CN112719487B - 一种超疏水表面的设计和制备方法 - Google Patents

一种超疏水表面的设计和制备方法 Download PDF

Info

Publication number
CN112719487B
CN112719487B CN202011525996.XA CN202011525996A CN112719487B CN 112719487 B CN112719487 B CN 112719487B CN 202011525996 A CN202011525996 A CN 202011525996A CN 112719487 B CN112719487 B CN 112719487B
Authority
CN
China
Prior art keywords
surface texture
semicircular
super
wire
texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011525996.XA
Other languages
English (en)
Other versions
CN112719487A (zh
Inventor
陈志�
颜昭君
吴程
周洪冰
张迎东
施宗材
李治作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202011525996.XA priority Critical patent/CN112719487B/zh
Publication of CN112719487A publication Critical patent/CN112719487A/zh
Application granted granted Critical
Publication of CN112719487B publication Critical patent/CN112719487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/008Surface roughening or texturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Mechanical Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Hardware Design (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本发明公开了一种超疏水表面的设计和制备方法,超疏水表面包括颗粒增强金属基复合材料基体,在基体表面制备表面织构;表面织构包括若干并列布置于颗粒增强金属基复合材料基体上的半圆形凸台,半圆形凸台的设计半径范围为400‑600μm,相邻两半圆形凸台的中心距范围为700‑1200μm。表面织构通过电火花线切割加工蚀除得到,且这种加工方法能在表面自然形成放电凹坑/凸起的微观表面形貌,微观表面形貌和表面织构复合形成多级微纳米结构,有利于增大工件表面接触角。本发明提出的这种制备方法不但可以获得机械耐磨性能优良的超疏水表面,并且无需对表面进行化学修饰或其他表面改性措施,具有制备效率高、成本低、清洁无污染、适应性强的优点。

Description

一种超疏水表面的设计和制备方法
技术领域
本发明属于超疏水技术领域,特别是涉及一种超疏水表面的设计和制备方法。
背景技术
超疏水是一种来源于自然的特殊现象。这种现象常见于生物表面,例如荷叶、猪笼草、玫瑰花瓣、水黾腿部等。在这些生物表面,水滴的接触角均大于150°。这种特殊的斥水性使得超疏水表面在防腐蚀、自清洁、防覆冰、微量无损液体运输等领域具有巨大的发展潜力。而对于增强型复合金属材料来说,在其表面制备出具有超疏水性能的结构则能够显著提升材料的使用性能。
现有研究表明,材料表面要达到超疏水状态,主要与两个因素有关,一是自由能,一是材料表面的粗糙结构。由于金属材料本身普遍具有高表面自由能,故而现阶段制备金属超疏水表面的方法主要集中于:在材料表面构筑合适的粗糙结构;以低表面能化学物质修饰粗糙结构表面以降低金属材料表面自由能。目前主要的超疏水表面制备方法包括:模板法、水热法、电化学沉积法、激光刻蚀法、溶胶-凝胶法等。虽然这些制备方法能够成功的得到超疏水金属表面,但也依然存在着不少弊端,如制备效率低、操作步骤繁琐、所制备表面耐用性差、使用的化学物质污染环境等。
中国专利文献号CN106862040A于2017年06月20日公开了一种线切割制备金属表面有序微纳超疏水结构的方法,具体包括:采用正交优化后的电火花线切割电加工参数在金属表面加工出陈列方柱结构,然后将陈列方柱结构进行氟硅烷修饰处理,得到超疏水表面。该发明提出的超疏水表面力学性能稳定,可大规模制备。但该制备过程至少需要两步,效率较低,且制备过程中使用的氟硅烷易污染环境且危害人体健康。
中国专利文献号CN109047958A于2018年12月21日公开了一种电火花线切割制备超疏水金属表面的方法,具体涉及金属材料表面加工,通过低频振动装置在铜板表面加工出超疏水结构,然后将清洗干燥后的铜板置于氟硅烷的醇溶液中浸泡10h,最后在真空干燥箱中干燥2h。该发明制备出的超疏水表面结构可控,生产成本低。但其操作步骤较为繁琐,且该过程中同样使用了氟硅烷,易污染环境且危害人体健康。
中国专利文献号CN110468432A于2019年11月19日公开了一种金属铜超疏水表面的制备方法,具体包括利用喷射电沉积技术在光滑的铜基体表面原位构筑微纳米双层粗糙结构,然后通过低表面能物质对表面进行疏水化改性处理,得到超疏水的金属铜表面。该发明方法得到的超疏水表面生产成本低,应用范围广泛。但该表面耐磨性较差,易遭受结构破坏从而丧失超疏水性能,且该发明提出的制备方法需进行至少两步处理,过程较为复杂。
因此,为了提高超疏水表面的制备效率、耐久性、耐磨性,有必要提出一种新的制备方法。
发明内容
本发明的目的在于针对现有技术的不足之处,提供一种制备高效、成本低廉且清洁无污染的一种超疏水表面的设计和制备方法。
本发明提供的这种超疏水表面,它包括颗粒增强金属基复合材料基体,在基体表面制备表面织构;表面织构包括若干并列布置于颗粒增强金属基复合材料基体上的半圆形凸台,半圆形凸台的设计半径范围为400-600μm,相邻两半圆形凸台的中心距范围为700-1200μm。表面织构通过电火花线切割加工蚀除得到,且这种加工方法能在表面自然形成放电凹坑/凸起的微观表面形貌,微观表面形貌和表面织构复合形成多级微纳米结构。
所述颗粒增强金属基复合材料基体中增强颗粒的体积分数为60-70%;所述增强颗粒尺寸大小为20-50μm。
本发明提供了一种超疏水表面织构的设计方法,本方法包括如下步骤:
步骤一、确定表面织构形状;
步骤二、确定表面织构参数;
步骤三、确定设计准则并验证。
在所述步骤一中,
矩形凸台表面织构的固-液实际接触区域与表观接触区域的比例因子为:
rsl-1=2b(l2+l3)/bl1
半圆形凸台表面织构的固-液实际接触区域与表观接触区域的比例因子为:
rsl-2=2bl4/bl1
β相同时,rsl-2较rsl-1更小,而铝基碳化硅表面本征接触角小于90°,从而导致半圆形凸台表面织构的接触角更大,故选用半圆形凸台形状;
式中b为固-液接触区域宽度,l1为润湿区域接触线总长度,l2为固-液接触区域接触线投影长度,l3为矩形凸台表面织构固-液接触区域接触线投影高度,l4为半圆形凸台表面织构固-液接触区域接触线实际长度。
在所述步骤二中确定半圆形凸台的设计半径rt和中心距a,根据实际的电火花线切割机床的电极丝直径和放电通道半径确定最小设计尺寸参数,而后根据最小尺寸参数设计后续切割实验。
在所述步骤三中,接触角理论值为θCB
cosθCB={0.838[2πrasinγ/(2πra+a-2ra)]-0.135}(cosθi+1)-1
其中ra为半圆形凸台的实际半径,γ为水滴在半圆形凸台表面织构的陷落角,θi为材料表面的本征接触角。
本发明还提供了一种超疏水表面的制备方法,本方法通过在颗粒增强金属基复合材料基体表面上进行电火花线切割加工得到表面织构,切割完成后,置于超声波清洗仪中清洗除杂。
所述电火花线切割步骤中机床为慢走丝电火花线切割机床,加工方式为浸水式加工;其中电极丝选用直径为0.25mm的黄铜丝,放电峰值电流9-10A、脉冲宽度300-400ns、脉冲间隔12-15μs和走丝速度90-110mm/min。
所述慢走丝电火花线切割机床的加工尺寸补偿值设置为0。
所述超声波清洗仪中的清洗溶液为乙醇的水溶液,每次清洗10分钟,共清洗2次。
本发明通过在颗粒增强金属基复合材料基体表面进行电火花线切割加工,切割出多个并列布置的半圆形凸台,得到表面织构。半圆形凸台的设计半径范围为400-600μm,相邻两半圆形凸台的中心距范围为700-1200μm。同时,电火花线切割加工的颗粒增强金属基复合材料基体表面会自然形成放电凹坑/凸起的微观表面形貌,微观表面形貌和表面织构复合形成多级微纳米结构,有利于增大工件表面接触角。本发明提出的这种制备方法不但可以获得机械耐磨性能优良的超疏水表面,并且无需对表面进行化学修饰或其他表面改性措施,具有制备效率高、成本低、清洁无污染、适应性强的优点。
附图说明
图1为本发明一个优选实施例的超疏水表面织构的示意图。
图2为半圆形凸台表面织构与矩形凸台表面织构的润湿区域对比示意图。
图3为半圆形凸台表面织构上的理论接触角示意图。
图4(a)—4(c)为样品表面SEM光学图。
图5为样品表面EDS成分图。
图6为水滴在样品表面的最大接触角光学图。
图7为验证性实验的接触角理论值与实际值曲线图。
具体实施方式
如图1所示,本实施例公开的这种超疏水表面,颗粒增强金属基复合材料为铝基碳化硅,它包括铝基碳化硅基体,在基体表面制备表面织构。其中铝基碳化硅基体中增强颗粒的体积分数为60-70%,增强颗粒尺寸大小为20-50μm。表面织构采用电火花线切割加工得到,切割完成后,置于超声波清洗仪中清洗除杂。在电火花线切割加工过程中机床为慢走丝电火花线切割机床,加工方式为浸水式加工;其中电极丝选用直径为0.25mm的黄铜丝,放电峰值电流9-10A、脉冲宽度300-400ns、脉冲间隔12-15μs和走丝速度90-110mm/min;机床的加工尺寸补偿值设置为0。从而在铝基碳化硅基体表面上加工出设计尺寸为中心距700-1200μm,半径400-600μm(实际半径rt小于设计半径ra)的一排半圆形凸台作为表面织构。在电火花线切割加工过程中铝基碳化硅表面会自然形成放电凹坑/凸起的微观表面形貌,微观表面形貌和表面织构复合形成多级微纳米结构,有利于增大工件表面接触角,如图2所示。工件切割加工完成后进行适当标记,以便后续实验便于区分。工件标记好后置于超声波清洗仪中清洗,清洗溶液为乙醇的水溶液(1:1),每次清洗10分钟,共清洗2次,以去除样品表面杂物,避免影响后续的接触角测量,清洗完毕后置于空气中干燥。
而之所以将表面织构设计为一排半圆形凸台是因为,半圆形凸台表面织构与矩形凸台表面织构相比,在β相同时,如公式(2)—公式(4)所示,rsl-2(半圆形凸台表面织构)较rsl-1(矩形凸台表面织构)更小,由于铝基碳化硅表面本征接触角小于90°,从而导致半圆形凸台表面织构的接触角更大。故而半圆形凸台表面织构较矩形凸台表面织构更适于制备超疏水表面。半圆形凸台表面织构与矩形凸台表面织构的润湿区域对比示意图如图3所示。
β=β1=β2=2bl2/bl1 (2)
rsl-1=2b(l2+l3)/bl1 (3)
rsl-2=2bl4/bl1 (4)
b为固-液接触区域宽度,l1为润湿区域接触线总长度,l2为固-液接触区域接触线投影长度(也是矩形凸台表面织构固-液接触区域接触线实际长度),l3为矩形凸台表面织构固-液接触区域接触线投影高度,l4为半圆形凸台表面织构固-液接触区域接触线实际长度。
而之所以设计成上述表面织构,是因为:
电火花线切割加工时的电极丝半径和放电通道半径会限制表面织构的最小尺寸参数,经过多次试验,确定尺寸相对最小的设计半径与中心距,而后根据最小尺寸进行后续切割实验。
而在切割加工完成后,对工件表面的多级微纳米结构通过超景深显微镜、SEM及EDS观测分析得到。样品通过超景深显微镜测量其实际半径,方法为三点定圆法。测量结果显示实际半径ra与设计半径rt之间存在相对固定的差值(Δr),约在160-200μm之间。样品表面(rt=500μm,a=900μm)微观形貌通过SEM进行观测,放大倍数分别为500×、1000×和4000×。分别如图4(a)、(b)、(c)所示,可明显观察到,样品表面分布着许多SiC颗粒和大量的凹坑、突起、触须和孔洞等微结构,这些微结构共同在表面构筑起了多级粗糙结构,促进了超疏水态的形成。所述样品表面的EDS图(检测区域为放大倍数为1000×时的红色方框部位)如图5所示,主要含有的元素为C、O、Al、Si和Cu。其中,由于在加工过程中火花放电温度可高达10000℃,因而O可能来自于氧化碳、氧化铝和氧化硅,而Cu来自于加工电极丝,即黄铜丝。
工件表面接触角大小通过润湿角测量仪测得,其角度大小与半圆形凸台表面织构参数具有一定的定量关系。所述润湿角测量仪设定其接触角测量方法为静滴法,液滴体积设置为4μL,视频录制时间为10s。为了尽量消除测量误差,接触角取值为三次测量的平均值。所述测量结果中,设计半径400μm、中心距700μm的样品表面的接触角最大,为153.3°,如图6所示。
表面接触角由半圆形凸台表面织构的实际结构参数确定,且采用润湿角测量仪测量得到。
最后据已有实验基础进行设计准则的推导与验证。设计准则具体为表面接触角与半圆形凸台表面织构参数之间存在一定的定量关系。所述工件表面润湿状态更接近于Cassie-Baxter润湿状态,故而可引用公式(1)作为半圆形凸台表面织构的接触角理论值计算参考式。
cosθCB=β(rslcosθi+1)-1 (1)
β为固-液接触投影区域占总投影面积的比例,rsl为粗糙度因子(固-液实际接触区域与表观接触区域的比例因子),θi为材料表面的本征接触角,θCB为Cassie-Baxter理论接触角。
在实际计算中,公式(1)中β与rsl的实际值均难以计算,故而在此引入与β同步变化的相对值β*,修正公式(1);同时对半圆形凸台表面织构引入一个陷落角γ。修正后的公式如公式(5)—公式(8)所示:
β*=2πra sinγ/(2πra+a-2ra) (5)
β=0.838β*-0.135 (6)
Figure BDA0002850623930000071
cosθCB={0.838[2πrasinγ/(2πra+a-2ra)]-0.135}(cosθi+1)-1 (8)
R为液滴半径。通过上述设计准则得到的接触角理论值与实际值的相对误差范围为-2.02%~0.46%。
根据超疏水理论和实验数据,推导了满足超疏水表面(接触角>150°)的半圆形凸台表面织构的设计准则,即β满足固-液接触比例分数小于0.084的半圆形凸台表面织构能够达到超疏水状态。
设计准则得到的接触角理论值与实际值的变化曲线如图7所示,其相对误差范围为-2.02%~0.46%。进行验证性实验,得到到β=0.075的样品表面实际接触角为151.6°,理论接触角为150.8°,相对误差为-0.51%;β=0.078的样品表面实际接触角为151.3°,理论接触角150.3°,相对误差为-0.68%。在一定程度上验证了本发明提出的半圆形凸台表面织构设计准则。
与现有技术相比,本发明的有益效果为:本发明基于颗粒增强金属基复合材料的优异耐磨性和其自身所含有的增强颗粒有助于形成多级微结构表面的特点,采用电火花线切割在铝基碳化硅表面制备半圆形凸台表面织构得到了超疏水表面。本发明提出的制备方法能够在一定程度上提升铝基碳化硅的使用性能,获得耐磨性优异的超疏水表面,并避免了以往的制备方法中使用对环境有害的低表面能化学物质,同时本发明中推导出的满足超疏水表面(接触角>150°)的半圆形凸台表面织构的设计准则可为设计超疏水表面提供有效参考,是一种制备效率高、环境友好、成本低廉、简易高效、可大面积制备的超疏水表面单步制备方法。

Claims (5)

1.一种超疏水表面的制备方法,其特征在于本方法采用颗粒增强的铝基碳化硅材质基体,基体中增强颗粒的体积分数为60-70%;增强颗粒尺寸大小为20-50μm,在基体表面制备表面织构;
表面结构的设计包括以下步骤:步骤一、确定表面织构形状;步骤二、确定表面织构参数;步骤三、确定设计准则并验证;
其中步骤一中,矩形凸台表面织构的固-液实际接触区域与表观接触区域的比例因子为:rsl-1=2b(l2+l3)/bl1;半圆形凸台表面织构的固-液实际接触区域与表观接触区域的比例因子为:rsl-2=2bl4/bl1;β为固-液接触投影区域占总投影面积的比例,β相同时,rsl-2较rsl-1更小,而铝基增强表面本征接触角小于90°,从而导致半圆形凸台表面织构的接触角更大,故选用半圆形凸台形状;式中b为固-液接触区域宽度,l1为润湿区域接触线总长度,l2为固-液接触区域接触线投影长度,l3为矩形凸台表面织构固-液接触区域接触线投影高度,l4为半圆形凸台表面织构固-液接触区域接触线实际长度;
在所述步骤二中确定半圆形凸台的设计半径rt和中心距a,根据实际的电火花线切割机床的电极丝直径和放电通道半径确定;
在所述步骤三中,接触角理论值为θCB,cosθCB={0.838[2πrasinγ/(2πra+a-2ra)]-0.135}(cosθi+1)-1;其中ra为半圆形凸台的实际半径,γ为水滴在半圆形凸台表面织构的陷落角,θi为材料表面的本征接触角;
确定的表面结构包括若干并列布置于基体上的半圆形凸台,半圆形凸台的设计半径范围为400-600μm,相邻两半圆形凸台的中心距范围为700-1200μm;
表面结构的制备采用电火花线切割加工蚀除方法,在基体表面自然形成放电凹坑/凸起的微观表面形貌,微观表面形貌和表面织构复合形成多级微纳米结构。
2.如权利要求1所述的方法,其特征在于,本方法通过在颗粒增强金属基复合材料基体表面上进行电火花线切割加工得到表面织构,切割完成后,置于超声波清洗仪中清洗除杂。
3.如权利要求2所述的方法,其特征在于:电火花线切割时,机床采用慢走丝电火花线切割机床,加工方式为浸水式加工;其中电极丝选用直径为0.25mm的黄铜丝,放电峰值电流9-10A、脉冲宽度300-400ns、脉冲间隔12-15μs和走丝速度90-110mm/min。
4.如权利要求3所述的方法,其特征在于:所述慢走丝电火花线切割机床的加工尺寸补偿值设置为0。
5.如权利要求2所述超疏水表面的制备方法,其特征在于:所述超声波清洗仪中的清洗溶液为乙醇的水溶液,每次清洗10分钟,共清洗2次。
CN202011525996.XA 2020-12-22 2020-12-22 一种超疏水表面的设计和制备方法 Active CN112719487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011525996.XA CN112719487B (zh) 2020-12-22 2020-12-22 一种超疏水表面的设计和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011525996.XA CN112719487B (zh) 2020-12-22 2020-12-22 一种超疏水表面的设计和制备方法

Publications (2)

Publication Number Publication Date
CN112719487A CN112719487A (zh) 2021-04-30
CN112719487B true CN112719487B (zh) 2022-04-29

Family

ID=75605462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011525996.XA Active CN112719487B (zh) 2020-12-22 2020-12-22 一种超疏水表面的设计和制备方法

Country Status (1)

Country Link
CN (1) CN112719487B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116100101B (zh) * 2023-03-31 2024-06-11 中南大学 一种工件表面分级微结构的加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317198A (zh) * 2013-05-27 2013-09-25 长春理工大学 金属材料表面超疏水微纳结构的一步制备方法
CN105665855A (zh) * 2016-04-06 2016-06-15 吉林大学 一种铝合金不修饰的仿生超疏水、低粘附表面的制备方法
CN106862040A (zh) * 2017-03-29 2017-06-20 武汉理工大学 一种线切割制备金属表面有序微纳超疏水结构的方法
CN108485522A (zh) * 2018-03-22 2018-09-04 山东建筑大学 一种高耐磨超疏水复合涂料、制备方法及由其制成的涂层
CN108688134A (zh) * 2018-05-15 2018-10-23 天津大学 一种高效低成本无污染制备聚合物疏水表面的方法
CN110625208A (zh) * 2019-09-29 2019-12-31 大连理工大学 用于抗结冰的波浪结构超疏水表面及其制备方法
KR20200003463A (ko) * 2018-07-02 2020-01-10 서울대학교산학협력단 표면 개질을 통한 친수성 또는 소수성 미세 패턴 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003463U (ko) * 1998-07-24 2000-02-15 홍종만 차량의 파워윈도우 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317198A (zh) * 2013-05-27 2013-09-25 长春理工大学 金属材料表面超疏水微纳结构的一步制备方法
CN105665855A (zh) * 2016-04-06 2016-06-15 吉林大学 一种铝合金不修饰的仿生超疏水、低粘附表面的制备方法
CN106862040A (zh) * 2017-03-29 2017-06-20 武汉理工大学 一种线切割制备金属表面有序微纳超疏水结构的方法
CN108485522A (zh) * 2018-03-22 2018-09-04 山东建筑大学 一种高耐磨超疏水复合涂料、制备方法及由其制成的涂层
CN108688134A (zh) * 2018-05-15 2018-10-23 天津大学 一种高效低成本无污染制备聚合物疏水表面的方法
KR20200003463A (ko) * 2018-07-02 2020-01-10 서울대학교산학협력단 표면 개질을 통한 친수성 또는 소수성 미세 패턴 제조 방법
CN110625208A (zh) * 2019-09-29 2019-12-31 大连理工大学 用于抗结冰的波浪结构超疏水表面及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
One-Step Process for Superhydrophobic Metallic Surfaces by Wire Electrical Discharge Machining;Won Gyu Bae;《ACS Applied Materials & Interfaces》;20120626;第3685-3691页 *
Won Gyu Bae.One-Step Process for Superhydrophobic Metallic Surfaces by Wire Electrical Discharge Machining.《ACS Applied Materials & Interfaces》.2012,第3685-3691页. *

Also Published As

Publication number Publication date
CN112719487A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN108515269A (zh) 一种利用皮秒激光直接制备不锈钢超疏水自清洁表面的方法
Ge et al. Electrochemical dissolution behavior of the nickel-based cast superalloy K423A in NaNO3 solution
CN103317198B (zh) 金属材料表面超疏水微纳结构的一步制备方法
CN102539216A (zh) 一种镍合金的电子背散射衍射样品的制备方法
Chen et al. One-step fabrication of the wear-resistant superhydrophobic structure on SiCp/Al composite surface by WEDM
CN112719487B (zh) 一种超疏水表面的设计和制备方法
CN105386090B (zh) 一种具有内凹微孔的超疏油金属表面的制备方法
CN107012464B (zh) 一种提高铝合金耐腐蚀性能的前处理液及前处理方法
CN101830428A (zh) 一种以微针阵列制造超疏水表面的方法
CN110938860A (zh) 一种铝合金表面耐磨超疏微纳复合结构的制备方法及系统
CN114082624A (zh) 一种耐久性超疏水蜡烛烟灰涂层及制备方法
Liu et al. Fabrication of wear-resistant and superhydrophobic aluminum alloy surface by laser-chemical hybrid methods
CN103543152A (zh) 一种转子钢焊缝残余奥氏体的检测方法
CN114799217B (zh) 基于飞秒激光加工实现增材制造NiTi合金表面超疏水的方法
CN110567769B (zh) 一种热浸镀锌板截面铁铝合金相观察的金相制样方法
CN104651902A (zh) 铝合金表面的疏水结构的制备方法
CN112710529B (zh) 同时用于服役后hr3c析出物观察和ebsd表征的试样的制备方法
CN107931762B (zh) 一种电火花加工制备铜抗垢微纳复合结构层的方法
CN108866601B (zh) 一种基于热处理的Ti5111合金的微弧氧化方法
CN113670686A (zh) 一种用于铝合金金相试样的制备方法
Nawaz et al. Effect of input parameters of wire electric discharge machining on surface integrity of DC53 die steel
CN110091130A (zh) 一种磁重联镍线圈靶制造方法
Rahayu et al. Application of waste water treatment technology from exhaust electroplating and anodizing process using electro-coagulation method
Karim et al. Investigating Electrode Design Methodology for Improving Machining Performance in Silicon Using Die Sinking EDM
Tian et al. Research on the wettability of pulse electrochemical machining GCr12 substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant