CN112713766B - High-gain Cuk DC-DC converter - Google Patents

High-gain Cuk DC-DC converter Download PDF

Info

Publication number
CN112713766B
CN112713766B CN202011567924.1A CN202011567924A CN112713766B CN 112713766 B CN112713766 B CN 112713766B CN 202011567924 A CN202011567924 A CN 202011567924A CN 112713766 B CN112713766 B CN 112713766B
Authority
CN
China
Prior art keywords
capacitor
inductor
diode
gain expansion
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011567924.1A
Other languages
Chinese (zh)
Other versions
CN112713766A (en
Inventor
邾玢鑫
戴俊平
张耀
杨楠
马辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202011567924.1A priority Critical patent/CN112713766B/en
Publication of CN112713766A publication Critical patent/CN112713766A/en
Application granted granted Critical
Publication of CN112713766B publication Critical patent/CN112713766B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/005Conversion of dc power input into dc power output using Cuk converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Abstract

A high-gain Cuk DC-DC converter comprises a direct current input source, a basic Cuk converter and n-1 gain expansion units. The gain expansion unit consists of an inductor, two capacitors and a diode, and the input and output gains of the converter and the voltage stress of the switching device can be adjusted by adjusting the number of the gain expansion units. The converter has the advantages of simple control and drive circuit, wide input and output voltage regulation range, low voltage stress of a switching device and the like, and is suitable for application occasions with larger input voltage and output voltage variation range.

Description

High-gain Cuk DC-DC converter
Technical Field
The invention relates to a DC-DC converter, in particular to a high-gain Cuk DC-DC converter.
Background
In the application occasions with large input and output voltage changes, the input voltage can be higher than the output voltage or lower than the output voltage, and the common non-isolated buck-boost DC-DC converter suitable for the time has Flyback, Cuk, isolated Sepic and isolated Zeta circuits. Theoretically, by adjusting the duty ratio D, the input-output gain of these converters can be varied from zero to infinity, but the boost capability of these converters is greatly limited due to the influence of the parasitic parameters of the components and circuits. At present, the scheme for improving the input and output gains of the DC-DC converter is mainly constructed by an isolated Boost circuit cascaded with a direct current transformer, so that the circuits have more switching elements and higher loss. Therefore, the research can realize high-gain boosting and reduce power loss, and the realization of the novel wide-input-output boosting and reducing DC/DC converter has important significance.
Disclosure of Invention
In order to solve the problems of more switching elements and larger loss of the existing isolated high-gain DC-DC converter, the invention provides a novel high-gain Cuk DC-DC converter based on a basic Cuk circuit. The converter consists of a basic Cuk converter and several gain expansion units. The input and output gains of the converter and the voltage stress of the switching device can be adjusted by adjusting the number of the gain expansion units. The converter has the advantages of simple control and drive circuit, wide input and output voltage regulation range, low voltage stress of a switching device and the like; the method is suitable for the application occasions with larger variation range of input voltage and output voltage.
The technical scheme adopted by the invention is as follows:
a high-gain Cuk DC-DC converter comprises a direct current input source, 1 basic Cuk converter, 1 leakage inductance absorption unit and n-1 gain expansion units; wherein:
the basic Cuk converter comprises a primary side n and a secondary side n1:n2Three inductors L, Lr、L1Two capacitors C11、C12A power switch S1A diode D1(ii) a The connection form is as follows: one end of the inductor L is connected with the anode of the direct current input source, and the other end of the inductor L is respectively connected with the power switch S1Drain electrode of (1), inductor LrOne terminal of (1), inductance LrIs connected with the upper end of the primary side of the transformer, a power switch S1A source electrode connected to the lower end of the primary side of the transformer and the negative electrode of the DC input source, and a capacitor C11One end of which is connected with the upper end of the secondary side of the transformer, and a capacitor C11The other end of the first and second inductors are respectively connected with the inductor L1One terminal of (1), diode D1Is connected with the anode of the inductor L1Another terminal of (1) and a capacitor C12One end connected to a diode D1Respectively with a capacitor C12The other end of the transformer is connected with the lower end of the secondary side of the transformer;
the 1 st gain expansion unit comprises an inductor L2Diode D2And two capacitors C21、C22(ii) a Wherein, the capacitor C21Respectively at the other endAnd an inductance L2One terminal of (1), diode D2Is connected with the anode of the inductor L2Another terminal of (1) and a capacitor C22One end of the two ends are connected;
the 2 nd gain expansion unit comprises an inductor L3Diode D3And two capacitors C31、C32(ii) a Wherein, the capacitor C31The other end of the first and second inductors are respectively connected with the inductor L3One terminal of (1), diode D3Is connected with the anode of the inductor L3Another terminal of (1) and a capacitor C32One end of the two ends are connected;
.... analogize in turn, in the ith gain expansion unit, 1 < i ≦ n-1,
the ith gain expansion unit comprises an inductor L(i+1)Diode D(i+1)And two capacitors C(i+1)1、C(i+1)2(ii) a Wherein, the capacitor C(i+1)1The other end of the first and second inductors are respectively connected with the inductor L(i+1)One terminal of (1), diode D(i+1)Is connected with the anode of the inductor L(i+1)Another terminal of (1) and a capacitor C(i+1)2One end of the two ends are connected;
the leakage inductance absorption unit comprises an inductor L0Diode D0Two capacitors C01、C02(ii) a Wherein, the capacitor C01The other end of the first and second inductors are respectively connected with the inductor L0One terminal of (1), diode D0Is connected with the anode of the inductor L0Another terminal of (1) and a capacitor C02One end of the two ends are connected;
the connection form between the gain expansion units is as follows:
i is more than 1 and less than or equal to n-1, and the capacitance C in the i-1 th gain expansion uniti2One end of (1), an inductance LiAnd the intersection of the other end of (b) and the capacitance C in the ith gain expansion unit(i+1)2Is connected to the other end of the first gain expansion unit, and a capacitor C in the (i-1) th gain expansion uniti1And the capacitor C in the ith gain expansion unit(i+1)1Are connected at one end.
The connection relationship between the 1 st gain expansion unit and the basic Cuk converter is as follows:
capacitor C in basic Cuk converter11The intersection point of one end of the gain expansion unit and the upper end of the secondary side of the transformer and the 1 st gain expansion unitCapacitor C in cell21Is connected to one end of the inductor L in the basic Cuk converter1Another terminal of (1) and a capacitor C12And the intersection point of one end of the first gain expansion unit and the diode D in the 1 st gain expansion unit2Cathode and capacitor C22The intersection points of the other ends are connected.
The connection relationship between the leakage inductance absorption unit and the basic Cuk converter is as follows:
inductance L in basic Cuk converterrOne terminal of (A) and a capacitor C in the leakage inductance absorption unit01Is connected with the diode D in the leakage inductance absorption unit0Cathode and capacitor C02The other end of the diode is connected with the other end of the diode D in the basic Cuk converter1Cathode and capacitor C12And the other end of the second capacitor is connected with the inductance L in the leakage inductance absorption unit0Another terminal of (1) and a capacitor C02The intersections of one end are connected.
Load RPLAre respectively connected with the capacitor C in the (n-1) th gain expansion unitn2And C in the leakage inductance absorbing unit02And the other end of the two are connected.
The power switch S1The gate of (a) is connected to its controller, and its duty cycle can be varied between 0 and 1.
The invention discloses a high-gain Cuk DC-DC converter, which has the following technical effects:
1. the buck-boost circuit can realize voltage boost and buck simultaneously, and has high input and output gains, low voltage stress of a switching device and series connection of output capacitors.
When the current of the inductor L is continuously conducted, the following is concrete:
the input and output gains are:
Figure GDA0003319331540000031
the voltage stress of the switching tube is as follows:
Figure GDA0003319331540000032
the voltage on each output capacitor in the gain expansion unit is:
Figure GDA0003319331540000033
the voltage on the output capacitor in the leakage inductance absorption unit is:
Figure GDA0003319331540000034
wherein: d is the duty cycle, uinIs an input voltage uoTo output a voltage usThe voltage stress of the power switch is shown, n-1 is the number of gain expansion units, and i is more than or equal to 0 and less than or equal to n-1.
2. Only 1 power switch is included, and the control strategy and the driving circuit are simple.
Drawings
Fig. 1 is a schematic diagram of the circuit of the present invention.
Fig. 2 is a circuit topology diagram when the number of gain expansion units of the present invention is 2.
Fig. 3 is a schematic diagram of a conventional Cuk converter circuit.
Fig. 4 shows that when the number of gain expansion units is 2, the transformer transformation ratio is 1: the input-output gain at 2 is compared with the input-output gain of the conventional Cuk converter.
Fig. 5 is a simulation diagram of an output waveform when the input voltage is 30V and the number of gain expansion units is 2 and D is 0.735 according to the present invention.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings.
Fig. 2 shows a circuit topology when the number n of gain expansion units is 3 according to the present invention:
a high-gain CukDC-DC converter comprises a direct current input source, a load, a basic Cuk converter and 2 gain expansion units. Wherein:
the basic Cuk converter comprises a primary side n and a secondary side n1:n2Three inductors L, Lr、L1Two capacitors C11、C12A power switch S1A diode D1(ii) a The connection form is as follows: one end of the inductor L is connected with the anode of the direct current input source, and the other end of the inductor L is respectively connected with the anode of the direct current input sourcePower switch S1Drain electrode of (1) and inductor LrOne terminal of (1), inductance LrIs connected with the upper end of the primary side of the transformer, and a power switch S1A source electrode connected with the lower end of the primary side of the transformer and the negative electrode of the power supply, and a capacitor C11One end of the transformer is connected with the upper end of the secondary side of the transformer, and the other end of the transformer is connected with the inductor L1And a diode D1Is connected with the anode of the inductor L1Another terminal of (1) and a capacitor C12Connected, diode D1Cathode and capacitor C12The other end of the transformer is connected with the lower end of the secondary side of the transformer;
the gain expansion unit and the leakage inductance absorption unit both have the same internal structure, and take the 1 st gain expansion unit as an example, the gain expansion unit includes: an inductance L2A diode D2Two capacitors C21、C22. Wherein, the capacitor C21The other end of the first and second inductors are respectively connected with the inductor L2And a diode D2Is connected with the anode of the inductor L2Another terminal of (1) and a capacitor C22Are connected at one end.
The connection relationship between the 1 st gain expansion unit and the basic Cuk converter is as follows:
capacitor C in basic Cuk converter11The intersection point of one end of the capacitor C and the upper end of the secondary side of the transformer and the capacitor C in the 1 st gain expansion unit21Is connected to one end of the inductor L in the basic Cuk converter1Another terminal of (1) and a capacitor C12And the intersection point of one end of the first gain expansion unit and the diode D in the 1 st gain expansion unit2Cathode and capacitor C22The intersection points of the other ends are connected.
The connection relationship between the leakage inductance absorption unit and the basic Cuk converter is as follows:
inductance L in basic Cuk converterrOne terminal of (A) and a capacitor C in the leakage inductance absorption unit01Is connected with the diode D in the leakage inductance absorption unit0Cathode and capacitor C02The other end of the diode is connected with the other end of the diode D in the basic Cuk converter1Cathode and capacitor C12And the other end of the second capacitor is connected with the inductance L in the leakage inductance absorption unit0Another terminal and a capacitorC02The intersections of one end are connected.
Load RPLAre respectively connected with the capacitor C in the (n-1) th gain expansion unitn2And C in the leakage inductance absorbing unit02The other ends of the two are connected;
the gate of the power switch S1 is connected to its controller, and its duty cycle can be varied between 0 and 1. The on-off time of the power switch S1 can be controlled by adjusting the duty ratio, and the output voltage level can be adjusted according to the voltage balance formula of the inductor.
When the current of the inductor L is continuously conducted, the circuit can be divided into 2 working states according to the different states of the power switch:
(1): power switch S1Conducting, diode D0、D1、D2、D3Are all turned off, and the inductor L, L at the moment0、L1、L2、L3Capacitor C02、C12、C22、C32Charging, capacitance C01、C11、C21、C31Discharging; inductor L, L0、L1、L2、L3The terminal voltage is shown as follows:
Figure GDA0003319331540000051
(2): power switch S1Turn-off, diode D0、D1、D2、D3Are all turned on, and the inductor L, L is at the moment0、L1
L2、L3Capacitor C02、C12、C22、C32Discharge, capacitance C01、C11、C21、C31Charging; inductor L, L0、L1、L2、L3The terminal voltage is shown as follows:
Figure GDA0003319331540000052
the circuit is divided into 2 working states, and according to the duty ratio of a controller connected to the grid of the power switch S1, the voltage level of each capacitor can be obtained as follows:
Figure GDA0003319331540000061
fig. 4 is a graph comparing the input/output gain of the conventional Cuk converter with the gain of 2 gain expansion units according to the present invention. As can be seen from fig. 4, at the same duty cycle, the gain of the converter proposed by the present invention is higher than that of the conventional converter, and a leakage inductance absorption unit can solve the problems of power loss and too high peak value at both ends of the switching tube.
Fig. 5 is a simulation diagram of an output waveform when the input voltage is 30V and the number of gain expansion units is 2 and D is 0.735, and the feasibility of the invention is verified through simulation.

Claims (3)

1. A high-gain Cuk DC-DC converter, characterized by: the converter comprises a direct current input source, 1 Cuk converter, 1 leakage inductance absorption unit and n-1 gain expansion units; wherein:
the Cuk converter comprises a primary side n and a secondary side n1:n2Three inductors L, Lr、L1Two capacitors C11、C12A power switch S1A diode D1(ii) a The connection form is as follows: one end of the inductor L is connected with the anode of the direct current input source, and the other end of the inductor L is respectively connected with the power switch S1Drain electrode of (1), inductor LrOne terminal of (1), inductance LrIs connected with the upper end of the primary side of the transformer, a power switch S1A source electrode connected to the lower end of the primary side of the transformer and the negative electrode of the DC input source, and a capacitor C11One end of which is connected with the upper end of the secondary side of the transformer, and a capacitor C11The other end of the first and second inductors are respectively connected with the inductor L1One terminal of (1), diode D1Is connected with the anode of the inductor L1Another terminal of (1) and a capacitor C12One end is connected with the other endPolar tube D1Respectively with a capacitor C12The other end of the transformer is connected with the lower end of the secondary side of the transformer;
the 1 st gain expansion unit comprises an inductor L2Diode D2And two capacitors C21、C22(ii) a Wherein, the capacitor C21The other end of the first and second inductors are respectively connected with the inductor L2One terminal of (1), diode D2Is connected with the anode of the inductor L2Another terminal of (1) and a capacitor C22One end of the two ends are connected; diode D2Cathode of (2) is connected with a capacitor C22The other end of (a);
the 2 nd gain expansion unit comprises an inductor L3Diode D3And two capacitors C31、C32(ii) a Wherein, the capacitor C31The other end of the first and second inductors are respectively connected with the inductor L3One terminal of (1), diode D3Is connected with the anode of the inductor L3Another terminal of (1) and a capacitor C32One end of the two ends are connected; diode D3Cathode of (2) is connected with a capacitor C32The other end of (a);
.... analogize in turn, in the ith gain expansion unit, 1 < i ≦ n-1,
the ith gain expansion unit comprises an inductor L(i+1)Diode D(i+1)And two capacitors C(i+1)1、C(i+1)2(ii) a Wherein, the capacitor C(i+1)1The other end of the first and second inductors are respectively connected with the inductor L(i+1)One terminal of (1), diode D(i+1)Is connected with the anode of the inductor L(i+1)Another terminal of (1) and a capacitor C(i+1)2One end of the two ends are connected; diode D(i+1)Cathode of (2) is connected with a capacitor C(i+1)2The other end of (a);
the leakage inductance absorption unit comprises an inductor L0Diode D0Two capacitors C01、C02(ii) a Wherein, the capacitor C01The other end of the first and second inductors are respectively connected with the inductor L0One terminal of (1), diode D0Is connected with the anode of the inductor L0Another terminal of (1) and a capacitor C02One end of the two ends are connected;
the connection form between the gain expansion units is as follows:
i is more than 1 and less than or equal to n-1, and the capacitance C in the i-1 th gain expansion uniti2One end of (1), an inductance LiAnd the intersection of the other end of (b) and the capacitance C in the ith gain expansion unit(i+1)2Is connected to the other end of the first gain expansion unit, and a capacitor C in the (i-1) th gain expansion uniti1And the capacitor C in the ith gain expansion unit(i+1)1One end of the two ends are connected;
the connection relationship between the 1 st gain expansion unit and the Cuk converter is as follows:
capacitor C in Cuk converter11The intersection point of one end of the capacitor C and the upper end of the secondary side of the transformer and the capacitor C in the 1 st gain expansion unit21One end of which is connected with an inductor L in the Cuk converter1Another terminal of (1) and a capacitor C12And the intersection point of one end of the first gain expansion unit and the diode D in the 1 st gain expansion unit2Cathode and capacitor C22The intersection points of the other ends are connected;
the connection relationship between the leakage inductance absorption unit and the Cuk converter is as follows:
inductor L in Cuk converterrOne terminal of (A) and a capacitor C in the leakage inductance absorption unit01Is connected with the diode D in the leakage inductance absorption unit0Cathode and capacitor C02The other end of the diode is connected with the other end of the diode D in the Cuk converter1Cathode and capacitor C12And the other end of the second capacitor is connected with the inductance L in the leakage inductance absorption unit0Another terminal of (1) and a capacitor C02The intersection points of one end are connected;
load RPLAre respectively connected with the capacitor C in the (n-1) th gain expansion unitn2And C in the leakage inductance absorbing unit02And the other end of the two are connected.
2. The high-gain Cuk DC-DC converter according to claim 1, wherein: the gate of the power switch S1 is connected to a controller, the duty cycle of which varies between 0 and 1.
3. The high-gain Cuk DC-DC converter according to claim 1, wherein:
when n is 3, when the current of the inductor L is continuously conducted, the circuit is divided into 2 operating states according to the different power switch states:
(1): power switch S1Conducting, diode D0、D1、D2、D3Are all turned off, and the inductor L, L at the moment0、L1、L2、L3Capacitor C02、C12、C22、C32Charging, capacitance C01、C11、C21、C31Discharging; inductor L, L0、L1、L2、L3The terminal voltage is shown as follows:
Figure FDA0003330536340000021
(2): power switch S1Turn-off, diode D0、D1、D2、D3Are all turned on, and the inductor L, L is at the moment0、L1、L2、L3Capacitor C02、C12、C22、C32Discharge, capacitance C01、C11、C21、C31Charging; inductor L, L0、L1、L2、L3The terminal voltage is shown as follows:
Figure FDA0003330536340000031
CN202011567924.1A 2020-12-25 2020-12-25 High-gain Cuk DC-DC converter Active CN112713766B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011567924.1A CN112713766B (en) 2020-12-25 2020-12-25 High-gain Cuk DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011567924.1A CN112713766B (en) 2020-12-25 2020-12-25 High-gain Cuk DC-DC converter

Publications (2)

Publication Number Publication Date
CN112713766A CN112713766A (en) 2021-04-27
CN112713766B true CN112713766B (en) 2022-02-08

Family

ID=75545477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011567924.1A Active CN112713766B (en) 2020-12-25 2020-12-25 High-gain Cuk DC-DC converter

Country Status (1)

Country Link
CN (1) CN112713766B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691127B (en) * 2021-08-29 2023-07-11 三峡大学 Single-input high-reliability capacitance-current consistent Boost DC-DC converter
CN113890340B (en) * 2021-09-01 2023-10-27 三峡大学 Single-input high-reliability capacitance-current consistent buck-boost DC-DC converter
CN113965085B (en) * 2021-10-11 2023-10-27 三峡大学 Single-input high-reliability capacitance-current consistent Cuk DC-DC converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092548A (en) * 2019-12-24 2020-05-01 燕山大学 High-gain Cuk direct-current converter with inductance-capacitance switch network
CN111431399A (en) * 2020-04-30 2020-07-17 三峡大学 Novel expandable Cuk DC-DC converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736709B (en) * 2018-06-14 2020-02-04 南京矽力杰半导体技术有限公司 Power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092548A (en) * 2019-12-24 2020-05-01 燕山大学 High-gain Cuk direct-current converter with inductance-capacitance switch network
CN111431399A (en) * 2020-04-30 2020-07-17 三峡大学 Novel expandable Cuk DC-DC converter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Coat Circuits for DC–DC Converters to Improve Voltage Conversion Ratio;Binxin Zhu et al.;《IEEE Transactions on Power Electronics》;20200430;第35卷(第4期);第3679-3687页 *
Performance Analysis of High Conversion Raito Converter with Switched Capacitor and Voltage Gain Extension Cell;Yi Zhao et al.;《IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society》;20120103;第1519-1523页 *
一种可扩展单元的高增益升压Cuk电路;陈红星等;《中国电机工程学报》;20191205;第39卷(第23期);第7013-7022页 *

Also Published As

Publication number Publication date
CN112713766A (en) 2021-04-27

Similar Documents

Publication Publication Date Title
CN112713766B (en) High-gain Cuk DC-DC converter
CN112701923B (en) High-gain Zeta DC-DC converter
CN111446854B (en) Extensible Zeta DC-DC converter
CN111431399B (en) Scalable Cuk DC-DC converter
CN112737330B (en) High-gain Buck-Boost DC-DC converter
CN111464024B (en) Buck-Boost DC-DC converter with high gain Boost capability
CN111464023B (en) High-gain step-up and step-down Sepic DC-DC converter
CN112737324B (en) Automatic voltage-sharing bipolar Zeta DC-DC converter
CN109309448B (en) Wide-input wide-output Cuk DC-DC converter
CN112737332B (en) Automatic voltage-sharing bipolar Cuk DC-DC converter
CN112737331B (en) Automatic voltage-equalizing bipolar buck-boost DC-DC converter
CN111446855B (en) Boost DC-DC converter with multiple basic units
CN110829837B (en) Low-voltage stress ZVS high-gain Boost converter
CN111293884B (en) Non-isolated bidirectional direct current converter oriented to energy application
CN109274267B (en) Novel extensible Zeta DC-DC converter
CN113965079A (en) Multi-input high-reliability Cuk DC-DC converter
CN109274270A (en) A kind of novel expansible Sepic DC-DC converter
CN113890339A (en) Multi-input high-reliability capacitance-current consistent Buck-boost DC-DC converter
CN113890340B (en) Single-input high-reliability capacitance-current consistent buck-boost DC-DC converter
CN113965085B (en) Single-input high-reliability capacitance-current consistent Cuk DC-DC converter
CN113659835B (en) Capacitor self-voltage-stabilizing low-switching-voltage stress high-gain direct current converter and control method
CN113691127B (en) Single-input high-reliability capacitance-current consistent Boost DC-DC converter
CN113890342A (en) Multi-input high-reliability Sepic DC-DC converter with consistent capacitance and current
CN113890341A (en) Multi-input high-reliability Sepic DC-DC converter
CN113965084A (en) Multi-input high-reliability capacitor current consistent Cuk DC-DC converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210427

Assignee: NANJING YANXU ELECTRICAL TECHNOLOGY Co.,Ltd.

Assignor: CHINA THREE GORGES University

Contract record no.: X2023980039976

Denomination of invention: A High Gain Cuk DC-DC Converter

Granted publication date: 20220208

License type: Common License

Record date: 20230823

EE01 Entry into force of recordation of patent licensing contract