工序防止钢水过氧化、LF精炼工序防止增碳、精确控制成分波动(目标±0.01%)、VD工序严格控制软吹氩强度、连铸工序规范中包烘烤和中包覆盖剂加入、含锰用保护渣、采用液面自控和自动加渣等等。其中,使用铜管有效长度780mm,厚度为38mm。
在以上生产条件下,采用有限差分法建立一维凝固传热数学模型,并将数学模型在50mm厚的计算区域上进行离散化,带入边界条件进行计算;在计算过程中提取并存储凝固前言数据,沿着拉速方向提取固液相线温度和凝固时间,从而确定各位置处的平均冷却速率(T*);采用现场取样的方式,制作铸坯表面10mm处的金相试样,按照国标要求腐蚀金相金相晶粒度以及统计多个视场下的奥氏体晶粒尺寸,经标准统计方法获得铸坯表层的等效晶粒尺寸(D);在利用有限差分法法进行计算的过程中,带入标准微观偏析模型,获得凝固前沿的偏析元素含量,从而计算获得稳定奥氏体温度(Tγ)。三者信息按照复合指数函数的形式统一在一个二维Tγ—T*图上。按照以上工艺条件,选择的回归数学模型为
Figure BDA0002853774520000041
回归的A为10.5,B为11044,如图1所示。
将固定的生产工艺条件下的二维Tγ—T*图制作成“晶粒优势区”图,利用“晶粒优势区”图,对各生产参数进行搭配分析。在以上生产条件下发现铜管长度和拉速的辩证关系最为密切,图2明显的显示出提高拉速在一定范围内可以起到抑制晶粒长大的作用。将两者的关系进行生产断面、铜管长度和拉速的系列分析,获得图3所示的示意图,
该示意图对连铸机的设计和使用具有重要参考意义。例如,根据以上生成条件,可以发现对于长度为800mm长的铜管,Φ600钢种的拉速至少需要提高至 0.29m/min,才进入晶粒优势区。同时,也可以看出连铸机设计时,考虑到生产条件的制约,采用0.25的拉速,结晶器铜管长度<670mm即可。
应当理解的是,本说明书未详细阐述的部分均属于现有技术应当理解,这些实施例的用途仅用于说明本发明而非意欲限制本发明的保护范围。此外,也应理解,在阅读了本发明的技术内容之后,本领域技术人员可以对本发明作各种改动、修改和/或变型,所有的这些等价形式同样落于本申请所附权利要求书所限定的保护范围之内。

Claims (3)

1.一种确定大断面含锰合金钢连铸拉速的方法,其特征在于:建立初生坯壳“晶粒优势区”图,将“晶粒优势区”图用做工艺优化的工具;根据“晶粒优势区”图,确定合理拉速,抑制坯壳晶粒再结晶粗化;其中,“晶粒优势区”图建立步骤如下:
步骤1,通过传热计算,提取固定工况下凝固前沿区域冷却速率T*
步骤2,通过与步骤1耦合微观偏析计算,提取固定工况下凝固前沿奥氏体稳定温度Tγ
步骤3,实际测量表面横向深度10mm下,该固定工况下铸坯表层的等效晶粒尺寸D;
步骤4,将T*、Tγ和D三者信息,按照复合指数函数的形式统一在一个二维Tγ—T*图上,其中D用等值线的形式体现。
2.根据权利要求1所述的一种确定大断面含锰合金钢连铸拉速的方法,其特征在于:利用“晶粒优势区”图,对关键控制参数铜管长度和拉速进行辩证分析,确定拉速和铜管长度之间的关系。
3.根据权利要求2所述的一种确定大断面含锰合金钢连铸拉速的方法,其特征在于:所述含锰合金钢,按照重量百分比,碳含量在0.15%-0.85%范围内,锰含量在0.3%-1.8%范围内;适用的坯型为断面面积为≥300×300mm2的方矩形坯或≥φ400mm的圆坯。
CN202011538104.XA 2020-12-23 2020-12-23 一种确定大断面含锰合金钢连铸拉速的方法 Active CN112733285B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011538104.XA CN112733285B (zh) 2020-12-23 2020-12-23 一种确定大断面含锰合金钢连铸拉速的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011538104.XA CN112733285B (zh) 2020-12-23 2020-12-23 一种确定大断面含锰合金钢连铸拉速的方法

Publications (2)

Publication Number Publication Date
CN112733285A CN112733285A (zh) 2021-04-30
CN112733285B true CN112733285B (zh) 2022-10-11

Family

ID=75604428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011538104.XA Active CN112733285B (zh) 2020-12-23 2020-12-23 一种确定大断面含锰合金钢连铸拉速的方法

Country Status (1)

Country Link
CN (1) CN112733285B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598339A (ja) * 1991-10-09 1993-04-20 Kawasaki Steel Corp 方向性けい素鋼素材の溶製方法
JP2007181861A (ja) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd 連続鋳造鋳片
JP2013052419A (ja) * 2011-09-05 2013-03-21 Nippon Steel & Sumitomo Metal Corp 大断面鋳片の連続鋳造方法
CN104729962A (zh) * 2015-02-13 2015-06-24 西北工业大学 Gh4169合金锻件晶粒度分析及预测方法
CN104732012A (zh) * 2015-02-13 2015-06-24 西北工业大学 Gh4169合金锻件晶粒度与锻造热力参数关系的建立方法
CN106694834A (zh) * 2016-11-16 2017-05-24 北京科技大学 一种基于钢种凝固特性与组织演变规律的微合金钢连铸冷却控制方法
CN109147873A (zh) * 2018-07-13 2019-01-04 江西理工大学 一种预测微合金钢焊接粗晶区晶粒尺寸的方法
CN110405172A (zh) * 2019-08-16 2019-11-05 山东寿光巨能特钢有限公司 一种控制中碳CrMo钢大圆坯1/2R碳偏析的方法
WO2020213719A1 (ja) * 2019-04-17 2020-10-22 日本製鉄株式会社 チタン合金板、チタン合金板の製造方法、銅箔製造ドラム及び銅箔製造ドラムの製造方法
CN111893267A (zh) * 2020-07-28 2020-11-06 西安建筑科技大学 一种明确考量组织目标要求的加热参数制定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797895B1 (ko) * 2006-12-22 2008-01-24 성진경 표면 (100) 면 형성 방법, 이를 이용한 무방향성 전기강판의 제조 방법 및 이를 이용하여 제조된 무방향성 전기강판
JP4445561B2 (ja) * 2008-07-15 2010-04-07 新日本製鐵株式会社 鋼の連続鋳造鋳片およびその製造方法
JP5287679B2 (ja) * 2009-11-17 2013-09-11 新日鐵住金株式会社 連続鋳造によって製造される薄膜素材の材料設計方法及び材料設計装置
CN102205402A (zh) * 2011-04-24 2011-10-05 大连理工大学 一种连铸结晶器传热与铸坯凝固并行计算方法
CN105964958A (zh) * 2016-07-22 2016-09-28 东北大学 一种渐变曲率斜长倒角结晶器及其设计方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598339A (ja) * 1991-10-09 1993-04-20 Kawasaki Steel Corp 方向性けい素鋼素材の溶製方法
JP2007181861A (ja) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd 連続鋳造鋳片
JP2013052419A (ja) * 2011-09-05 2013-03-21 Nippon Steel & Sumitomo Metal Corp 大断面鋳片の連続鋳造方法
CN104729962A (zh) * 2015-02-13 2015-06-24 西北工业大学 Gh4169合金锻件晶粒度分析及预测方法
CN104732012A (zh) * 2015-02-13 2015-06-24 西北工业大学 Gh4169合金锻件晶粒度与锻造热力参数关系的建立方法
CN106694834A (zh) * 2016-11-16 2017-05-24 北京科技大学 一种基于钢种凝固特性与组织演变规律的微合金钢连铸冷却控制方法
CN109147873A (zh) * 2018-07-13 2019-01-04 江西理工大学 一种预测微合金钢焊接粗晶区晶粒尺寸的方法
WO2020213719A1 (ja) * 2019-04-17 2020-10-22 日本製鉄株式会社 チタン合金板、チタン合金板の製造方法、銅箔製造ドラム及び銅箔製造ドラムの製造方法
CN110405172A (zh) * 2019-08-16 2019-11-05 山东寿光巨能特钢有限公司 一种控制中碳CrMo钢大圆坯1/2R碳偏析的方法
CN111893267A (zh) * 2020-07-28 2020-11-06 西安建筑科技大学 一种明确考量组织目标要求的加热参数制定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种新型镍基合金的热变形行为;胡少梅等;《金属热处理》;20171225;第42卷(第12期);全文 *
新型镍基粉末高温合金的热变形行为;吴凯等;《稀有金属材料与工程》;20110415(第04期);全文 *

Also Published As

Publication number Publication date
CN112733285A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN102626769A (zh) 超级双相不锈钢离心泵泵体铸件制作工艺
CN106825478B (zh) 一种含硼钢板坯角部裂纹的控制方法
CN104213033A (zh) 高强度高塑性60钢热轧盘条及其生产方法
CN103586433A (zh) 一种提高连铸板坯头和尾坯探伤合格率的方法
CN103397250B (zh) 大单重特厚q460级别高强度结构钢板及制造方法
CN103173685B (zh) 一种高强度锯片钢卷的生产方法
CN102899449B (zh) 一种特厚超探伤标准钢板生产工艺
CN104190740B (zh) 热轧无缝钢管管坯的生产方法
CN104525886A (zh) 一种改善铸坯边角部裂纹缺陷的方法
CN114032442B (zh) 一种高均质碳素盘条用200方连铸坯的制备方法
CN112170486B (zh) 宽钢带铁铬铝合金热轧钢卷的制造方法
CN112605353A (zh) 一种超大型立式连铸坯及生产方法、锻件及生产方法
CN104018071A (zh) 低碳当量高韧性q420e钢板及其生产方法
CN104250681B (zh) 一种中厚钢板缓冷工艺
CN112733285B (zh) 一种确定大断面含锰合金钢连铸拉速的方法
CN109317628A (zh) Yq450nqr1乙字钢大方坯角部裂纹控制方法
CN111363972A (zh) 耐候钢q355nhd的生产方法
CN105624540A (zh) 30CrMo圆管坯钢铸坯的等轴晶率控制方法
CN104226939A (zh) 一种连铸板坯倒角结晶器窄面铜板倒锥度工艺
CN109175279A (zh) Yq450nqr1乙字钢大方坯连铸生产方法
CN109332619A (zh) Yq450nqr1乙字钢大方坯坯壳质量控制方法
CN113145817B (zh) 一种控制含锰钢大圆坯表面微裂纹的方法
CN111482569B (zh) 一种连铸板坯皮下裂纹缺陷的控制方法
CN103862006B (zh) 一种判断连铸板坯的皮下裂纹缺陷的方法
CN114850423B (zh) 一种中碳锰钢连铸大方坯角部裂纹的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant