CN112721147A - 一种3d打印制备石墨烯基柔性仿生传感材料的方法 - Google Patents

一种3d打印制备石墨烯基柔性仿生传感材料的方法 Download PDF

Info

Publication number
CN112721147A
CN112721147A CN202011413397.9A CN202011413397A CN112721147A CN 112721147 A CN112721147 A CN 112721147A CN 202011413397 A CN202011413397 A CN 202011413397A CN 112721147 A CN112721147 A CN 112721147A
Authority
CN
China
Prior art keywords
graphene
printing
sensing material
flexible
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011413397.9A
Other languages
English (en)
Inventor
李仲明
李斌
陈伯骐
张晋
李杨
武思蕊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202011413397.9A priority Critical patent/CN112721147A/zh
Publication of CN112721147A publication Critical patent/CN112721147A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开一种3D打印制备石墨烯基柔性仿生传感材料的方法,将RGO分散液和高分子溶液混合得到混合液,混合液搅拌并使用高速均质机均质处理,真空干燥成石墨烯高分子聚合物薄膜;将薄膜加入密炼机熔融共混后干燥切粒,再加入单螺杆挤出机中挤出线材;将线材按照设计的仿生复合传感材料模型使用3D打印机加工成型;本发明使用溶液混合和密炼共混使还原氧化石墨烯在柔性高分子聚合物分散更均匀,使用自下而上的3D打印方法可以更准确、灵活的构造高敏感度的三维石墨烯导电网络,3D打印模拟了多孔的蜂巢状结构并对蜂巢结构进行了改进,大幅提高材料传感性能。

Description

一种3D打印制备石墨烯基柔性仿生传感材料的方法
技术领域
本发明涉及一种3D打印制备石墨烯基仿生传感材料的方法,属于柔性传感材料的开发技术领域。
背景技术
柔性传感材料可以将检测到的材料形变以电信号(例如电阻R值变化)的形式输出,传感材料传感方式多样,既有传统的压阻传感也有温敏、光敏、磁敏和声敏等,可穿戴进行人体生理活动监测。传统基于半导体和金属箔的传感材料由于其低灵敏度和狭窄的传感范围,无法可穿戴传感。为了开发具有足够灵敏度的柔性传感材料,纳米材料引起了人们的关注,自2004年首次通过机械剥离分离单层石墨烯以来,这个具有优异性能的二维纳米材料就备受关注,石墨烯具有许多适合传感材料应用的特性:优异的机电性能、极高的传输性能和显著的光电特性,将石墨烯与柔性高分子聚合物结合用于制造灵活测量的柔性传感材料,具有广阔的应用前景。
三维石墨烯多孔材料作为二维石墨烯组装单元在宏观三维尺度构筑结构,实现了石墨烯优良性能从微纳尺度到三维宏观尺度功能化拓展,有效增加了石墨烯材料应用范围,具有大表面积、丰富孔隙率、稳定结构和良好生物化学活性和兼容性。
当前有模板导向法、自组装法、涂覆法和旋压法等方法制备三维材料,模板导向法采用模板,如镍基二维机织物、金属粒子和冰,在模板上组装基于石墨烯的三维多孔结构;自组装法由超分子相互作用(如p–p堆积、氢键和静电相互作用)诱导的凝胶化,在冷冻干燥辅助下,产生3D石墨烯结构;涂覆法有浸渍涂层、旋转涂层、喷涂涂层、喷墨打印等。旋压法包括静电纺丝或利用定制的湿纺设备制备GO纤维。
自然界是科学灵感的丰富来源,六角形所排列而成的蜂巢结构(CellularStructure)是覆盖二维平面的最佳拓扑结构,因这种结构非常坚固,故被应用于飞机的羽翼以及人造卫星的机壁,蜂巢内外面的巢穴(叫做巢房)刚好一半相互错开,相互组合六角形的边交叉的点是内侧六角形的中心,可以提高强度,防止巢房底破裂,受益于特殊的网状结构,蜂巢结构具超高强度和弹性。蜘蛛丝具有很强的强度和韧性,拉伸应变可达到60%,由于特殊的网状结构,蜘蛛网结构的灵敏度很高,3D打印技术使人们能够通过设计,直接制造合成网络结构,与传统的制造路线相比,3D打印具有不需要制造新模具就可以轻松地改变几何结构独特的优势。相比于上述自下而上精确加工的3D打印来说,这些方法基底模板限制大、可控性不足,宏观结构化和可设计性弱、力学性能可调控性低。3D打印与传统的制造路线相比,因为不需要制造新模具就可以轻松地改变几何结构,而具有独特的优势。构筑精确可控的3D结构,模拟自然界独特的仿生结构,为三维石墨烯材料仿生结构化设计和智能制造提供了新的途径。
熔融沉积成型(FDM)打印技术作为一项较为成熟的打印方法,加工过程主要可分为融化丝状热塑性原料、计算机控制选择性挤出热塑性线材、熔融材料快速冷却并固化成型,它是从底部构建部件逐层加工、直至形成整个实体,加工成本低、能精确控制材料形状与结构。柔性传感材料件发展到今天,制造高灵敏度的柔性传感材料仍是一个很大的挑战,人们通过控制纳米填料的数量、组成和材料改性获得更高的灵敏度,但这些对材料的改进成本非常高、而且不能对材料灵敏度进行精确控制与提高。
发明内容
针对上述存在的问题及不足,本发明提出一种3D打印制备石墨烯基柔性仿生传感材料的方法,使用石墨烯和高分子聚合物聚合得到导电的柔韧性打印材料并设计特殊的蜂巢状和改进蜘网式三维导电网络、通过熔融沉积打印开发出高柔韧性、灵敏度、耐久性的极佳传感材料。
本发明提出一种3D打印制备石墨烯基柔性仿生传感材料的方法,具体步骤如下:
(1)将还原的氧化石墨烯RGO溶于有机溶剂,混匀得到RGO分散液;
(2)将柔性高分子聚合物溶于有机溶剂,混匀得到高分子溶液;
(3)将步骤(1)的RGO分散液和步骤(2)的高分子溶液混合得到混合液,混合液进行快速搅拌并使用高速均质机超高速均质处理,将分散好的混合液放入真空干燥箱干燥成石墨烯高分子聚合物薄膜;
(4)将步骤(3)的薄膜加入密炼机熔融共混后干燥切粒,再加入单螺杆挤出机中挤出线材;
(5)将步骤(4)挤出的线材按照设计的仿生复合传感材料模型使用3D打印机加工成型。
步骤(1)还原的氧化石墨烯的制备方法如下:根据文献《Flexible GrapheneFilms via the Filtration of Water-Soluble Noncovalent Functionalized GrapheneSheets》,通过改进Hummers法制备得到氧化石墨烯,并在70℃-100℃真空干燥24小时并研磨成粉末;氧化石墨烯粉末与还原剂按照质量比1:15-45混合,在50-150℃还原处理12-48小时后离心分离、去离子水充分冲洗并干燥后得到还原的氧化石墨烯;所述还原剂包括水合肼,二甲基肼、苯肼、二苯酚、硼氢化钠、氢氧化钠、氢氧化钾及氨水中的一种或几种任意比例混合;所述离心分离转速为6000-8000rpm,离心时间为10-15分钟,干燥是在真空干燥箱中干燥8-24小时。
步骤(1)还原的氧化石墨烯与有机溶剂的质量体积比mg:mL为2-5:1。
步骤(1)和步骤(2)有机溶剂选自:甲苯、丙酮、甲基丁酮、甲基异丁酮、乙醚、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚环氧丙烷、醋酸甲酯、醋酸乙酯、醋酸丙酯、乙酸乙酯、四氢呋喃、甲醇、乙醇、异丙醇苯、甲苯、二甲苯、氯苯、二氯苯、二氯甲烷、三氯甲烷、乙腈、吡啶、苯酚、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺等。
步骤(2)中的柔性高分子聚合物选用热塑性聚氨酯(TPU)、聚乳酸(PLA)、聚乙烯(PE)、聚乙烯醇(PVA)、聚碳酸酯(PC)、聚醚醚酮(PEEK)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯(PP)、聚己内酯(PCL)、苯乙烯-丁二烯-丙烯腈(ABS)三元共聚物的一种或几种任意比例混合。
步骤(2)柔性高分子聚合物与有机溶剂的质量比为1:10-30。
步骤(3)RGO分散液和高分子溶液按照还原的氧化石墨烯与柔性高分子聚合物的质量比为1:20-100进行混合。
步骤(3)使用増力电动搅拌器进行搅拌,转速为500-1500rpm,时间为6-12h;高速均质机转速均质处理的转速为6000-15000rpm,处理时间为20-40min。
步骤(4)密炼机的螺杆转速为30-120r/min,螺杆温度为150℃-200℃,共混10-20min;单螺杆挤出机的螺杆温度为140℃-200℃,螺杆转速30-80r/min。
步骤(5)中按照计算机软件(Solidworks、AutoCAD、3ds max、UG等)设计的特殊复合材料形状,以STL格式导出图像,使用驱动软件加载设置微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度170℃-210℃,层层堆叠加工特殊形状的柔性复合传感材料。
本发明与现有技术相比具有下列优点:
本发明将石墨烯和柔性高分子聚合物进行溶液混合、干燥、密炼、挤出,通过设计的蜂巢式三维仿生结构、经熔融沉积构造三维导电网络,获得性能优良的仿生柔性传感材料,其特有的仿生形状设计、3D打印三维石墨烯导电网络结构和石墨烯/柔性聚合物材料的合成工艺使其与现有技术相比具有更高的灵敏度、导电性、线性度和柔韧性,是极佳的传感材料。本发明方法操作简单,所制备柔性传感材料性能优异,连接电路封装制造柔性传感材料在柔性可穿戴设备、人机交互、健康检测等领域具有很大的应用潜力。
附图说明
图1是实施例1中的3D打印石墨烯聚氨酯传感材料照片;
图2是实施例1中的3D打印石墨烯聚氨酯传感材料FE-SEM图(100倍);
图3是实施例1中的3D打印石墨烯聚氨酯传感材料FE-SEM图(30000倍);
图4是实施例1中的3D打印石墨烯聚氨酯传感材料压阻灵敏度测试图。
具体实施方式
下面结合附图和具体实施例对本发明做更详细地描述。
实施例1
一种3D打印制备石墨烯基柔性仿生传感材料的方法,具体步骤如下:
(1)根据文献《Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets》,通过改进Hummers法制备得到氧化石墨烯,具体工艺流程如下:石墨粉(3g)放入冷浓H2SO4(120mL)中(浓H2SO4放置在0℃冰水浴中),然后,在搅拌下逐渐加入高锰酸钾(15g),通过冷却将混合物的温度保持在20℃以下,混合物在35℃搅拌2小时,然后用去离子水(250mL)稀释,保持温度低于50℃,在加入所有的去离子水后,将混合物搅拌2小时,再加入700mL去离子水,向混合物中加入20mL质量分数30%的H2O2,混合物的颜色随着起泡变为亮黄色,过滤混合物,用质量分数10%的盐酸(1L)洗涤除去金属离子,然后用1L去离子水除去酸,最后将滤饼置于真空干燥箱中70℃真空干燥24小时,研磨制成氧化石墨烯粉末;
(2)将步骤(1)的氧化石墨烯粉末加入去离子水中形成浓度为5mg/mL的氧化石墨烯水溶液(LGO),将30mL氧化石墨烯水溶液(LGO)倒入3口烧瓶中,加入2.75g水合肼和0.25g氢氧化钾(KOH),在150℃下油浴回流还原反应12h,充分还原后在离心机中,转速8000rpm下离心10min,分离出沉淀物,将得到的产物依次用甲醇和水冲洗多次,在真空干燥箱中70℃下干燥24小时,得到干燥的已还原的氧化石墨烯(RGO);
(3)将步骤(2)制备得到的RGO加入N,N-二甲基甲酰胺(DMF)中,形成浓度为2mg/mL的混合液,超声分散30min,得到RGO分散液;
(4)将柔性高分子聚合物热塑性聚氨酯(TPU)加入到有机溶剂DMF中,混合液中柔性高分子聚合物与有机溶剂的质量比为1:20,持续搅拌12h至TPU完全溶解于DMF中,得到分散均匀的高分子溶液;
(5)将步骤(3)的RGO分散液和步骤(4)的高分子溶液混合得到混合液,混合液中还原的氧化石墨烯与柔性高分子聚合物的质量比为1:20,使用增力电动搅拌器,以500rpm的转速高速搅拌混合12h,再使用高速均质器,以6000rpm的转速混合40min,至两溶液完全混合均匀,放入真空干燥箱中充分干燥,得到石墨烯高分子聚合物薄膜;
(6)将步骤(5)得到的薄膜放入密炼机中,设置密炼机螺杆转速120r/min和螺杆温度150℃,在密炼机中共混18min,密炼后干燥固化然后切粒;再加入单螺杆挤出机中,挤出机参数设置螺杆温度140℃、螺杆转速80r/min,挤出直径为1.75mm的线材;
(7)按照计算机软件AutoCAD设计的特殊复合材料形状,以STL格式导出图像,将步骤(6)得到的线材插入3D打印机(MakerBot Replicator2)中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度170℃,使用熔融沉积成型方法(FDM)进行3D打印,层层堆叠加工特殊形状的柔性复合传感材料。
图1为本实施例3D打印出的不同宏观结构的TPU/石墨烯的照片,左一为蜂巢结构、中间和右一为蜘网改进蜂巢结构。
图2为本实施例3D打印石墨烯聚氨酯传感材料FE-SEM图(100倍),在图上可以看出材料层层堆叠具有清晰的骨架结构,体现了3D打印平台的高精度定位,因为FDM3D打印是熔融线材逐层沉积的成型的方式加工,两层之间的连接是物理黏附作用,因此,打印过程中两层之间会不可避免的出现空隙。
图3为本实施例3D打印石墨烯聚氨酯传感材料FE-SEM图(30000倍),石墨烯片层规则有序,交联良好,这种微观结构有利于增强石墨烯基复合材料宏观上的力学性能及导电性能。
图4是是为本实施例3D打印的柔性传感材料的压阻灵敏度测试图,可以看出传感材料在0%-5%和30%-35%压缩下有较高的灵敏度(GF)分别为10.79和14.07。
实施例2
一种3D打印制备石墨烯基柔性仿生传感材料的方法,具体步骤如下:
(1)采用实施例1的方法,100℃真空干燥24小时后研磨得到氧化石墨烯粉末;
(2)将步骤(1)的氧化石墨烯粉末加入去离子水中形成浓度为5mg/mL的氧化石墨烯水溶液(LGO),将30mL氧化石墨烯水溶液(LGO)倒入3口烧瓶中,加入6.5g水合肼和0.25g氢氧化钠(NaOH),在70℃下油浴回流还原反应48h,充分还原后在离心机中,转速6000rpm下离心15min,分离出沉淀物,将得到的产物依次用甲醇和水冲洗多次,在真空干燥箱中100℃下干燥8小时,得到干燥的已还原的氧化石墨烯(RGO);
(3)将步骤(2)制备得到的RGO加入N,N-二甲基甲酰胺(DMF)中形成浓度为5mg/mL的溶液,超声分散1h,得到RGO分散液;
(4)将柔性高分子聚合物聚乳酸(PLA)加入到有机溶剂二氯甲烷中,将柔性高分子聚合物聚氨酯(TPU)加入到有机溶剂DMF中,柔性高分子聚合物与有机溶剂的质量比为1:10,PLA与TPU的质量比为2:8,持续搅拌12h至TPU完全溶解于DMF中,PLA完全溶解于二氯甲烷中,得到分散均匀的两种高分子溶液;
(5)将步骤(3)的RGO分散液和步骤(4)的两种高分子溶液混合得到混合液,混合液中还原的氧化石墨烯与柔性高分子聚合物的质量比为1:100,使用增力电动搅拌器,以1500rpm的转速高速搅拌混合6h,再使用高速均质器,以15000rpm的转速混合20min,至两溶液完全混合均匀,放入真空干燥箱中充分干燥,得到石墨烯高分子聚合物薄膜;
(6)将步骤(5)得到的薄膜放入密炼机中,设置密炼机螺杆转速30r/min和螺杆温度170℃,在密炼机中共混20min,密炼后干燥固化然后切粒;再加入单螺杆挤出机中,挤出机参数设置螺杆温度180℃、螺杆转速30r/min,挤出直径为1.75mm的线材;
(7)按照计算机软件Solidworks设计的特殊复合材料形状,以STL格式导出图像,将步骤(6)得到的线材插入3D打印机(MakerBot Replicator2)中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度190℃,使用熔融沉积成型方法(FDM)进行3D打印,层层堆叠加工特殊形状的柔性复合传感材料。
实施例3
一种3D打印制备石墨烯基柔性仿生传感材料的方法,具体步骤如下:
(1)采用实施例1的方法,80℃真空干燥24小时后研磨得到氧化石墨烯粉末;
(2)将步骤(1)的氧化石墨烯粉末加入去离子水中形成浓度为5mg/mL的氧化石墨烯水溶液(LGO),将30mL氧化石墨烯水溶液(LGO)倒入3口烧瓶中,加入2.25g水合肼,在125℃下油浴回流还原反应24h,充分还原后在离心机中7000rpm下离心13min,分离出沉淀物,将得到的产物依次用甲醇和水冲洗多次,在真空干燥箱中85℃下干燥18小时,得到干燥的已还原的氧化石墨烯(RGO);
(3)将步骤(2)制备得到的RGO加入二氯甲烷中形成浓度为3.5mg/mL的混合液,超声分散45min,得到RGO分散液;
(4)将柔性高分子聚合物PLA加入到有机溶剂二氯甲烷中,柔性高分子聚合物与有机溶剂的质量比为1:30,持续搅拌12h至PLA完全溶解于二氯甲烷中,得到分散均匀的高分子溶液;
(5)将步骤(3)的RGO分散液和步骤(4)的高分子溶液混合得到混合液,混合液中还原的氧化石墨烯与柔性高分子聚合物的质量比为1:50,使用增力电动搅拌器,以转速1000rpm高速搅拌混合8h;再使用高速均质器,以11000rpm混合30min,至两溶液完全混合均匀,放入真空干燥箱中充分干燥,得到石墨烯高分子聚合物薄膜;
(6)将步骤(5)得到的薄膜放入密炼机中,设置密炼机螺杆转速75r/min和螺杆温度200℃,放入密炼机中共混15min,密炼后干燥固化然后切粒,加入单螺杆挤出机中,挤出机参数设置螺杆温度200℃、螺杆转速55r/min,挤出直径为1.75mm的线材;
(7)按照计算机软件3d max设计的特殊复合材料形状,以STL格式导出图像,将步骤(6)得到的线材插入3D打印机(MakerBot Replicator2)中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度210℃,使用熔融沉积成型方法(FDM)进行3D打印,层层堆叠加工特殊形状的柔性复合传感材料。

Claims (10)

1.一种3D打印制备石墨烯基柔性仿生传感材料的方法,其特征在于,具体步骤如下:
(1)将还原的氧化石墨烯溶于有机溶剂,混匀得到RGO分散液;
(2)将柔性高分子聚合物溶于有机溶剂,混匀得到高分子溶液;
(3)将步骤(1)的RGO分散液和步骤(2)的高分子溶液混合得到混合液,混合液搅拌并使用高速均质机均质处理,真空干燥成石墨烯高分子聚合物薄膜;
(4)将步骤(3)的薄膜加入密炼机熔融共混后干燥切粒,再加入单螺杆挤出机中挤出线材;
(5)将步骤(4)挤出的线材按照设计的仿生复合传感材料模型使用3D打印机加工成型。
2.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(1)还原的氧化石墨烯的制备方法如下:根据文献《Flexible Graphene Films via theFiltration of Water-Soluble Noncovalent Functionalized Graphene Sheets》,通过改进Hummers法制备得到氧化石墨烯,70-100℃真空干燥24小时后研磨成氧化石墨烯粉末;氧化石墨烯粉末与还原剂按照质量比1:15-45混合,50-150℃还原处理12-48小时后离心分离、去离子水冲洗并干燥后得到还原的氧化石墨烯;还原剂为水合肼、二甲基肼、苯肼、二苯酚、硼氢化钠、氢氧化钠、氢氧化钾或氨水中的一种或几种任意比例混合;离心分离转速为6000-8000rpm,离心时间为10-15分钟;干燥是真空干燥8-24小时。
3.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(1)还原的氧化石墨烯与有机溶剂的质量体积比mg:mL为2-5:1。
4.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(1)和步骤(2)有机溶剂为甲苯、丙酮、甲基丁酮、甲基异丁酮、乙醚、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚环氧丙烷、醋酸甲酯、醋酸乙酯、醋酸丙酯、乙酸乙酯、四氢呋喃、甲醇、乙醇、异丙醇苯、甲苯、二甲苯、氯苯、二氯苯、二氯甲烷、三氯甲烷、乙腈、吡啶、苯酚或N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
5.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(2)柔性高分子聚合物为热塑性聚氨酯、聚乳酸、聚乙烯、聚乙烯醇、聚碳酸酯、聚醚醚酮、聚甲基丙烯酸甲酯、聚丙烯、聚己内酯、苯乙烯-丁二烯-丙烯腈三元共聚物的一种或几种任意比例混合。
6.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(2)柔性高分子聚合物与有机溶剂的质量比为1:10-30。
7.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(3)RGO分散液和高分子溶液按照还原的氧化石墨烯与柔性高分子聚合物的质量比为1:20-100进行混合。
8.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(3)使用増力电动搅拌器进行搅拌,转速为500-1500rpm,时间为6-12h;高速均质机转速均质处理的转速为6000-15000rpm,处理时间为20-40min。
9.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(4)密炼机的螺杆转速为30-120r/min,螺杆温度为150-200℃,共混10-20min;单螺杆挤出机的螺杆温度为140-200℃,螺杆转速30-80r/min。
10.根据权利要求1所述3D打印制备石墨烯柔性仿生传感材料的方法,其特征在于,步骤(5)按照计算机软件Solidworks、AutoCAD、3ds max或UG设计的形状,以STL格式导出图像,将步骤(4)得到的线材插入3D打印机中,设置打印机微孔喷嘴和打印起点、将坐标清零、设置初始打印速度20mm/s和打印温度170-210℃,层层堆叠加工柔性仿生传感材料。
CN202011413397.9A 2020-12-03 2020-12-03 一种3d打印制备石墨烯基柔性仿生传感材料的方法 Pending CN112721147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011413397.9A CN112721147A (zh) 2020-12-03 2020-12-03 一种3d打印制备石墨烯基柔性仿生传感材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011413397.9A CN112721147A (zh) 2020-12-03 2020-12-03 一种3d打印制备石墨烯基柔性仿生传感材料的方法

Publications (1)

Publication Number Publication Date
CN112721147A true CN112721147A (zh) 2021-04-30

Family

ID=75598250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011413397.9A Pending CN112721147A (zh) 2020-12-03 2020-12-03 一种3d打印制备石墨烯基柔性仿生传感材料的方法

Country Status (1)

Country Link
CN (1) CN112721147A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114248444A (zh) * 2021-12-21 2022-03-29 国家纳米科学中心 一种复合材料及其制备方法和用途
CN116216701A (zh) * 2023-03-06 2023-06-06 大连交通大学 一种原位制备高还原率氧化石墨烯薄膜的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623215A (zh) * 2016-02-02 2016-06-01 北京化工大学 柔性电路导电组合物及基于3d打印构建柔性电路的方法
CN107163686A (zh) * 2017-05-08 2017-09-15 华侨大学 一种石墨烯复合导电油墨的制备方法及其应用
CN108822548A (zh) * 2018-06-19 2018-11-16 复旦大学 一种高度可拉伸高灵敏度的3d打印石墨烯基柔性传感器及其制备方法
CN110054797A (zh) * 2019-04-28 2019-07-26 中南大学 一种具有压阻效应的石墨烯基复合材料及其制备方法
US20190234816A1 (en) * 2016-10-04 2019-08-01 Jeffrey LaBelle Flexible sensors incorporating piezoresistive composite materials and fabrication methods
CN110823421A (zh) * 2019-11-18 2020-02-21 西南石油大学 一种利用3d打印制备柔性压阻式剪切力传感器的方法
CN111073302A (zh) * 2019-12-23 2020-04-28 北京工业大学 一种适用于3d打印全柔性拉伸传感器的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623215A (zh) * 2016-02-02 2016-06-01 北京化工大学 柔性电路导电组合物及基于3d打印构建柔性电路的方法
US20190234816A1 (en) * 2016-10-04 2019-08-01 Jeffrey LaBelle Flexible sensors incorporating piezoresistive composite materials and fabrication methods
CN107163686A (zh) * 2017-05-08 2017-09-15 华侨大学 一种石墨烯复合导电油墨的制备方法及其应用
CN108822548A (zh) * 2018-06-19 2018-11-16 复旦大学 一种高度可拉伸高灵敏度的3d打印石墨烯基柔性传感器及其制备方法
CN110054797A (zh) * 2019-04-28 2019-07-26 中南大学 一种具有压阻效应的石墨烯基复合材料及其制备方法
CN110823421A (zh) * 2019-11-18 2020-02-21 西南石油大学 一种利用3d打印制备柔性压阻式剪切力传感器的方法
CN111073302A (zh) * 2019-12-23 2020-04-28 北京工业大学 一种适用于3d打印全柔性拉伸传感器的制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DI ZHANG,ET AL: "Fabrication of highly conductive graphene flexible circuits by 3D printing", 《SYNTHETIC METALS》 *
YUXI XU, HUA BAI, GEWU LU, CHUN LI, AND GAOQUAN SHI: "Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets", 《JACS》 *
刘万辉: "《复合材料》", 31 August 2011, 哈尔滨工业大学出版社 *
刘广文: "《染料加工技术》", 30 April 1994, 化学工业出版社 *
刘西文: "《塑料混配工中高级培训教程》", 31 January 2017, 文化发展出版社 *
李仲明等: "基于3D打印技术制造柔性传感器研究进展", 《化工进展》 *
王玉: "石墨烯智能材料3D打印可控制备与传感特性研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
许海杰: "《动植物趣味知识百科》", 30 June 2010, 西苑出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114248444A (zh) * 2021-12-21 2022-03-29 国家纳米科学中心 一种复合材料及其制备方法和用途
CN116216701A (zh) * 2023-03-06 2023-06-06 大连交通大学 一种原位制备高还原率氧化石墨烯薄膜的方法
CN116216701B (zh) * 2023-03-06 2024-05-28 大连交通大学 一种原位制备高还原率氧化石墨烯薄膜的方法

Similar Documents

Publication Publication Date Title
CN112721147A (zh) 一种3d打印制备石墨烯基柔性仿生传感材料的方法
Li et al. Collecting electrospun nanofibers with patterned electrodes
Yan et al. Progress and opportunities in additive manufacturing of electrically conductive polymer composites
Wu et al. Size controllable, transparent, and flexible 2D silver meshes using recrystallized ice crystals as templates
CN105238007A (zh) 一种柔性聚合物导体及其制备方法和用途
CN105133067B (zh) 一种可控孔径的多孔纳米纤维的制造方法
CN108472840B (zh) 结构体的制造方法
US10059080B2 (en) Method for the production of a fiber composite component, and semifinished textile product therefor
Xu et al. 3D printing of next‐generation electrochemical energy storage devices: from multiscale to multimaterial
Beyer et al. 3D alginate constructs for tissue engineering printed using a coaxial flow focusing microfluidic device
US20170291327A1 (en) Feedstocks for additive manufacturing and methods for their preparation and use
CN105542377A (zh) 一种利用双螺杆挤出机制备导电3d打印耗材的方法
CN104860293A (zh) 碳纳米管三维网络宏观体、其聚合物复合材料及其制备方法
CN111117227A (zh) 一种光纤激光烧结用高分子粉末材料制备方法
CN111471291A (zh) 一种激光烧结3d打印用无定形聚芳醚酮/砜粉末及其制备方法
CN109880324A (zh) 一种具有高导电性能的3d打印制件及其制备方法
Song et al. Conformal fabrication of an electrospun nanofiber mat on a 3D ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning
Nguyen et al. Porous structures prepared by a novel route: Combination of digital light processing 3D printing and leaching method
Wu et al. 3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications
CN112210192B (zh) 一种碳纤维复合材料、无人机机翼及其制备方法
CN103214730A (zh) 聚合物基碳纳米管取向增强功能材料及其制备方法、装置
CN104231534B (zh) 一种塑料电镀件及其制备方法
Tambrallimath et al. Glimpses of 3D Printing in the 21st Century
Yadav et al. Chemically Modified Carbon Nanotubes in 3 D and 4 D Printing
CN104004120A (zh) 一种萘并噁嗪基聚合物和萘并噁嗪基多孔碳纤维及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210430

RJ01 Rejection of invention patent application after publication