CN112725007A - 处理烃类裂解炉管内表面的方法 - Google Patents

处理烃类裂解炉管内表面的方法 Download PDF

Info

Publication number
CN112725007A
CN112725007A CN201911030065.XA CN201911030065A CN112725007A CN 112725007 A CN112725007 A CN 112725007A CN 201911030065 A CN201911030065 A CN 201911030065A CN 112725007 A CN112725007 A CN 112725007A
Authority
CN
China
Prior art keywords
furnace tube
cracking furnace
treatment
cracking
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911030065.XA
Other languages
English (en)
Other versions
CN112725007B (zh
Inventor
王申祥
柳颖
郏景省
王红霞
王国清
张利军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN201911030065.XA priority Critical patent/CN112725007B/zh
Publication of CN112725007A publication Critical patent/CN112725007A/zh
Application granted granted Critical
Publication of CN112725007B publication Critical patent/CN112725007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/10Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
    • B24B31/116Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using plastically deformable grinding compound, moved relatively to the workpiece under the influence of pressure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/11Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of chromium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及石油化工领域,公开了一种处理烃类裂解炉管内表面的方法,方法包括以下步骤:(1)对烃类裂解炉管内表面进行挤压研磨处理,得到预处理裂解炉管;(2)常压下,在H2气氛中,对预处理裂解炉管进行热处理,得到热处理裂解炉管;(3)常压下,在处理气体存在下,对热处理裂解炉管的内表面进行氧化处理。该方法能够在烃类裂解炉管内表面形成致密地、厚度更薄且不易剥落的氧化物保护层,使得焦炭在裂管炉内表面的沉积显著减少,并且采用该方法处理得到的氧化物保护层的寿命更长,能够满足裂解炉管长期使用、反复升温等的需求。

Description

处理烃类裂解炉管内表面的方法
技术领域
本发明涉及石油化工领域,具体地,涉及一种处理烃类裂解炉管内表面的方法。
背景技术
乙烯是石油化学工业的主要产品之一,乙烯装置生产的三烯(乙烯、丙烯、丁烯)和三苯(苯、甲苯、二甲苯)是石油化学工业的基础原料。乙烯产量的高低是衡量一个国家石油化工发展水平的主要标志。目前生产乙烯的方法以管式炉裂解技术为主,它在世界范围内得到了广泛应用。
管式炉裂解炉辐射段炉管的结焦,是限制管式裂解炉生产周期的主要因素。烃类高温热裂解生产乙烯时,管式裂解炉辐射段炉管内表面伴随着焦炭的形成。这种高温条件下形成的焦炭是热的不良导体,会使炉管传热阻力增大、炉管内径变小,导致炉管外壁表面温度升高、炉管内流体压降增大,甚至堵塞管道,影响操作。炉管外表温度达到炉管材质所能承受的最高温度或者压降达到裂解炉的最大压降时,裂解炉必须进行清焦,清除管内的焦炭以后才能再次进行生产。清焦次数的增加,会对乙烯及副产品产量、燃料消耗、炉管寿命等带来不利因素。
目前,国内外主要通过等离子喷涂、烧结、磁控溅射、化学(或物理)气相沉积等外施加元素的方法来制备防结焦涂层,进而抑制裂解炉辐射段炉管的结焦。然而,在高温、高碳势、强冲刷的裂解工况下,涂层的寿命还达不到工业上长期使用的要求。当然也可以在炉管合金中添加一定量的铝元素,然后让炉管在空气中氧化,在炉管表面原位形成Al2O3薄膜,但是较高铝含量炉管的高温强度会降低。
从1997年至2006年,加拿大Nova公司公开了一批预氧化裂解炉管内表面的专利,例如US5630887A、US6824883B1、US7156979B2、US6436202B2、US2004265604A1、US2005077210A1、US2006086431A1等公开了预氧化后在炉管内表面形成了锰铬尖晶石MnCr2O4保护层。
CN101565807A公开了一种处理高温合金炉管的方法,其包括以下步骤:将低氧分压气体压力控制为0-3个大气压,通入装有高温合金炉管的气氛炉内,升温到600-1100摄氏度,保温处理5-80小时,高温合金炉管表面形成氧化保护层,得到处理后的高温合金炉管;其中,所述低氧分压气体包括H2和CO中的一种或两种,还包括占低氧分压气体体积分数0.17-2%的水蒸汽。而CN101565808A公开了一种处理高温合金炉管的方法,其包括以下步骤:将低氧分压气体压力控制为0-3个大气压,通过氨水后,通入装有高温合金炉管的气氛炉内,升温到600-1100摄氏度,保温处理5-80小时,高温合金炉管表面形成氧化保护层,得到处理后的高温合金炉管。
上述专利都是通过氢气和水蒸气的混合气体在高温下形成的低氧分压气体对新炉管内壁进行缓慢氧化得到了锰铬尖晶石,他们的不同之处是Nova技术中的低氧分压气体中水蒸气含量更低。
上述低氧分压预氧化形成覆盖Fe、Ni元素的锰铬尖晶石氧化层的方法非常适合目前广泛采用的辐射段炉管材质(如HK40、HP40、3545)以及裂解工况条件。但是该氧化层的寿命不长,并不能完全满足长期使用、反复升降温等裂解工况的要求。
发明内容
本发明的目的是为了克服现有技术中,烃类裂解炉管内部的结焦问题,提供一种处理烃类裂解炉管内表面的方法,该方法能够在烃类裂解炉管内表面形成致密地、厚度更薄且不易剥落的氧化物保护层,使得焦炭在裂管炉内表面的沉积显著减少,并且采用该方法处理得到的氧化物保护层的寿命更长,能够满足裂解炉管长期使用、反复升温等的需求。
为了实现上述目的,本发明第一方面提供一种处理烃类裂解炉管内表面的方法,其中,所述方法包括以下步骤:
(1)对烃类裂解炉管内表面进行挤压研磨处理,得到预处理裂解炉管;
(2)常压下,在H2气氛中,对预处理裂解炉管进行热处理,得到热处理裂解炉管;
(3)常压下,在处理气体存在下,对热处理裂解炉管的内表面进行氧化处理。
本发明第二方面提供一种由本发明所述的方法处理得到的烃类裂解炉管。
通过上述技术方案,发明提供的处理烃类裂解炉管内表面的方法获得以下有益的效果:
本发明所述方法通过在氧化处理前引入对裂解炉管进行挤压研磨处理的步骤,使得炉管内表面的脆性层及微观缺陷被大量去除,炉管内表面的组织结构也变得更加紧密,晶粒细化,表面粗糙度可以大幅度提高,进而使得氧化得到的氧化物保护层更加致密且不易剥落,抗结焦效果更好。
进一步地,本发明将预处理裂解炉管在H2气氛中进行二次升温、一次降温的热处理,经过热处理后,炉管合金中的Cr、Mn元素更容易吸收氧原子,形成的尖晶石保护层更加均匀、致密。
更进一步地,本发明所述方法采用两次氧化处理的方式对裂解炉管进行氧化处理,并且氧化处理均在低氧分压处理气体的存在下进行的,能够使得形成的锰铬氧化物中的Mn/Cr比例更高,形成稳定的尖晶石结构,更容易覆盖Fe、Ni元素,进一步改善处理后裂解炉管的抗结焦效果。
本发明所述方法可以用于实验室规模的裂解炉管,或者用于工业上的裂解炉管,效果优良。使用本发明的方法,可以减少在裂解炉管内壁沉积的焦炭70%以上,而且本发明形成的氧化物保护层效果持久,可以保持多个周期的抗结焦效果。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种处理烃类裂解炉管内表面的方法,其中,所述方法包括以下步骤:
(1)对烃类裂解炉管内表面进行挤压研磨处理,得到预处理裂解炉管;
(2)常压下,在H2气氛中,对预处理裂解炉管进行热处理,得到热处理裂解炉管;
(3)常压下,在处理气体存在下,对热处理裂解炉管的内表面进行氧化处理。
本发明中,在对裂解炉管氧化处理前,先对裂解炉管进行挤压研磨处理,在挤压研磨的作用下,炉管内表面的脆性层及微观缺陷被大量去除,使得炉管内表面的脆性层及微观缺陷被大量去除,炉管内表面的组织结构也变得更加紧密,晶粒细化,表面粗糙度可以大幅度提高,进而使得氧化得到的氧化物保护层更加致密且不易剥落,抗结焦效果更好。
进一步地,本发明将预处理裂解炉管在H2气氛中进行二次升温、一次降温的热处理,经过热处理后,炉管合金中的Cr、Mn元素更容易吸收氧原子,形成的尖晶石保护层更加均匀、致密。
更进一步地,将经挤压研磨处理以及热处理后的裂解炉管进行氧化处理后,能够得到致密地、厚度更薄且不易剥落的氧化物保护层,该氧化物保护层在裂解炉管长期使用、反复升温等过程仍能与炉管内表面保持优异的结合力,确保裂解炉管在长期使用、反复升温等过程中仍具有优异的抗结焦能力。
本发明所述方法能够适用于目前采用的辐射段炉管材质,如HK40、HP40、3545以及裂解工况条件。
具体的,所述裂解炉管的元素组分包括:铬12-50wt%,镍20-50wt%,锰0.2-3wt%,硅0-3wt%,碳<0.75wt%,微量元素和痕量元素0-5wt%,铁0-67.05wt%。
更进一步地,所述裂解炉管的元素组分包括:铬15-40wt%,镍30-50wt%,锰0.3-2wt%,硅0-2.5wt%,碳<0.60wt%,微量元素和痕量元素0.1-3wt%,铁2.4-53.7wt%;
根据本发明,所述微量元素选自铌、钛、钨、铝和稀土元素中的至少一种。
根据本发明,所述痕量元素是硫或/和磷。
根据本发明,所述挤压研磨处理的方式为:将磨料装入裂解炉管内,在压力作用下,磨料在炉管内进行往复运动以实现对裂解炉管内表面的挤压研磨。
本发明中,所述挤压研磨处理的具体步骤如下所述:
将磨料装入炉管内,炉管固定于机床上,上下研磨缸同轴相对,用油压装置把炉管夹紧在上下缸体之间。当下缸体的油压活塞向上挤压磨料时,磨料就被迫流经炉管的内腔,进入上研磨缸。当下油缸活塞到达上死点时,上油缸活塞就开始向下挤压磨料,使之沿原通道返回下研磨缸。当上油缸活塞到达下死点时,下油缸活塞又开始向上运动。磨料就是这样在通道中往复运动并以一定的压力作用于炉管壁上,从而对炉管内壁产生研磨作用。
本发明中,所述方法进一步包括对挤压研磨处理得到的预处理裂解炉管进行清洗的步骤。
所述清洗可以采用现有技术中常规的方式进行,例如超声清洗等。清洗所用溶剂也可以采用现有技术中常规的溶剂,例如水、乙醇等。
本发明中,可以根据炉管的不同,对磨料的装入量进行调节。
根据本发明,所述挤压研磨的条件包括:挤压研磨的压力为0.5-15MPa,挤压研磨的时间为5-3600秒。
本发明中,为了确保对裂解炉管内表面的处理效果,发明人对挤压研磨处理的条件进行了研究,研究表明,当挤压研磨压力以及时间满足上述范围要求时,挤压研磨处理能够使得炉管内表面的脆性层以及微观缺陷被大量去除,炉管内表面的组织结构也变得更加紧密,晶粒细化,表面粗糙度可以大幅度提高,有利于后续致密的氧化物保护层的形成。
更进一步地,当挤压研磨压力为1-12MPa,挤压研磨时间为10-1800秒时,对裂解炉管内表面的处理效果更为优异。
根据本发明,所述磨料由磨粒和液态载体组成。
根据本发明,相对于磨料的总重量,所述磨粒的用量为10-80wt%,优选为40-80wt%;所述液态载体的用量为20-90wt%,优选为20-60wt%。
根据本发明,所述磨粒选自氧化钨、氧化铈、氧化铬、氧化铝、碳化硅、碳化硼和金刚石中的至少一种。
根据本发明,所述磨粒的粒度为40-1000目,优选为200-1000目。
根据本发明,所述液态载体选自凡士林、石蜡、松节油和油酸中的一种或几种。
根据本发明,所述热处理的步骤依次进行第一升温、降温以及第二升温处理。
本发明中,所述第一升温处理的条件包括:以20-150℃/h的升温速率将预处理裂解炉管升温至1100-1200℃;所述降温处理的条件包括:以20-150℃/h的降温速率将预处理裂解炉管降温至300-500℃;所述第二升温处理的条件包括:以20-150℃/h的升温速率将预处理裂解炉管升温至800-1100℃;
发明人研究发现,采用上述程序对预处理裂解炉管进行热处理后,经过热处理,裂解炉管合金中的Cr、Mn元素更容易吸收氧原子,形成的尖晶石保护层更加均匀、致密。
更优选地,所述第一升温处理的条件包括:以30-100℃/h的升温速率将预处理裂解炉管升温至1120-1170℃;所述降温处理的条件包括:以30-100℃/h的降温速率将预处理裂解炉管降温至400-500℃;所述第二升温处理的条件包括:以30-100℃/h的升温速率将预处理裂解炉管升温至850-1050℃。
根据本发明,所述处理气体为低氧分压气体。
根据本发明,所述低氧分压气体包括氢气和水蒸气,任选地,所述低氧分压气体还包括氮气、氩气和氦气中的至少一种。
本发明中,所述低氧分压气体是指气体中含有极少量氧气的气体,所述低氧分压气体中氧气的含量通过低氧分压气体中氢气和水蒸气的摩尔比以及地氧分压气体的温度进行调节。
根据本发明,所述氧化处理包括第一氧化处理和第二氧化处理。
本发明中,为了进一步改善处理后裂解炉管的抗结焦效果,采用二次氧化处理的方式对裂解炉管进行氧化处理,并且氧化处理均在低氧分压处理气体的存在下进行的,能够使得形成的锰铬氧化物中的Mn/Cr比例更高,形成稳定的尖晶石结构,更容易覆盖Fe、Ni元素,进一步改善处理后裂解炉管的抗结焦效果。
发明人对第一氧化处理以及第二氧化处理的条件进行了研究,研究表明,对于第一氧化处理过程:当低氧分压气体中,H2与水蒸气的摩尔比2×103-1×107;第一氧化处理温度为800-1100℃,处理时间为5-50小时时,能够确保处理气体与裂解炉管内表面的充分接触与反应,并且此时的处理气体中,氧分压非常低,在该氧分压下,发明人研究发现只有Si、Mn被氧化,而Cr、Fe、Ni不被氧化,最后形成了SiO2和MnO,其中SiO2有扩散屏障的作用,在一定程度上可以阻止合金中的Cr、Fe、Ni元素向表层扩散以及气氛中的氧元素向内扩散,改善了裂解炉管的抗结焦效果。
与此同时,在第二氧化处理过程中,所述低氧分压气体中,H2与水蒸气的摩尔比80-200,第二氧化处理温度为800-1100℃,第二处理温度5-50小时。此时,在该氧分压下,发明人发现,炉管内表面生长出含有以锰铬尖晶石、SiO2为主的氧化物保护层,对此,发明人推测可能的原因是,在第二氧化处理条件下,炉管中的Cr元素可以穿过SiO2扩散屏障扩散至表层氧化形成Cr2O3
经过第一氧化处理和第二氧化处理,炉管内表面生成的以锰铬尖晶石、SiO2为主的氧化物保护层将Fe和Ni元素覆盖,因此可以抑制烃类裂解过程的催化结焦,而且该尖晶石涂层非常致密,可以防止碳元素渗透进入炉管基体,显著改善了裂解炉管的抗结焦效果。
更进一步地,第一氧化处理中,低氧分压气体中,H2与水蒸气的摩尔比为4×103-1×106,第一氧化处理温度为850-1050℃,第一氧化处理时间为10-30小时;第二氧化处理中,低氧分压气体中,H2与水蒸气的摩尔比100-150,第二氧化处理温度为850-1050℃,第二氧化处理时间为20-40小时,能够获得结构更为致密、且更不易脱落的氧化物保护层,进而得到抗结焦效果更为优异的裂解炉管。
本发明第二方面提供一种本发明所述的方法处理得到的烃类裂解炉管。
根据本发明,所述烃类裂解炉管的内比表面上形成有氧化物保护层。
根据本发明,所述保护层的厚度为0.1-10μm,优选为0.5-5μm。
以下将通过实施例对本发明进行详细描述。
裂解炉管内表面组成采用X-射线能量色散谱仪(Energy DispersiveSpectrometer简称EDS)进行分析。
采用FEI公司的XL-30型场发射环境扫描电镜(SEM)对裂解炉内表面的横截面进行测量,可以确定氧化物保护层的厚度,加速电压为15kv。
裂解用原料为工业石脑油,其物性如表1所示;
实施例以及对比例所用其他原料均为市购。
表1
Figure BDA0002249870480000091
测试例
炉管在200g/h进料量的试验室装置上,以石脑油为裂解原料,进行裂解结焦评价试验。裂解完成后利用空气进行烧焦,烧焦气体中的CO和CO2浓度通过红外仪在线测量,烧焦气体的体积通过湿式流量计在线记录,最终计算出烧焦气体中的碳量即为裂解过程的结焦量。
裂解试验条件如下:
原料:工业石脑油(物性见表1)
裂解时间:2小时;预热器温度:600℃;裂解炉温度:850℃;水油比:0.5;停留时间:0.35秒。
对比例1
采用尺寸为
Figure BDA0002249870480000101
材质为3545镍铬合金新炉管,炉管不含任何涂层。经机械加工后炉管内表面光亮、无氧化皮,分析炉管表面组成,结果见表2。按照测试所述裂解条件对空白炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
对比例2
采用尺寸、材质与对比例1相同的新炉管,该炉管按照US6436202B2的方法在内表面制备尖晶石涂层,让炉管在水蒸气体积百分含量为0.1%的H2-H2O低氧分压气氛下650℃保温10小时,然后升至950℃,保温20小时。冷却后,分析炉管内表面组成,并测试内表面氧化层的厚度,结果见表2。
采用测试例所述裂解条件对该炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
对比例3
采用尺寸、材质与对比例1相同的新炉管,该炉管按照CN101565807A的方法在内表面制备尖晶石涂层,让炉管在水蒸气体积百分含量为1.5%的H2-H2O低氧分压气氛下900℃保温30小时。冷却后,分析炉管内表面组成,并测试内表面氧化层的厚度,结果见表2。
采用测试例所述裂解条件对该炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
对比例4
采用尺寸、材质与对比例1相同的新炉管,该炉管按照如下条件进行挤压研磨:(1)磨料配方,15%氧化铝(800目)+35%碳化硼(400目)+35%石蜡+15%油酸;(2)挤压研磨压力,5MPa;(3)挤压研磨时间,60秒。挤压研磨后分析炉管内表面组成,并测试内表面氧化层的厚度,结果见表2。采用测试例所述裂解条件对该炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
对比例5
采用尺寸、材质与对比例1相同的新炉管,该炉管按照两阶段低氧分压的方法处理。第一阶段,让炉管在H2与水蒸气的摩尔比为3000的H2-H2O低氧分压气氛下1000℃保温10小时;第二阶段,让炉管在H2与水蒸气的摩尔比为100的H2-H2O低氧分压气氛下950℃保温30小时。冷却后,分析炉管内表面组成,并测试内表面氧化层的厚度,结果见表2。
采用测试例所述裂解条件对该炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
对比例6
采用尺寸、材质与对比例1相同的新炉管,该炉管按照本发明的方法制备涂层。先按照对比例4的方法将炉管挤压研磨处理,然后该炉管按照两阶段低氧分压的方法处理。第一阶段,让炉管在H2与水蒸气的摩尔比为4000的H2-H2O低氧分压气氛下1000℃保温10小时;第二阶段,让炉管在H2与水蒸气的摩尔比为100的H2-H2O低氧分压气氛下950℃保温30小时。冷却后,分析炉管内表面组成,并测试内表面氧化层的厚度,结果见表2。
采用测试例所述裂解条件对该炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
实施例1
采用尺寸、材质与对比例1相同的新炉管,该炉管按照本发明的方法制备涂层。先按照对比例4的方法将炉管挤压研磨处理,再让炉管在在纯H2常压的氛围中,以40℃/h的升温速率将裂解炉管升温至1150℃,再以40℃/h的降温速率将炉管降温至450℃;再以60℃/h的升温速率将炉管升温至1000℃,最后该炉管按照两阶段低氧分压的方法处理。第一阶段,让炉管在H2与水蒸气的摩尔比为4000的H2-H2O低氧分压气氛下1000℃保温10小时;第二阶段,让炉管在H2与水蒸气的摩尔比为100的H2-H2O低氧分压气氛下950℃保温30小时。冷却后,分析炉管内表面组成,并测试内表面氧化层的厚度,结果见表2。
采用测试例所述裂解条件对该炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
实施例2
采用尺寸、材质与对比例1相同的新炉管,该炉管按照本发明的方法制备涂层。先将该炉管按照如下条件进行挤压研磨:(1)磨料配方,83%碳化硅(400目)+17%凡士林;(2)挤压研磨压力,2MPa;(3)挤压研磨时间,500秒。再让炉管在在纯H2常压的氛围中,以60℃/h的升温速率将裂解炉管升温至1120℃,再以60℃/h的降温速率将炉管降温至400℃;再以50℃/h的升温速率将炉管升温至1050℃,最后该炉管按照两阶段低氧分压的方法处理。第一阶段,让炉管在H2与水蒸气的摩尔比为4000的H2-H2O低氧分压气氛下1050℃保温20小时;第二阶段,让炉管在H2与水蒸气的摩尔比为120的H2-H2O低氧分压气氛(其中氮气占总气体体积的60%)下900℃保温40小时。冷却后,分析炉管内表面组成,并测试内表面氧化层的厚度,结果见表2。
采用测试例所述裂解条件对该炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
实施例3
采用尺寸、材质与对比例1相同的新炉管,该炉管按照本发明的方法制备涂层。先将该炉管按照如下条件进行挤压研磨:(1)磨料配方,83%碳化硅(400目)+17%凡士林;(2)挤压研磨压力,2MPa;(3)挤压研磨时间,500秒。再让炉管在在纯H2常压的氛围中,以80℃/h的升温速率将裂解炉管升温至1160℃,再以100℃/h的降温速率将炉管降温至480℃;再以120℃/h的升温速率将炉管升温至900℃,该炉管按照两阶段低氧分压的方法处理。第一阶段,让炉管在H2与水蒸气的摩尔比为5000的H2-H2O低氧分压气氛下900℃保温10小时;第二阶段,让炉管在H2与水蒸气的摩尔比为150的H2-H2O低氧分压气氛(其中氦气占总气体体积的50%)下1000℃保温40小时。冷却后,分析炉管内表面组成,并测试内表面氧化层的厚度,结果见表2。
采用测试例所述裂解条件对该炉管进行10次裂解和烧焦的循环试验,不同裂解次数的结焦量见表3。
表2
Figure BDA0002249870480000131
Figure BDA0002249870480000141
表3
Figure BDA0002249870480000142
通过表2,我们可以发现,经过处理的对比例和实施例的炉管,内表面Cr、Mn元素含量显著增加,而具有催化结焦活性的Fe、Ni元素大幅度降低,相对于对比例,实施例中的Fe、Ni元素含量更低。
通过表3,我们可以发现,对比例1(空白值)中10次裂解的平均结焦量为1.53克;对比例2、对比例3、对比例5中前几次结焦量很低,但随着裂解和烧焦次数的增多,结焦量逐渐增加;实施例1、实施例2、实施例3的结焦量很低,相对于空白值平均减少85%以上,而且随着裂解和烧焦次数的增多,结焦量没有明显增加的趋势。
对比例7
将对比例1中的炉管材质换成HP40,其它条件不变,炉管表面组成见表4,结焦量见表5。
对比例8
将对比例2中的炉管材质换成HP40,其它条件不变,处理后炉管表面组成见表4,结焦量见表5。
对比例9
将对比例3中的炉管材质换成HP40,其它条件不变,炉管表面组成见表4,结焦量见表5。
对比例10
将对比例4中的炉管材质换成HP40,其它条件不变,炉管表面组成见表4,结焦量见表5。
对比例11
将对比例5中的炉管材质换成HP40,其它条件不变,炉管表面组成见表4,结焦量见表5。
对比例12
将对比例6中的炉管材质换成HP40,其它条件不变,炉管表面组成见表4,结焦量见表5。
实施例4
将实施例1中的炉管材质换成HP40,其它条件不变,处理后炉管表面组成见表4,结焦量见表5。
实施例5
将实施例2中的炉管材质换成HP40,其它条件不变,处理后炉管表面组成见表4,结焦量见表5。
实施例6
将实施例3中的炉管材质换成HP40,其它条件不变,处理后炉管表面组成见表4,结焦量见表5。
表4
元素含量(wt%) Cr Ni Fe Mn Si O 其他 Mn/Cr 氧化层厚度μm
对比例7 24.91 35.29 35.15 1.13 1.21 0.76 1.55 0.05 0
对比例8 58.25 2.88 5.65 10.33 0.54 21.59 0.76 0.18 12.2
对比例9 55.38 4.22 5.87 10.89 1.29 21.48 0.87 0.20 13.1
对比例10 25.34 35.56 33.97 1.25 1.55 0.89 1.44 0.05 0
对比例11 52.25 3.31 4.07 16.24 1.02 22.24 0.87 0.31 14.5
对比例12 57.23 0.92 1.88 16.77 1.33 21.78 0.09 0.29 6.8
实施例4 56.87 0.71 0.64 17.33 1.32 22.61 0.52 0.30 6.2
实施例5 55.23 0.74 0.89 17.71 1.21 22.45 1.77 0.32 4.1
实施例6 54.64 1.09 0.65 17.52 1.12 22.69 2.29 0.32 6.8
表5
Figure BDA0002249870480000161
通过表4,我们可以发现,经过处理的对比例和实施例的炉管,内表面Cr、Mn元素含量显著增加,而具有催化结焦活性的Fe、Ni元素大幅度降低,相对于对比例,实施例中的Fe、Ni元素含量更低。
通过表5,我们可以发现,对比例7(空白值)中10次裂解的平均结焦量为1.91克;对比例8、对比例9、对比例11中前几次结焦量很低,但随着裂解和烧焦次数的增多,结焦量逐渐增加;实施例4、实施例5、实施例6的结焦量很低,相对于空白值平均减少86%以上,而且随着裂解和烧焦次数的增多,结焦量没有明显增加的趋势。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

1.一种处理烃类裂解炉管内表面的方法,其中,所述方法包括以下步骤:
(1)对烃类裂解炉管内表面进行挤压研磨处理,得到预处理裂解炉管;
(2)常压下,在H2气氛中,对预处理裂解炉管进行热处理,得到热处理裂解炉管;
(3)常压下,在处理气体存在下,对热处理裂解炉管的内表面进行氧化处理。
2.根据权利要求1所述的方法,其中,所述裂解炉管的元素组分包括:铬12-50wt%,镍20-50wt%,锰0.2-3wt%,硅0-3wt%,碳<0.75wt%,微量元素和痕量元素0-5wt%,铁0-67.05wt%;
优选地,所述裂解炉管的元素组分包括:铬15-40wt%,镍30-50wt%,锰0.3-2wt%,硅0-2.5wt%,碳<0.60wt%,微量元素和痕量元素0.1-3wt%,铁2.4-53.7wt%;
优选地,所述微量元素选自铌、钛、钨、铝和稀土元素中的至少一种;
优选地,所述痕量元素是硫或/和磷。
3.根据权利要求1或2所述的方法,其中,所述挤压研磨处理的方式为:将磨料装入裂解炉管内,在压力作用下,磨料在炉管内进行往复运动以实现对裂解炉管内表面的挤压研磨。
4.根据权利要求1-3中任意一项所述的方法,其中,所述挤压研磨的条件包括:挤压研磨的压力为0.5-15MPa,优选为1-12MPa;挤压研磨的时间为5-3600秒,优选为10-1800秒。
5.根据权利要求3或4所述的方法,其中,所述磨料由磨粒和液态载体组成;
优选地,相对于磨料的总重量,所述磨粒的用量为10-80wt%,优选为40-80wt%;所述液态载体的用量为20-90wt%,优选为20-60wt%;
优选地,所述磨粒选自氧化钨、氧化铈、氧化铬、氧化铝、碳化硅、碳化硼和金刚石中的至少一种;
优选地,所述磨粒的粒度为40-1000目,优选为200-1000目;
优选地,所述液态载体选自凡士林、石蜡、松节油和油酸中的一种或几种。
6.根据权利要求1-5中任意一项所述的方法,其中,所述热处理的步骤依次进行第一升温、降温以及第二升温处理;
优选地,所述第一升温处理的条件包括:以20-150℃/h的升温速率将预处理裂解炉管升温至1100-1200℃;所述降温处理的条件包括:以20-150℃/h的降温速率将预处理裂解炉管降温至300-500℃;所述第二升温处理的条件包括:以20-150℃/h的升温速率将预处理裂解炉管升温至800-1100℃;
更优选地,所述第一升温处理的条件包括:以30-100℃/h的升温速率将预处理裂解炉管升温至1120-1170℃;所述降温处理的条件包括:以30-100℃/h的降温速率将预处理裂解炉管降温至400-500℃;所述第二升温处理的条件包括:以30-100℃/h的升温速率将预处理裂解炉管升温至850-1050℃。
7.根据权利要求1-6中任意一项所述的方法,其中,所述处理气体为低氧分压气体;
优选地,所述低氧分压气体包括氢气和水蒸气,任选地,所述低氧分压气体还包括氮气、氩气和氦气中的至少一种。
8.根据权利要求1-7中任意一项所述的方法,其中,所述氧化处理包括第一氧化处理和第二氧化处理;
优选地,所述第一氧化处理的条件包括:所述低氧分压气体中,H2与水蒸气的摩尔比2×103-1×107,优选为4×103-1×106;所述第一氧化处理温度为800-1100℃,优选为850-1050℃;所述第一氧化处理时间为5-50小时,优选为10-30小时;
优选地,所述第二氧化处理的条件包括:所述低氧分压气体中,H2与水蒸气的摩尔比80-200,优选为100-150;所述第二氧化处理温度为800-1100℃,优选为850-1050℃;所述第二氧化处理时间5-50小时,优选为20-40小时。
9.一种权利要求1-8中任意一项所述的方法处理得到的烃类裂解炉管。
10.根据权利要求9所述的烃类裂解炉管,其中,所述烃类裂解炉管的内比表面上形成有氧化物保护层;
优选地,所述保护层的厚度为0.1-10μm,优选为0.5-5μm。
CN201911030065.XA 2019-10-28 2019-10-28 处理烃类裂解炉管内表面的方法 Active CN112725007B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911030065.XA CN112725007B (zh) 2019-10-28 2019-10-28 处理烃类裂解炉管内表面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911030065.XA CN112725007B (zh) 2019-10-28 2019-10-28 处理烃类裂解炉管内表面的方法

Publications (2)

Publication Number Publication Date
CN112725007A true CN112725007A (zh) 2021-04-30
CN112725007B CN112725007B (zh) 2022-05-24

Family

ID=75589156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911030065.XA Active CN112725007B (zh) 2019-10-28 2019-10-28 处理烃类裂解炉管内表面的方法

Country Status (1)

Country Link
CN (1) CN112725007B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427063A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 一种抗氧化抗结焦抗碳化的合金、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441112A (zh) * 2014-05-30 2016-03-30 中国石油化工股份有限公司 一种在线处理烃类裂解炉管内表面的方法
CN106590725A (zh) * 2015-10-16 2017-04-26 中国石油化工股份有限公司 一种处理裂解炉管内表面的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441112A (zh) * 2014-05-30 2016-03-30 中国石油化工股份有限公司 一种在线处理烃类裂解炉管内表面的方法
CN106590725A (zh) * 2015-10-16 2017-04-26 中国石油化工股份有限公司 一种处理裂解炉管内表面的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427063A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 一种抗氧化抗结焦抗碳化的合金、制备方法及应用

Also Published As

Publication number Publication date
CN112725007B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN102807887B (zh) 一种抑制烃类裂解炉管催化结焦的裂解炉管及其制造方法
US9421526B2 (en) Catalytic surfaces and coatings for the manufacture of petrochemicals
CN101565808B (zh) 一种处理高温合金炉管的方法
EP3550045A1 (de) Nickel-chrom-legierung
CN112725007B (zh) 处理烃类裂解炉管内表面的方法
CN103861662A (zh) 带有氧化铝阻隔层的防结焦催化剂涂层
Bao et al. Inhibitory effect of MnCr 2 O 4 spinel coating on coke formation during light naphtha thermal cracking
CN112725009B (zh) 处理烃类裂解炉管内表面的方法
CN112725008B (zh) 处理烃类裂解炉管内表面的方法
CN112725010B (zh) 处理烃类裂解炉管内表面的方法
JP6785133B2 (ja) オレフィン製造用熱分解管および脱水素化触媒の製造方法
JP5112596B2 (ja) ステンレス鋼マトリックスの表面
JP7034137B2 (ja) 触媒コーティング、その製造方法および使用方法
CN107881392B (zh) 一种抗结焦合金材料及其制备方法和一种抗结焦裂解炉管
CN112725578B (zh) 处理急冷锅炉炉管内表面的方法
CN112725722A (zh) 处理急冷锅炉炉管内表面的方法
CN113831934A (zh) 抗结焦合金炉管及其制备方法和应用
CN117966086A (zh) 一种烃类裂解炉管合金的处理方法和应用
JP2021508760A (ja) 触媒コーティング、作製方法、およびその使用
CN117966085A (zh) 一种提高烃类裂解炉管合金性能的处理方法和应用
CA2241349C (fr) Acier refractaire chromise, son procede d&#39;obtention et ses utilisations dans des applications anti-cokage
CN107881459A (zh) 一种涂覆气体、涂覆裂解炉管的方法和裂解炉管
CN114438438A (zh) 一种提高合金抗氧化抗结焦抗碳化性能的方法
CN117987764A (zh) 合金炉管及其处理方法与应用
CN114427072A (zh) 一种合金在线处理方法、合金及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant