CN112708603A - Application of rice ARE2 gene in plant nitrogen metabolism regulation - Google Patents

Application of rice ARE2 gene in plant nitrogen metabolism regulation Download PDF

Info

Publication number
CN112708603A
CN112708603A CN202110122385.9A CN202110122385A CN112708603A CN 112708603 A CN112708603 A CN 112708603A CN 202110122385 A CN202110122385 A CN 202110122385A CN 112708603 A CN112708603 A CN 112708603A
Authority
CN
China
Prior art keywords
are2
gene
protein
sequence
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110122385.9A
Other languages
Chinese (zh)
Other versions
CN112708603B (en
Inventor
李翰文
粘金沯
王青
左建儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN202110122385.9A priority Critical patent/CN112708603B/en
Publication of CN112708603A publication Critical patent/CN112708603A/en
Application granted granted Critical
Publication of CN112708603B publication Critical patent/CN112708603B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses application of a rice ARE2 gene in regulation and control of plant nitrogen metabolism. The invention provides application of ARE2 protein in promoting plant precocity and/or shortening plant growth period. The invention also provides application of the ARE2 gene in breeding transgenic plants with early maturity and/or shortened growth period. The invention also provides an application of the ARE2 protein: regulating and controlling the tolerance of the plant to low nitrogen stress; regulating and controlling the nitrogen metabolism process of plants; affecting the balance between plant nitrogen metabolism and stress response. The inventor researches and discovers that: the rice ARE2 gene is a key factor for regulating and controlling the nitrogen metabolism process of plants; the are2 mutation inhibits the bad shape caused by nitrogen assimilation deficiency, and increases the tolerance of the rice to nitrogen deficiency stress to a certain extent; the over-expression ARE2 gene has the effect of shortening the growth period and promoting the early maturity of rice, and is one of effective strategies for rice breeding in high latitude areas; the ARE2 gene encodes a ppGpp hydrolase. Therefore, the full exploitation and scientific application of the ARE2 gene have potential application value in future breeding work.

Description

Application of rice ARE2 gene in plant nitrogen metabolism regulation
Technical Field
The invention belongs to the technical field of biology, and relates to application of a rice ARE2 gene in plant nitrogen metabolism regulation.
Background
Nitrogen (nitrogen) is one of major elements necessary for plant growth and development, is an important component of substances such as nucleic acid, protein, chlorophyll, hormone and the like, participates in most physiological and biochemical processes in plants, and is very important for the plant growth and development processes. People often improve the crop yield by applying a large amount of nitrogen fertilizer, and because the nitrogen utilization capability of crops is limited, the yield cannot be continuously improved by excessive fertilization, but environmental pollution and resource waste are caused, the human health is harmed, the ecological balance is damaged, and the effect of diminishing returns is generated. In the face of population, resource, and environmental issues, the International Agricultural Research consultant organization (CGIAR) proposed a Second Green Revolution (Second Green recycling) aimed at increasing crop yields by improving nutrient utilization efficiency. Improving the Nitrogen Utilization Efficiency (NUE) of crops is one of important links for realizing agricultural sustainable development, and the cultivation and popularization of nitrogen-efficient utilization varieties can effectively reduce the application of nitrogen fertilizers and reduce the environmental pressure, and simultaneously meet the requirements of people on grains.
Plant nitrogen utilization efficiency is influenced by environmental and genetic factors and their interactions. Generally, the primary nitrogen source absorbed and utilized by plants is soil inorganic nitrogen. Factors such as temperature, humidity and soil pH affect the absorption of inorganic nitrogen by plants, and plants show preference for different forms of nitrogen sources in different environments. For example, plants grown in dry land (high pH oxygen-rich soils) absorb primarily nitrate Nitrogen (NO)3 -) While plants growing in paddy fields (reduced soils with low pH values) absorb mainly ammonium Nitrogen (NH)4 +). With the progress of research, key components involved in plant nitrogen metabolism are gradually separated and identified, and constitute a basic nitrogen metabolism network. The plant nitrogen metabolism process mainly comprises three rings of absorption and transport (uptake and transport), assimilation (assimilation) and reuse (remobilization) of nitrogenAnd (4) saving. Plants absorb soil inorganic nitrogen and transport in vivo through nitrate transporters (NRT) and ammonium transporters (AMT), and nitrate nitrogen is assimilated into ammonium nitrogen through the action of Nitrate Reductase (NR) and nitrite reductase (NiR) in turn. The ammonium nitrogen is assimilated into organic nitrogen by glutamine synthetase/glutamate synthase (GS/GOGAT) circulation, and then various organic substances are synthesized. After the plant enters the reproductive growth and maturation stage, nitrogen is gradually transported from the aging tissues to young organs and seeds in the form of amino acids to be reused and participate in yield formation, and the nitrogen in the process is mainly derived from leaf protein. In addition, Glutamate Dehydrogenase (GDH) catalyzes both the assimilation and reverse reaction of ammonium nitrogen, a pathway that may be an important way for plants to adapt to different nitrogen environments.
Rice is an important grain crop, provides staple food for the world population and ensures the basic needs of life. A series of important genetic loci related to the utilization efficiency of the nitrogen element of the rice are identified by the research of genetics, molecular biology and biochemistry, and the scientific utilization of corresponding excellent allelic variation can become an important way for improving the yield of the rice.
Nitrogen assimilation plays an irreplaceable role in the growth and development process of plants, and the functional deletion of key genes in the process often causes serious growth and development defects and even death.
Disclosure of Invention
The invention aims to provide application of rice ARE2 gene in plant nitrogen metabolism regulation.
The invention provides application of ARE2 protein in promoting plant precocity and/or shortening plant growth period.
The invention also provides application of the ARE2 gene in breeding transgenic plants with early maturity and/or shortened growth period.
The invention also provides a method for cultivating a transgenic plant with early maturity and/or shortened growth period, which comprises the following steps: the ARE2 gene is introduced into a receptor plant to obtain a transgenic plant with early maturity and/or shortened growth period. The ARE2 gene is specifically introduced into a recipient plant by a recombinant vector.
The invention also provides an application of the ARE2 protein, which is (c1) or (c2) or (c 3):
(c1) regulating and controlling the tolerance of the plant to low nitrogen stress;
(c2) regulating and controlling the nitrogen metabolism process of plants;
(c3) affecting the balance between plant nitrogen metabolism and stress response.
The regulation and control of the low nitrogen stress tolerance of the plant ARE that the ARE2 protein expression is inhibited, so that the low nitrogen stress tolerance of the plant is increased.
The present invention also provides a method for breeding a transgenic plant having increased tolerance to low nitrogen stress, comprising the steps of: inhibiting the expression of ARE2 gene in the target plant to obtain the transgenic plant with high low nitrogen stress tolerance.
The present invention also provides a method for breeding a transgenic plant having increased tolerance to low nitrogen stress, comprising the steps of: the ARE2 gene in the target plant is used as a target gene to be mutated, so that the transgenic plant with high tolerance to low nitrogen stress is obtained.
Any of the above plants is a monocot or a dicot.
Any of the above plants is a gramineae plant. Any of the above plants is a plant of the genus oryza. Any of the above plants is rice. Any one of the plants is japonica rice. Any one of the plants is Nipponbare.
Any of the above plants is a crucifer. Any of the above plants is an arabidopsis plant. Any one of the above plants is Arabidopsis thaliana.
The invention also protects the application of the ARE2 protein as ppGpp hydrolase.
The ARE2 protein is also protected by the invention. The ARE2 protein was obtained from rice.
The present invention also protects the ARE2 gene. The ARE2 gene was obtained from rice.
Any of the ARE2 proteins is (a1), (a2) or (a3) or (a4) or (a5) or (a6) or (a 7):
(a1) protein shown in a sequence 3 in a sequence table;
(a2) a protein derived from rice, having 98% or more identity to (a1) and having the same function;
(a3) a protein obtained by substituting and/or deleting and/or adding one or more amino acid residues in (a1) and having the same function;
(a4) a protein encoded by the DNA molecule shown in the 1581-12019 th site in the sequence 1 of the sequence table;
(a5) a protein coded by a DNA molecule shown in the position 1301-12512 in the sequence 1 of the sequence table;
(a6) protein coded by DNA molecule shown in sequence 1 of the sequence table;
(a7) protein coded by DNA molecule shown in sequence 2 of the sequence table.
Any one of the ARE2 genes is a DNA molecule for coding ARE2 protein.
Any one of the ARE2 genes is (b1), (b2), (b3), (b4), (b5) or (b 6):
(b1) the cDNA coding region is a DNA molecule shown as a sequence 2 in a sequence table;
(b2) the genome DNA is shown as the DNA molecule at the 1581-12019 site in the sequence 1 of the sequence table;
(b3) the genome DNA is shown as DNA molecule at position 1301-12512 in sequence 1 of the sequence table;
(b4) the genome DNA is a DNA molecule shown as a sequence 1 in a sequence table;
(b5) a DNA molecule derived from rice and having 98% or more identity to (b1) or (b2) or (b3) or (b4) and encoding the ARE2 protein;
(b6) a DNA molecule that hybridizes under stringent conditions to (b1) or (b2) or (b3) or (b4) and encodes the ARE2 protein.
The stringent conditions are hybridization and washing of the membrane 2 times 5min at 68 ℃ in a solution of 2 XSSC, 0.1% SDS and 2 times 15min at 68 ℃ in a solution of 0.5 XSSC, 0.1% SDS.
The recombinant vector containing the ARE2 gene can be constructed by using the existing plant expression vector.
When constructing a recombinant vector, any one of an enhanced, constitutive, tissue-specific or inducible promoter may be added before the translation initiation nucleotide, and may be used alone or in combination with other plant promoters. In addition, enhancers, including translational or transcriptional enhancers, may be used in the construction of recombinant vectors, and these enhancer regions may be ATG initiation codons or initiation codons in adjacent regions, but are necessarily in frame with the coding sequence to ensure proper translation of the entire sequence. The translational control signals and initiation codons are widely derived, either naturally or synthetically. The translation initiation region may be derived from a transcription initiation region or a structural gene. In order to facilitate the identification and screening of transgenic plants, the recombinant vector used may be processed, for example, by adding a gene expressing an enzyme or a luminescent compound which produces a color change in a plant, an antibiotic marker having resistance, or a chemical-resistant marker gene, etc. From the viewpoint of transgene safety, the transformed plants can be directly screened for phenotypes without adding any selectable marker gene.
The plant expression vector can be a pCAMBIA1300 binary vector.
The recombinant vector can be specifically a plasmid of a DNA molecule shown in a sequence 4 of a sequence table.
The recombinant vector can be specifically a recombinant plasmid obtained by inserting a DNA molecule shown in a sequence 4 of a sequence table into a pCAMBIA1300 binary vector (specifically, the DNA molecule can be inserted between HindIII and EcoRI enzyme cutting sites).
The recombinant vector can be specifically a plasmid of a DNA molecule shown in a sequence 6 of a sequence table.
The recombinant vector can be specifically a recombinant plasmid obtained by inserting a DNA molecule shown in a sequence 6 of a sequence table into a pCAMBIA1300 binary vector (specifically, the DNA molecule can be inserted between HindIII and EcoRI enzyme cutting sites).
In order to discover key regulatory components of plant nitrogen metabolic pathways and further analyze genetic regulatory networks thereof, the inventors of the present invention performed chemical mutagenesis on abc1-1 mutants and screened a series of abc1-1 inhibiting mutants, abc1 repressors (are). The are1 mutant partially restores the growth and development defects of abc1-1, and indicates that the nitrogen assimilation process of the plant is complexly regulated. Further analysis shows that the ARE1 gene function loss has the effects of improving nitrogen utilization efficiency and increasing yield, and the rice yield is in negative correlation with the expression level of ARE1, which indicates that ARE1 is a negative regulatory factor of nitrogen metabolism. The invention carries out systematic in-depth research on the representative mutant ARE2 on the basis of screening ARE series mutants, tries to determine the action of the ARE2 gene in the nitrogen metabolism process, analyzes the molecular regulation and control mechanism of the nitrogen nutrition of crops such as rice and the like, and provides theoretical basis and molecular strategy for rice breeding and green high-efficiency agriculture.
The research results of the inventor of the invention show that: the rice ARE2 gene is a key factor for regulating and controlling the nitrogen metabolism process of plants; the are2 mutation inhibits the bad shape caused by nitrogen assimilation deficiency, and increases the tolerance of the rice to nitrogen deficiency stress to a certain extent; the over-expression ARE2 gene has the effect of shortening the growth period and promoting the early maturity of rice, and is one of effective strategies for rice breeding in high latitude areas; the ARE2 gene encodes a ppGpp hydrolase. Therefore, the full exploitation and scientific application of the ARE2 gene have potential application value in future breeding work.
Experiments prove that the gene ARE2 related to rice nitrogen metabolism is separated and identified, the nitrogen metabolism process of a plant is negatively regulated, the tolerance of the plant to nitrogen deficiency stress is improved by the arc 2 mutant part, and the early maturing of the rice is promoted by over-expressing the ARE2 gene. The ARE2 gene encodes a ppGpp hydrolase. These results indicate that ARE2 is an effective site for nitrogen efficient breeding of rice. The excellent natural variation of ARE2 or the fixed-point editing of ARE2 gene by plant genetic engineering technology is an effective strategy for breeding new high-efficiency rice nitrogen varieties.
Drawings
FIG. 1 is a genetic screen for the abc1are2 double mutants.
A is Wild type (Wild type, WT), abc1 mutant, abc1are 2-1 mutant, abc1are2-2 mutant and abc1are 2-1/abc 1are 2-2F1The filling phase phenotype of the plants. The scale is 15 cm.
B-D is the plant height (B), tillering number (C) and leaf relative chlorophyll content (D) of wild type, abc1 mutant, abc1are 2-1 mutant and abc1are2-2 mutant. The values represent mean. + -. standard deviation, sample capacity ≥ 15.
Indicates that the difference reached a very significant level in the t-test (P < 0.01).
FIG. 2 is a phenotypic analysis of the single mutant of are 2.
A-B are the seedling phenotype (A) and leaf chlorophyll content (B) of Wild type (Wild type, WT), are2-1 mutant and are2-2 mutant. The scale is 2 cm. Values represent mean ± standard deviation, 3 technical replicates. Indicates that the difference reached a very significant level in the t-test (P < 0.01).
C is the vegetative phenotype of wild type, are the are2-1 mutants and are2-2 mutants. The scale is 15 cm.
D-E is the leaf phenotype of wild type, are2-1 mutant and are2-2 mutant at the reproductive growth stage. The scale is 2 cm.
F-H is the filling stage phenotype (F) and the maturity stage phenotype (G and H) of the wild type, the are2-1 mutant and the are2-2 mutant. The scale is 15 cm.
FIG. 3 is an analysis of tolerance of the are2 mutants to nitrogen starvation stress.
A-C are the plant phenotype (A), biomass (B) and root-cap ratio (C) of Wild Type (WT) and are2-2 mutants cultured for 20 days under normal conditions (control) and nitrogen deficiency conditions. The scale is 2 cm. Values represent mean ± standard deviation, sample volume 24. Indicates that the difference reached a very significant level in the t-test (P < 0.01).
FIG. 4 is a map-based cloning and genetic verification of the ARE2 gene.
A is the genetic location of the ARE2 gene. In the gene structure diagram, black boxes, white boxes and straight lines represent exons, untranslated regions and introns, respectively. The are2-1 and are2-2 mutants underwent base substitutions at the positions shown. The M1-M5 markers were Indel 11931, Indel 12655, Indel 12713, SNP12758 and Indel 12928, respectively.
B is the electrophoresis result of products obtained by designing primers CDS-1F and CDS-1R flanking the are2-1 and are2-2 mutation sites and amplifying Complementary DNAs (Complementary DNAs, cDNAs) of Wild type (Wild type, WT), abc1 mutant, abc1are2-2 mutant, abc1are 2-1 mutant and are2-1 mutant.
C-E is the seedling phenotype (C and D) and leaf chlorophyll content (E) of a transformant (COMP) with a wild type, an ARE2-2 mutant, an ARE2 genome full-length sequence with an ARE2-2 mutant background and a transformant (ARE2-FLAG) with a FLAG-tagged ARE2 coding sequence with an ARE2-2 mutant background. The scale is 2 cm. Values represent mean ± standard deviation, 3 technical replicates. Indicates that the difference reached a very significant level in the t-test (P < 0.01).
F-G is vegetative phase phenotype (F) and filling phase leaf phenotype (G) of transformants with the full length sequence of the ARE2 genome in the background of wild type, the ARE2-2 mutant and the ARE2-2 mutant. (F) And (G) scales of 15cm and 2cm, respectively.
H is the filling stage phenotype of a transformant (ARE2-FLAG/abc1ARE2-2) with FLAG-tagged ARE2 coding sequence in the background of wild type, abc1 mutant, abc1ARE2-2 mutant and abc1ARE2-2 mutant. The scale is 15 cm.
FIG. 5 is a phenotypic analysis of ARE2 gene over-expressed plants. A-D ARE the filling stage phenotype (A), ear phenotype (B), leaf phenotype (C) and leaf chlorophyll content (D) of Wild type (Wild type, WT) and ARE2 gene Overexpression plants (OE). The scales (A-C) were 15cm, 2cm and 2cm, respectively. (D) Values represent mean ± standard deviation, sample volume 24. Indicates that the difference reached a very significant level in the t-test (P < 0.01).
FIG. 6 is a functional analysis of the ARE2 gene.
A is the phenotype of plants grown for 15 days on sucrose-free 1/2MS medium. The control was cultured normally for 15 days, and the dark treatment was cultured normally for 7 days and then dark treatment for 8 days. Similar to the AtRSH1 gene, the ARE2 gene restored the senescence-accelerating phenotype induced by the rsh1-1 mutant in darkness. The scale is 1 cm.
B is overnight cultured E.coli. Both AtRSH1 and ARE2 restored the slow-growing phenotype of the spoT203 strain (CF 4943).
Detailed Description
The present invention is described in further detail below with reference to specific embodiments, which are given for the purpose of illustration only and are not intended to limit the scope of the invention. The examples provided below serve as a guide for further modifications by a person skilled in the art and do not constitute a limitation of the invention in any way.
The experimental procedures in the following examples, unless otherwise indicated, are conventional and are carried out according to the techniques or conditions described in the literature in the field or according to the instructions of the products. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified. Unless otherwise stated, the quantitative tests in the following examples were repeated 2 to 3 times and the results were averaged. The BAC plasmid (OSJNBb0050D18) was supplied by Arizona Genomics Institute. Arabidopsis thaliana rsh1-1 mutant seeds were provided by Ben Field researchers (Aix Marseille University). Coli CF4941 and E.coli spoT203(CF4943) were supplied by Michael Cashel researchers (National Institutes of Health). The pCAMBIA1300 binary vector is a commercially available vector having a hygromycin resistance gene therein. Unless otherwise specified, the rice wild type (denoted by WT) refers to Nipponbare, and the Arabidopsis wild type (denoted by Col-0) refers to Columbia ecotype Arabidopsis. The method for detecting the chlorophyll content in the examples comprises the following steps: weighing 10-30mg of sample ground in liquid nitrogen, adding 2mL of absolute ethyl alcohol, fully mixing, and standing for 2 hours at 4 ℃ in a dark place. The supernatant was centrifuged and the absorbance A was measured by a spectrophotometer646.8And A663.2。Ca=13.95A663.2-6.88A646.8;Cb=24.96A646.8-7.32A663.2(ii) a Chlorophyll content (mg/g) ═ Ca+Cb) X volume of extract/fresh weight of sample. The relative chlorophyll content of the plant leaves is measured by a SPAD chlorophyll measuring instrument.
The ARE2 gene in the rice genome DNA is shown as a sequence 1 in a sequence table. In the sequence 1 of the sequence table, from the 5 'end to the 3' end, the 1 st-1300 th deoxynucleotide is an upstream sequence, the 1301-ine 12512 th deoxynucleotide is an exon/intron region, and the 12513-ine 13012 th deoxynucleotide is a downstream sequence. In sequence 1 of the sequence table, from the 5 ' end to the 3 ' end, the 1 st exon is the 1608 rd and the 1795 st deoxyribonucleotide (wherein the 5 ' untranslated region is the 1301 1580 th deoxyribonucleotide, the translation initiation site is the 1581 rd and the 1583 rd deoxyribonucleotide is the translation initiation site), the 1 st intron is the 1609 nd 1795 th deoxyribonucleotide, the 2 nd exon is the 1796 nd deoxyribonucleotide 2016, the 2 nd intron is the 2017 th deoxyribonucleotide, the 3 rd exon is the 4295 th deoxyribonucleotide, the 3 rd intron is the 4481 st 4977 th deoxyribonucleotide, the 4 th exon is the 4978 th 5043 th deoxyribonucleotide, the 4 th intron is the 5044 th deoxyribonucleotide 5165 th deoxyribonucleotide, the 5 th exon is the 5166 th deoxyribonucleotide 5258 th intron, and the 5 th intron is the 525358 th ribonucleotide, the 5359-position 5490 deoxynucleotide is the 6 th exon, the 5491-position 5624 deoxynucleotide is the 6 th intron, the 5625-position 5726 deoxynucleotide is the 7 th exon, the 5727-position 5823 deoxynucleotide is the 7 th intron, the 5824-position 5901 deoxynucleotide is the 8 th exon, the 5902-position 5978 deoxynucleotide is the 8 th intron, the 5979-position 6050 deoxynucleotide is the 9 th exon, the 6051-position 7015 deoxynucleotide is the 9 th intron, the 7016-position 7123 deoxynucleotide is the 10 th exon, the 7124-position 7198 deoxynucleotide is the 10 th intron, the 7199-position deoxynucleotide is the 7211 th exon, the 7297-position 7734 deoxynucleotide is the 11 th intron, the 7735-position 7795 deoxynucleotide is the 12 th intron, 7796-7888 deoxynucleotide is the 12 th intron, 7889-7951 deoxynucleotide is the 13 th exon, 7952-8058 deoxynucleotide is the 13 th intron, 8059-8115 deoxynucleotide is the 14 th exon, 8116-8192 deoxynucleotide is the 14 th intron, 8193-8294 deoxynucleotide is the 15 th exon, 8295-8401 deoxynucleotide is the 15 th intron, 8402-8560 deoxynucleotide is the 16 th exon, 8561-9140 deoxynucleotide is the 16 th intron, 9141-9272 deoxynucleotide is the 17 th exon, 9273-9346 deoxynucleotide is the 17 th intron, 9347-9433 deoxynucleotide is the 18 th exon, 9434-9497 th deoxynucleotide is the 18 th intron, the 9498-9569 deoxynucleotide is the 19 th exon, the 9570-10729-deoxynucleotide is the 19 th intron, the 10730-10816-deoxynucleotide is the 20 th exon, the 10817-10882-deoxynucleotide is the 20 th intron, the 10883-11333-deoxynucleotide is the 21 st exon, the 11334-11557-deoxynucleotide is the 21 st intron, the 11558-11619-deoxynucleotide is the 22 nd exon, the 11620-11776-deoxynucleotide is the 22 nd intron, the 11777-11845-deoxynucleotide is the 23 rd exon, the 11846-11926-deoxynucleotide is the 23 rd intron, and the 11927-12512-deoxynucleotide is the 24 th exon (wherein the 12017-12019-deoxynucleotide is the translation termination site and the 20-12512-deoxynucleotide is the 1203' -untranslated region).
The coding frame of ARE2 gene in rice cDNA is shown as sequence 2 in the sequence table.
The protein coded by the rice ARE2 gene is shown as a sequence 3 in a sequence table.
The nucleotide sequences of the primers used in the examples are shown in Table 1.
TABLE 1
Figure BDA0002920962140000061
Figure BDA0002920962140000071
Example 1 genetic screening of abc1are2 double mutants
Early researches show that the rice ABNORMAL CYTOKININ RESPONSE1(ABC1) gene encodes a key enzyme in the nitrogen assimilation process, namely, reduced ferredoxin-dependent glutamate synthase (Fd-GOGAT), the weak allelic mutation ABC1-1 of the gene causes the activity of Fd-GOGAT to be reduced, and the corresponding mutant shows a series of nitrogen metabolism abnormalities such as plant height reduction, tiller reduction, leaf color yellowing and growth period extension. The gene is highly conserved in different species, and the function-deletion mutant has a lethal phenotype in the seedling stage.
The inventor of the invention screens an inhibiting mutant abc1 repressors (are) of an abc1 mutant by performing EMS (ethyl methyl sulfon) chemical mutagenesis on the abc1-1 mutant (hereinafter, referred to as abc1) of rice and obtains 2 double mutants with similar phenotypes. Hybridizing the two to obtain a first filial generation (F)1) The plant phenotype was identical to the parent, indicating that they were two allelic variants of the same gene, which the inventors therefore named abc1are 2-1 and abc1are2-2 (a in fig. 1), respectively. The are2 mutation can partially restore the phenotype of the abc1 mutant in the whole growth and development stage, including the characters of plant height, tillering and leaf color and luster (B, C and D in figure 1). The results show that the ARE2 mutant partially inhibits the nitrogen assimilation abnormal phenotype of the abc1 mutant, and suggest that the ARE2 mutant can enhance the low nitrogen stress resistance of rice, and the ARE2 is a key site involved in the nitrogen metabolism of the rice.
Example 2 phenotypic analysis of the Single mutant of are2
Backcrossing the abc1are2 double mutants with the Nipponbare paddy rice, and separating to obtain an are2 single mutant. The are2 mutant exhibited predominantly light green leaf color throughout growth compared to the wild type (A, B, C, D, E and F in fig. 2). In addition, when the rice was in the late stage of grain filling to the stage of maturity, the are2 mutant showed higher sensitivity to low temperature due to the decrease in air temperature (G and H in FIG. 2). These results indicate that ARE2 ARE involved in regulating the rice nitrogen metabolism process and may affect the balance between rice nitrogen metabolism and stress response.
Example 3 analysis of tolerance of the are2 mutants to Nitrogen deficiency stress
Preparation of rice nutrient solution
The mother liquors I to VI were prepared according to Yoshida et al (1976) with minor adjustments of the nutrient solution formulation. The concentration of mother liquors I to IV and VI is 800 times and the concentration of mother liquor V is 1000 times. The mother liquor I contains 38.56g/L ammonium sulfate and 52.72g/L magnesium sulfate (or 51.6g/L potassium sulfate and 52.72g/L magnesium sulfate, and is used for preparing nitrogen-deficiency nutrient solution). The mother liquor II contains 14.8g/L potassium nitrate and 47.92g/L calcium nitrate (or 10.92g/L potassium chloride and 32.42g/L calcium chloride, and is used for preparing the nitrogen-deficiency nutrient solution). The mother liquor III contains 19.84g/L of monopotassium phosphate and 12.72g/L of potassium sulfate. Mother liquor IV contains 2.288g/L boric acid, 0.064g/L copper sulfate pentahydrate, 0.176g/L zinc sulfate heptahydrate, 1.488g/L manganese chloride tetrahydrate and 0.072g/L molybdic acid tetrahydrate. The mother liquor V contained 5.57g/L ferrous sulfate heptahydrate and 7.45g/L disodium EDTA. Mother liquor VI also contained 40g/L sodium silicate. When used, dilute to 0.5 x and adjust pH to 5.5.
Two, phenotype analysis
To determine whether the are2 mutation changes the tolerance of rice to nitrogen deficiency stress, the inventors of the present invention cultured wild-type and are2-2 mutant plants under normal conditions and nitrogen deficiency conditions, respectively, and measured the physiological indexes related to the above-ground and below-ground parts at about 20 days. The following two trends were found to exist steadily: the biomass (as indicated by fresh weight) of the are2-2 mutant was significantly lower than the wild-type under normal conditions, while the trait was not significantly different between the wild-type and the are2-2 mutant under nitrogen deficiency conditions; the root cap ratio of the are2-2 mutant was significantly higher than that of the wild type under nitrogen deficiency conditions (see FIG. 3). These results indicate that nitrogen starvation stress inhibits biomass accumulation to a lesser extent and root growth to a greater extent in the are2 mutant than in the wild type, suggesting that the are2 mutant is tolerant to nitrogen deficiency stress.
Example 4 map-based cloning and genetic verification of ARE2 Gene
Construction of recombinant expression vector
ARE2 genome full-length sequence (genomic DNA, gDNA) genetic complementation vector (pARE2:: ARE 2): two fragments of ARE2 genome sequence were obtained by amplification using BAC plasmid (OSJNBb0050D18) as template and using primer pairs ARE2-F/ARE2-1R and ARE2-2F/ARE 2-R. The two fragments are sequentially inserted between the SalI and KpnI enzyme cutting sites of the pCAMBIA1300 binary vector, and a recombinant plasmid is obtained after the target fragment is correctly sequenced.
Genetic complementation vector with FLAG tag (pARE2:: ARE 2-FLAG-NOS): a rice genome DNA is taken as a template, and a primer pair pARE2-F/pARE2-R is used for amplification to obtain an ARE2 promoter (ARE2 native promoter, pARE2, namely, deoxynucleotides at 1-1580 th position in a sequence 1) fragment. Using rice Complementary DNA (cDNA) as template, ARE2CDS-F/ARE2CDS-R is amplified to obtain ARE2 coding sequence (CDS, i.e. deoxynucleotide 1-2676 in sequence 2). An ARE2 promoter, an ARE2 coding sequence, a FLAG tag sequence and an NOS terminator sequence ARE sequentially inserted between HindIII and EcoRI enzyme cutting sites of the pCAMBIA1300 binary vector, and a recombinant plasmid is obtained after a target fragment is correctly sequenced.
Second, genetic mapping and phenotype analysis of transformants
To determine the nature of the are2 mutation, the inventors crossed the are2 mutant with the wild type, the next generation (F)1) The plants all showed wild type phenotype, the second generation (F)2) Segregation of traits occurred in the population, and the ratio of plants with the wild-type phenotype and the mutant phenotype was close to 3:1, indicating that are the single nuclear gene recessive mutation are2 (see table 2). The are2-1 mutant is hybridized with indica rice variety Nanjing 6 to construct F2The population was mapped and individuals with the are2 mutant phenotype in the population were selected for map-based cloning. The ARE2 candidate gene was located in a 103-kb segment of the long arm of chromosome 3, which contains 11 functionally annotated Open Reading Frames (ORFs), using simple repeat (SSR), insertion-deletion polymorphism (InDel), and Single Nucleotide Polymorphism (SNP) molecular markers. PCR amplification and sequencing of this segment revealed that only one gene (LOC _ Os03g22160) was mutated in the are2 mutant. In the are2-1 mutant, the 1 st base G of the 8 th intron of the gene is mutated into A; in the are2-2 mutant, base G at position 5 of the 5 th intron of the gene was mutated to A (see A in FIG. 4). Both of these mutations cause splicing confusion of the ARE2 gene transcript, resulting in partial loss of its function (see FIG. 4B).
TABLE 2 genetic analysis of the are2 mutation
Figure BDA0002920962140000081
To verify the correctness of the candidate gene, the inventors transferred the full-length genomic sequence driven by the candidate gene promoter and the coding sequence with the FLAG tag into an are2-2 single mutant for genetic rescue. The transformants exhibited wild type phenotype and the leaf color was normal throughout the growth period (C, D, E, F and G in FIG. 4), indicating that the exogenous ARE2 gene restored the phenotype of the ARE2-2 single mutant. In addition, a transformant carrying an ARE2 coding sequence with a FLAG tag (ARE2-FLAG) in an ARE2-2 mutant background is taken as a male parent, an abc1ARE2-2 double mutant is taken as a female parent for hybridization, and a transformant carrying an ARE2-FLAG transgene in an abc1ARE2-2 double mutant background is separated from offspring and shows an abc1 mutant phenotype (H in figure 4), so that the exogenous ARE2 gene restores the phenotype of the abc1ARE2-2 double mutant.
The above results indicate that the LOC _ Os03g22160 gene is the ARE2 gene.
Example 5 phenotypic analysis of ARE2 Gene overexpressing plants
Construction of recombinant expression vector
Over-expression vector (pUbi:: ARE 2-FLAG-NOS): an exogenous DNA molecule sequentially provided with a Ubiquitin promoter (pUbi), a rice ARE2 gene coding sequence (namely, deoxynucleotides at the 1 st to 2676 th positions in the sequence 2), a FLAG tag coding sequence and an NOS terminator sequence is inserted between HindIII and EcoRI enzyme cutting sites of the pCAMBIA1300 binary vector, and sequencing is correct to obtain a recombinant plasmid. The exogenous DNA molecule is shown as a sequence 4 in a sequence table. In the sequence 4 of the sequence table, the 1 st-1981 th site is ubiquitin promoter, the 1988 th-4663 th site is rice ARE2 gene coding sequence, the 4670 th-4696 th site is FLAG tag coding sequence, and the 4745 th-5009 th site is NOS terminator. In the sequence 4 of the sequence table, the 1988-4699 th site forms a fusion gene.
Secondly, preparing transgenic plants and carrying out phenotype analysis
1. The over-expression vector (pUbi:: ARE2-FLAG-NOS) was introduced into Agrobacterium EHA105 to obtain recombinant Agrobacterium.
2. And (2) taking the recombinant agrobacterium obtained in the step (1), carrying out genetic transformation on the embryogenic callus of the Nipponbare rice by adopting an agrobacterium dip-dyeing method, and then sequentially carrying out co-culture, screening culture, differentiation culture and rooting culture to obtain a T0 generation regeneration plant.
3. T0 transgenic plants ARE selfed to obtain T1 plants, and transgenic plants ARE screened from T1 plants (screening transgenic plants method: using genome DNA of tested plants as template, adopting a primer pair composed of two primers corresponding to two different exons of ARE2 gene to carry out PCR amplification, wherein ARE2 gene which is exogenously introduced is cDNA, and has different size with the amplification product of endogenous genome DNA, and whether the ARE2 gene is a transgenic plant is judged according to whether the ARE gene has the amplification product with the expected size).
4. T2 generation plants are obtained by selfing T1 generation transgenic plants, the T2 generation plants are identified with hygromycin resistance, if T2 generation plants obtained by selfing a certain T1 generation transgenic plant have hygromycin resistance, the T1 generation transgenic plant is a homozygous transgenic plant, and the T1 generation transgenic plant is a homozygous transgenic plant after selfing.
Two homozygous transgenic lines were obtained, i.e. the line OE1 and the line OE 2.
5. Phenotypic analysis
Test plants: rice plants of Nipponbare, plants of the T3 generation of the OE1 strain, and plants of the T3 generation of the OE2 strain.
Under parallel conditions, test plants were cultured normally and the phenotype was observed continuously. Compared with Nipponbare plants of rice, the OE1 plant line and the OE2 plant line mainly show the precocious characteristics after entering the grain filling period, and mainly show that the leaf senescence is advanced and the seed maturation is accelerated. As shown in FIG. 5, the seeds of wild plants at this stage are not yet mature, and the ears are overall cyan, while the seeds of plants of line OE1 and lines OE2 begin to mature, and the ears are overall yellow; plants of line OE1 and plants of line OE2 have lighter leaf color and reduced chlorophyll content compared to wild-type plants. The result shows that the over-expression ARE2 gene has the effect of promoting the early maturing of rice, namely shortening the growth period of the rice.
After the rice enters the reproductive growth stage, the cold injury seriously affects the rice yield, so that in high-latitude areas, an overlong growth period is one of important factors for limiting the rice yield. The effect of over-expressing ARE2 gene to shorten the growth period can compensate the limitation of overlength of the growth period on the variety breeding in high latitude areas to a certain extent.
Example 6 functional analysis of ARE2 Gene
Construction of recombinant expression vector
1. Construction of Arabidopsis thaliana genetic complementation vector
pAtRSH1 AtRSH1-FLAG-NOS vector: an exogenous DNA molecule sequentially provided with an AtRSH1 promoter, an Arabidopsis thaliana AtRSH1 gene coding sequence, a FLAG tag coding sequence and an NOS terminator sequence is inserted between SalI and EcoRI enzyme cutting sites of the pCAMBIA1300 binary vector, and sequencing is correct to obtain a recombinant plasmid. The exogenous DNA molecule is shown as a sequence 5 in a sequence table. In the sequence 5 of the sequence table, the 1 st-801 th site is AtRSH1 promoter, the 808 nd-3459 th site is Arabidopsis thaliana AtRSH1 gene coding sequence, the 3466 nd-3492 th site is FLAG tag coding sequence, and the 3523 st-3787 th site is NOS terminator. In the sequence 5 of the sequence table, the 808 th-wall 3495 th site forms a fusion gene.
pAtRSH 1ARE 2-FLAG-NOS vector: an exogenous DNA molecule which is sequentially provided with an AtRSH1 promoter, a rice ARE2 gene coding sequence (namely deoxynucleotide at the 1 st to 2676 th positions in the sequence 2), a FLAG tag coding sequence and an NOS terminator sequence is inserted between HindIII and EcoRI enzyme cutting sites of the pCAMBIA1300 binary vector, and sequencing is correct to obtain a recombinant plasmid. The exogenous DNA molecule is shown as a sequence 6 in a sequence table. In the sequence 6 of the sequence table, the 1 st-801 th site is AtRSH1 promoter, the 808 nd-3483 th site is rice ARE2 gene coding sequence, the 3490 th-3516 th site is FLAG tag coding sequence, and the 3565 th-3829 th site is NOS terminator. In the sequence 6 of the sequence table, the 808-3519 site forms a fusion gene.
2. Construction of genetic complementation vector of Escherichia coli
pBAD/His A-AtRSH1 vector: the coding sequence of the Arabidopsis thaliana AtRSH1 gene (808 th-3459 th site in the sequence 5 of the sequence table, and the termination codon TAA added at the 3' end) is inserted between the PstI and KpnI enzyme cutting sites of the pBAD/His A vector to obtain the pBAD/His A-AtRSH1 vector.
pBAD/His A-ARE2 vector: the rice ARE2 gene coding sequence (shown as sequence 2 in the sequence table) is inserted between KpnI and HindIII enzyme cutting sites of the pBAD/His A vector to obtain the pBAD/His A-ARE2 vector.
II, obtaining and identifying transgenic arabidopsis
To analyze the biochemical function of the product encoded by the ARE2 gene, the inventors performed heterologous genetic rescue experiments on the Arabidopsis mutant rsh 1-1. Arabidopsis thaliana mutant rsh1-1, i.e., Arabidopsis thaliana ppGpp hydrolase gene function-deleted mutant rsh 1-1. Arabidopsis mutant rsh1-1 is described in: plant Cell 28,661- & 679.
1. The recombinant Agrobacterium is obtained by introducing pAtRSH1:: AtRSH1-FLAG-NOS vector or pAtRSH1:: ARE2-FLAG-NOS vector into Agrobacterium EHA 105.
2. And (3) taking the recombinant agrobacterium obtained in the step (1), carrying out genetic transformation on an arabidopsis mutant rsh1-1 plant by adopting a floral dip method, and harvesting seeds, namely T0 generation seeds.
3. Culturing T0 generation seeds into plants, namely T0 generation plants; transgenic plants were selected from T0 generation plants by hygromycin resistance selection.
4. Selfing the T0 transgenic plants to obtain T1 seeds, wherein the plants grown from the T1 seeds are T1 plants; transgenic plants were selected from T1 generation plants by hygromycin resistance selection.
5. Selfing the T1 transgenic plants to obtain T2 seeds, wherein the plants grown from the T2 seeds are T2 plants; and (3) carrying out hygromycin resistance identification on the T2 plant, and if the T2-generation plants obtained by selfing a certain T1-generation transgenic plant have hygromycin resistance, the T1-generation transgenic plant is a homozygous transgenic plant and is a homozygous transgenic plant line after selfing.
pAtRSH 1-FLAG-NOS vector homozygous transgenic plants obtained by carrying out the above-described steps are denoted by AtRSH 1-FLAG. pAtRSH1 the homozygous transgenic plant obtained by carrying out the above procedure with ARE2-FLAG-NOS vector is represented by ARE 2-FLAG.
6. Seeds (Columbia ecotype arabidopsis seeds or arabidopsis thaliana mutant rsh1-1 seeds or T2 generation seeds of AtRSH1-FLAG or T2 generation seeds of ARE2-FLAG) ARE sown on a sucrose-free 1/2MS solid culture medium, the culture dish is wrapped by tin foil paper for dark treatment when the seeds ARE cultured for about 1 week, and the phenotype is observed after the seeds ARE continuously cultured for 7-10 days.
The results are shown in FIG. 6A. Under normal conditions, the growth conditions of the plants of the arabidopsis thaliana strains are similar. Arabidopsis thaliana mutant rsh1-1 has a phenotype of accelerated senescence induced by darkness, while the transgenic plants remain green when treated in the dark for about one week, similar to Columbia ecotype Arabidopsis plants. The result shows that the rice ARE2 gene can restore the phenotype of an arabidopsis rsh1-1 mutant, the ARE2 gene has a conserved function, and the ARE2 gene has the function of an arabidopsis AtRSH1 gene. AtRSH1 is a ppGpp hydrolase, and thus ARE2 also has ppGpp hydrolase activity.
Thirdly, obtaining and identifying recombinant escherichia coli
To analyze the biochemical function of the product encoded by the ARE2 gene, the inventors performed heterologous genetic rescue experiments on the E.coli spoT203 strain. The Escherichia coli spoT203 strain, i.e., Escherichia coli (p) ppGpp hydrolysis-deficient strain spoT203, is described in the following documents: mechold, u., caseel, m., Steiner, k., Gentry, d., and Malke, H. (1996) Functional analysis of a relA/spoT gene homolog from Streptococcus et al, bacterial. 178,1401-1411. The E.coli spoT203 strain (CF4943) is a strain with a spoT203 point mutation in the E.coli CF4941 background and exhibits a slow-growing phenotype due to the accumulation of (p) ppGpp in vivo. Escherichia coli CF4941 as relA-A genotype strain.
1. And (3) introducing the pBAD/His A vector into an escherichia coli spoT203 strain to obtain a recombinant strain.
2. The pBAD/His A-AtRSH1 vector is introduced into the Escherichia coli spoT203 strain to obtain a recombinant strain.
3. The pBAD/His A-ARE2 vector was introduced into E.coli spoT203 strain to obtain a recombinant strain.
4. Inoculating the test bacteria to LB liquid culture medium and culturing to bacterial liquid OD600The same (about 1.0-1.5), after diluting in equal proportion, a certain volume (about 8-10 μ L) of the bacterial liquid is sucked, inoculated in M9 glucose minimal solid culture medium containing 0.2% of hydrolyzed casein and 0.5-0.8% of arabinose, cultured overnight at 37 ℃ and the growth state of the bacteria is observed.
The test bacteria are: escherichia coli CF4941, Escherichia coli spoT203, the recombinant bacterium obtained in step 1, the recombinant bacterium obtained in step 2 or the recombinant bacterium obtained in step 3.
M9 glucose minimal solid medium was prepared according to the method of Xiao et al (1991) with minor adjustments. The method specifically comprises the following steps: 11.28g/L M9 salt (Sigma-Aldrich), 0.2% glucose, 0.1mM calcium chloride, 1mM magnesium sulfate, 0.5. mu.g/mL ferrous sulfate, 1. mu.g/mL vitamin B1And 1.5% agar powder. Preparing 10 XM 9 salt mother liquor (pH7.0), and performing moist heat sterilization at 121 ℃ for 20 minutes; preparing 100 times of mother liquor of other components, filtering and sterilizing (vitamin B)1Mother liquor was stored at 4 ℃ and other mother liquors were stored at room temperature). When preparing the culture medium, dissolving agar powder by using single distilled water, carrying out damp-heat sterilization at 121 ℃ for 20 minutes, and then adding each mother solution in proportion. The arabinose is used for inducing and expressing exogenous genes.
The results are shown in FIG. 6B. The growth speed of the recombinant strain introduced with the AtRSH1 gene and the recombinant strain introduced with the ARE2 gene is similar to that of the Escherichia coli CF4941, namely, the AtRSH1 gene and the ARE2 gene can restore the slow growth phenotype of the Escherichia coli spoT 203. The spoT203 mutation results in a decrease in the (p) ppGpp hydrolase activity of spoT, thus the results indicate that ARE2 has ppGpp hydrolase activity.
The present invention has been described in detail above. It will be apparent to those skilled in the art that the invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with reference to specific embodiments, it will be appreciated that the invention can be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The use of some of the essential features is possible within the scope of the claims attached below.
Sequence listing
<110> institute of genetics and developmental biology of Chinese academy of sciences
Application of rice ARE2 gene in plant nitrogen metabolism regulation
<130> GNCYX210431
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 13012
<212> DNA
<213> Oryza sativa
<400> 1
aatggttaca cgaggacaaa cattcttccc ccaggaagtc acaaatctca aaaggttttt 60
gacgggtgaa tgcttatttc ttttttctta aacgcaatcc acattttttt tcttcttttg 120
attagcgata ctatttgtgc ttaagatatt taccatgcaa aatggcttgg agagagagaa 180
tgtctggact gaagttaagg attatttgga gagcttaaaa ttctgataag caactgatta 240
gtagccaact tttgacaatc tggaaaagct gggttttcta gtttttgact tcaagttcat 300
tttctagatt ctacaaatac agtttctcag aatctggacc aaaagctaga ctgttttaga 360
tagtttttga ttctgataga agttgcaaca gccaaaagct ctcccaaact cccaaacagg 420
cccttactat caagtgtcat tgcatagtac tttgatagtt gatggatagg ctccgaaaaa 480
acaactgcga gaagagtgtt gcttgcacaa tatgatccat atacaatggc tctgcccatc 540
aggttatttt ccaaccaatg gctcccgtcc ctttgtcacc cctgagatca ctttcttggt 600
tgaggtggtg gctttgatct gacatgttag cataaggtca ctcgccacac caccattgta 660
aatgctctta agcagcctct ctagcgattc cataatggtg agtcagtgac agagcaaacc 720
atgatttgag agaaggagca tatttggaat gctatgatat cttggtttca tacagggttc 780
aaaatttagg tgaagtatct caaatttcca actgttttat atacaaaaca atttattcga 840
tatacgtttt tttctctctt cgaagagaac aaaatacttg catgaatata gtttaggtcc 900
atacatccat acccttttta catgggcaca caatccatgc ttctccccac agcccaactg 960
ttagctagaa gaagagatta catgacatga gcaaaccatc gattctattc ttccgtagtg 1020
ctaccaggat cattgctgtg tgaaaactga aaagccataa cgaaaaattc catagtgctc 1080
acgaccaaga cgtgtgccac taaaaactaa cgagtacacg agcagaacgt gtgtgtgcct 1140
ctcgagtcac gagctgctgt acaccaggta tgcagatggg ggaggaggag agtacgagac 1200
taccggatgt aaaccagaaa aaatccgtaa aaaagccctc caaaatacta ctcctcctac 1260
tgctgctgct gctgcaaaag cgaaagagga ttagctgaaa ccgggcaaaa gggagggcgt 1320
ttgccaccta tttcaccaca cggccgcggc gttttgtgtg gccttcgtct cgtgttatct 1380
cttctcttct tcccaccccc tctctctctc cttctcctcc cttccgcctt catcatcggc 1440
ggcaaacccc ttcttccatc cacttccccc accgaattcg cgcgcgcgcg ccccgtggct 1500
gcggcggagg ggaaggtgag gacggcggcg ggcacggcca cggcctccga gccgccgatg 1560
agattgcgcg ccaccgcgac atgcaacccc cgacgggcgc cgtgtcaggt gatgatcccc 1620
tcccctcgcc tcccctccac cccgtcatct cggcttgctc cccccgcgcg attcggtccg 1680
cggctgctga tgatgatgcg tcgcccgcgg tggatggact agggattggg ggaattgatg 1740
ggggagccct gatgatggct ttgtttgttt gtttggtggt ggtcgcggcg tgcagggtcg 1800
tcgtcgtcgt cgctggagtg cgtgagctcg tgcaggacgt cgtggagggg cggagggagg 1860
ccgtacgaat gcagcgtgct ctcgtgcgcc tggaacgcgc cgcgggcgct cacgggggcg 1920
ctcgccagca ccaccgcgca gtgctcctcc tgcagccacg ccgaggctgg ggcagggtgg 1980
aggcggcggg gccagtcgca gcggagtaac aattcggtgc gttgctgcct gcataattga 2040
ttctgtcatt tacacgtaat gttgattggg attcgccatt ttggcttact ttagagttaa 2100
cggaatggaa aaatggaggt gcttactagt gttttattcc atttcgtagc atcaggtccc 2160
tgagcatcac tgaaactgaa cgatctcatg actaaagcca atatatcata catgttttgt 2220
agtacaagtc aagttggtca atctggctat caggtcatac tgaagttagt tcacttgggg 2280
gaaaaaggct tccatctatc tcatttcatt attgcatata tgctttggct ataaacacta 2340
caagtagcaa gtcctgctga ttctcttcaa gtttggcttg tacatagaca taggtaatgg 2400
ttttctgtag attttgtaag tgttatttga tgccatcaga acatatttcc ttcttagaaa 2460
ataaatggat agtggttttg tacttatata ttttccttgt taagaccttt tatttagaag 2520
ttatggaaat ttgtgatgaa gccttaacca tatgaagttt agttcaccca tggttcctcc 2580
atctattaat ttaattcttc ccaaagtaca ggattggcac catttattcc ctggttaatg 2640
attcagttac tcggctttct ccttgatatt ttttacggct gcaacaggtt gctagtacat 2700
gaaacaaaga agtctagggg caacattggt actgtgctag agatcgtgaa cggtaaagct 2760
gtgtattgac aacggaatgt ggatttggtt tggtccatct tctttaggaa ctaggatgct 2820
agggaagaag cagggtcaat ttggcgtttg gcaacaaaca ttagtcaatt tggcgtttga 2880
ctaagtttat ttgtctataa acttagtcaa acttaaagca gagtcatctt gagctagcat 2940
gttgtgagcc tgtaaattaa cttgactatg caatgccttg tttgttcctt tattctgtgc 3000
tccttgtagg agtctgacca taatctaata gataaaaatt atatatacaa aaaaaaaagg 3060
tgagcgtgca tgtttaggat agaattgttt ggtacactca tttgtggctt ggatgcgatg 3120
caaatgcgtt gaaatatatt atagacattt ctatgtatat ctttattgta gcgagtatag 3180
gctgttttta gcaagatttt gatggcgatc tagtggaaat gtggaatgac atctgctaaa 3240
atttccatga cttaggttta gcttatatcg taactatttt ccgaatgcca tcagaaggat 3300
tgtcttcacc taacaatcac cattcttcca tatttatctc agctttgttt cctgttaata 3360
ctgagcactc agtatgtaca tgaactaccc tcatgccaaa tagaatggtt ttcccaaacc 3420
atttaggttt catttggttg gaagttgtaa tgtatcacac tggttttgtg acaaagaatt 3480
gagtgtaatg tacgtgggtt acatcagact ttgtgttctc ttggagttct cctgccgtcc 3540
tacttttatt cttaattcat gcatcgggat tagagttttc caaccaaata acaggtaacg 3600
tcttaattgt gcactcaatc atgatctaga ggagaagttg caaaccaaat gccctggttt 3660
aagtgctagt aaatactttc cactttttcc tttatggtcg cttattgacc atgagtcatt 3720
gaaaacatgt ttggccttta atgtaagggg gatttaacca gagtcacctg tttctgatct 3780
acttggctca aaccgatggg gtcaaacctt ggaaaatatc ttataacaaa atactactac 3840
ctccgtttca ggttatagga tgttttgact ttggtcaaag tcaaactgtt tcaagtttga 3900
caaagtttat agaaaaaaat aataacattt tgaacccaag acaaatttat tactatgaaa 3960
atatattcaa ttattgattt aataaaacta atttgatatt ataaatatta ctatatttgt 4020
ctataaactt agtcaaactt aaagtagatt gactttaacc aaagtcaaaa cgtcttataa 4080
cctgaaaacg gagggagtac taacaaatta caattctaag tctgttatga atacagtcaa 4140
atgccatatt gtgtcaaatg tgacatcatt agttttacaa atttgtaagg catcatacca 4200
tcttactttt ttaatggttg ctgtcacgtt cgttatctac atatgaaaca ataattcttt 4260
gcaatgtctt aatactatca acttattttt ccagttactg cacataacct gggcagaagg 4320
catcaacagg gggaagtttg gttatggttc atcagcccat tcttttccca ctggaaattt 4380
tttcaaatct tggtcaactt ccgtggatcc aacatggaga gttttctgct attcatcatc 4440
tgaatcgttc aatcatattt ctccagaaac tttgtgggag gtttgtcact gaattgcaca 4500
attaaacttt tttgctcgtt tttggtacat aattcagttt tgttaaaatt aaatataaga 4560
gttaaagcat ttttaaagga tttatgatta atcatttgtg ggtttgatcc gtgaaacttc 4620
cataaagaag tcaataatca ttttgtgtct ggtagtatag tactacaatc accttcttct 4680
taatgttgta aacacacttc ataattaact agaacatacg gcaatgaaac tcaattcaga 4740
tttggaagat gcggaagtct ccaggttaag cacaatttcc aatagtgctg ccatggtgca 4800
ttttcaaaat gaaaccatta gttgtgactt gttagcataa tttttgtgcc tagtatgaaa 4860
ttttaaatgt actattcaag tatactgccc tcaaatgcaa ctcatggttg atgttcgttt 4920
gaagaaagag gcaattttgt ttgtggcgct tttaaaattt atgcgattgc atgacaggat 4980
ctcaagccag ctatctcgta ccttcaacct gaagaattga actttgtaca cgatgctctg 5040
aaggtaattg aagtgcaata acattcttcc acgtggtttg tggacaatat tctatacttc 5100
ttttattatt cctgggtagt gcatgcacca ggaggttgta tcatgtacct gattgactct 5160
tgcagttggc atatgaggca cataatgggc agaaacgccg aagtggggaa cctttcatta 5220
ttcatcctgt tgaagttgct cgtatccttg gggagcatgt gagtaatata tcgttaccac 5280
tacggtgatg actttctgcc catataaaca taatgaagtt aaattttctg tcgttccatc 5340
ttctgtggac atatttagga acttgactgg gaatcaatag ctgctggttt attgcatgac 5400
actgttgaag atacagacat ggttactttt gaaagaatag aaaatgagtt tggtgtaacc 5460
gtacgccgta ttgttgaagg ggagacaaag gtacattgtt tcacatttta tattttgcac 5520
atggctgcag tgcatgttta tatttggtat atttctgcaa aatgtttgtg atccaggtag 5580
agggatttta atgctataac agacctattt catttcaaat gcaggtatct aagctaggaa 5640
aacttcagtg caaaaatgag ggtaattcaa aacaggacgt caaggctgaa gatttaagac 5700
agatgtttct tgccatgaca gaagaggttt tttctttttt tgtttcgtca tgtagactgt 5760
tatttatcga gagctatttg aacaccctac taggttccat gaaaatttaa ataaaaattg 5820
taggttcgtg taatcattgt gaaactggca gacaggctgc ataatatgcg tacactcaca 5880
catatgcctc agcacaagca ggtaaactct tgttccactg aaaataatat ctgtccgtaa 5940
cttagtttct atttttattg taagcactct ctttgcagta tgccattgcc atggagacac 6000
tgcaggtttt tgcaccccta gctaaacttc tcgggatgta tcgaataaag gtatctgatg 6060
ataaatcatc ttgaaatata actgttattt ctgtttattg tatagactaa cttcattact 6120
gcagtgcttt tatgttattg ctgtgtttgc ttacaaacat tttgtactac catgctgttg 6180
tgttttttcc aataaaattt atacttcttt tttaatgata attgttttcg tgtttgcttt 6240
tttgatttta aaaacctgta tttctgctat aatttgacca gtagacttgt ttgtcctgaa 6300
cttattagta atattaagaa acaagtccat tttatcctta aatattgctc aagttcagaa 6360
atctatgcta aaatttggta tttcacaacc gtgcaaaaac aacctccctt gcttaattca 6420
ccaatttttc gttgacttgg ttttctgatt gccaacttta tgctgatgtg gcatacgaat 6480
cagtaacagc ataaagtgat tcagttgtac agattgaaat attcagattt gttgttgttg 6540
atttggatgc aatgtcatca attacacctc cctcggatat tttagaagtc aacttttcac 6600
ctcagaatga gacatccaag ccccaaaaca gttaaaatct aaccatcgtt ttatccactt 6660
tatggtttta atggtggttt tggagagtta aaagaacata atgtacttcc aaagttcagg 6720
ggccaaagaa atcaattccc cttaatctta tgactgtacg agatattttc atagtagtat 6780
tttgtagttc aaggaccaaa ggaaaaaaaa tccagttcaa ggaccaaagg aaaaaaaatc 6840
cctttatctt atgaatagaa ggggtggttt catactggtg ttttctgtca gtcttagaaa 6900
ggtctcctct gtagttcgtt gcattgtgag aatgtcgatg tgtttcttat gaagcttatc 6960
atagcttctg gtactttgcc tgggtccatt tgaccagttg ctcttattct tgtagtctga 7020
gctagaatat ctgtccttca tgtacatgaa tcctggtgat ttcgctgaac taaagaaaag 7080
agttgaggac ctctacaagg cccatgaaca agaattggaa gaggtacttt gtttttgcta 7140
ttgcactttg atttgcattc tactctgaat gagattcatt ataatttttg aattacaggc 7200
aaatcaaatc ttaggggaaa agattgctga ggatcaattt cttgatcttg ttagtgttga 7260
aacacaagtg cgttcagtct gcaaagaact ctacaggtag agcacacatg atgtcttatt 7320
aattaaaaat aagtattatc ttgaaccttc acttccactt taatactacc cctgcctagt 7380
gatatactgt tggtataaac ttggtttagc ttatttgttt acactactta caaatgcaat 7440
tcatattaga gcacaatgaa tttcctcaca aatttcttta gttatatctt tgtaaaaaag 7500
tggatatttg ttttcactac tttgtcaatt tgcttacaca acatcattaa atagtgtggt 7560
acagttacag actgattgac gttttctgct gcaaaatcct ttttttcttc tcattcacat 7620
tttgcaccta aaaaggtgat caacaattat ttttgcatta ttcattacca agtttgaaat 7680
aggtggcaaa agtgttttct taggcagatt atttatcatt tggtcatatt gcagcattta 7740
taaaactgcg ctgaagtcca agagttcaat aaatgagata aatcaggttg cacaggtatg 7800
attttcctat gtcagataag ttgcctagct ttatcatttt aacgaataac ttattctctg 7860
aaaagtattg tgtttctata ttattcagct gcggatcatc ataaagccaa aatcctgcaa 7920
tggtgtgggg ccattgtgca ctgcacaaca ggtataacat tacaagtgta acataccatc 7980
ttttctgtat gaaattaaaa tttactaatg tgtaaatatg ctcaatccac tgatgcgcaa 8040
gcattcaatt catttcagat ctgctaccat gtccttggtc ttgttcatgg tatctggaca 8100
cctatacctc aagctgtgag ttatctgctt tccttattca ttataatttt tacctctttt 8160
gattttgcca tttctaaaag ccagctgtat aggtgaaaga ttacattgca accccaaagc 8220
ctaatggata ccaaagtcta cacacgacag tgataccatt tctgaatgag agtatgttcc 8280
atttggaagt tcaggtaatg ttggcttagc tgcctgccat ttagctaaat tcatactaca 8340
aactctcaag catgtgctca ttctaatgca agtttcactt tatgttccta ctgtattgca 8400
gataagaaca gaggatatgg atctcatagc agaaagaggc attgctgcgc actacagtgg 8460
aagaggggtt gtttcagggc ctgttcgtcc tggaatatca agtggaagga attcaaatgg 8520
gaaagtgata tgtctgaaca atacaggctt tgctctgagg gtatataatg atgtcaaagc 8580
ttattgcact tcatattaag taccccctct gttctaaaaa ataaggcgtc cttgttttca 8640
ggaaaaatca acatttgaaa actttgactg ataattgatc taaaatattt ttttggtgtc 8700
atgtatgtag taccactaga tttgtatctg aaaatatttt catatcatgt taatttcaaa 8760
gtaccccagt taataatata ttactacccc tgtcctaaaa tgtatgacac cgttgacttt 8820
tcgcataatg tttgaccatt cgtcttaaaa ttttagtgta aatatgaaaa agtataagtt 8880
aatattattt tgatgataaa gcaagtgaca acaaaataaa tgatatttat atcttttttg 8940
aataagacga atggttaaac attatgtaaa aggtcaacgg cgtcatatat tctgggatgg 9000
attataaaag aaatcaatgg tgaaagtata atgttgggat gctgtgaaat aagttagtac 9060
gctttatatt ttagaacgga ggagtattta ttatcacatt tccttaagaa agaactccaa 9120
agacttctca tctttgatag attggttggc tcaatgcaat ccgtgaatgg caagaagagt 9180
ttgttggtaa catgagttct agggaatttg ttgatactat cacccgagat cttctgggaa 9240
gccgtgtctt tgtgtttaca ccaaaaggcg aggtgaggtg ctgacttgga ggacatttct 9300
tccatttgag ttgagcgatt ggtttgaata tagttttcat tggcagatta aaaacttgcc 9360
taagggggcc actgtggttg attatgctta cctgattcac acagaaattg ggaacaaaat 9420
ggtagctgca aaggttagtt atggataata gcattatgat catcattgta tttgtgtgct 9480
catgttcttc ctttcaggtg aatggcaatc tagtttcacc aatccatgta cttgcaaatg 9540
ctgaagttgt ggagattata atttatgatg taagtactca tttcatatat tgcatgattt 9600
atttctgttt tatatctttg tgtcaatttg taactttcaa gatatgttta ttgattgagc 9660
catgtctcga cattgatgca catgcccaca acatacaagt tgcaactttg attgcccttt 9720
ttttgtgtgt atatgggtga taacctccgt cccaaaattt tagggatcct ggcattcaaa 9780
atttgtccaa aagtagtagg gattctagag tactactccc tgctaaccac ctcatttaat 9840
gttcacccaa tcttaccccc aaccaccctc gcactaccca cagacccctc aataagaggc 9900
atcatagtct tttcccttta accttaatct ctccaaaaaa atcttaagat cccttatatt 9960
ttggaactga gggagcaact tacacgccag taggtctgaa attttattcc agcatataac 10020
catccgacca tgtggtctgt agcatcatat atcttttttc atttgcaaat gtactccctc 10080
catttcatat tataagtcat ttgatttttt ttcttagtca aagttcttta ggtttgccta 10140
agtttataga aaaagctagc aacatctaca gcactaaatt aatttcatta aatttagcat 10200
gaaatatatt ttaataatat gtttgtttta tattgaaaat gctactatat ttttctacaa 10260
acttaaagaa gtttgactaa gaaaaaagtc aaaaagactt ataataagaa acagatggag 10320
tacgattcag cttgctacag acaaattcat agcagtatga taaccccctt gggggccagg 10380
atcctggccc atacaaagga gccctaaaag ggacagcagc atgacagctc acattgtccc 10440
tgaatcaatt gaaagaccaa aggtgcattt ccagttcata ccgtgggatc agcccttcat 10500
agttcctaat ttcacacttg aaagttacaa cataattctg agggaaatag atggaagtag 10560
atgtgatgtc tctgtgaggc catttgcgat ttttctcagt ttaaggcata ctgttactct 10620
tgctagtgcc ttttatccat caagaggatt ctagagaact attccattgg cattgcttat 10680
attatacctg tgacatccat ttaaactcat ctgccttttc ttgtttcaga aattatctgc 10740
taaatatgca ttccagcgtc accagcagtg gcttcaacat gcgaaaactc gcagtgcaag 10800
acacaaaatt atgaaagtaa gtctaaaagg atttcttaca ttattagatg gttctggcaa 10860
ctaaccgttt gcctttctcc agttcttgcg ggagcaagct gctctttctg ctgctgaaat 10920
aactgccgac gccgttaata actttgttgc cgatcttgaa gatgaaagtg actatgagca 10980
gtcgattcca agctctgaaa ataaggacta tacattcaac tggcagaaga tattgaattc 11040
tgacaaacta tcctttggaa acaagaagag cgactgcttt ttacctgtta aaaatgtctc 11100
tgtgccaaag gttaatggga agcacaacaa aactgtcaaa gaactgggca tcaaaattaa 11160
tggttcaaca tttcgtggtg atagcttcac tgattttatt caccctggtg tttccagcag 11220
taaagaagtt ctccctagtg tggataactg gaaagctggt aaaatttgtg cgtggcacaa 11280
tacagaaggc agctctatcc aatggctctg catagtgtgt gttgatcgaa aaggtttcac 11340
tcctgccatc taattgttgg acaaagctga aaatatttta ttagctttac ctctataatt 11400
tattagtttt aactaataag acgttgcaaa catgtccaca ttttgttcct ttctgcacaa 11460
ctatttacat ctaatttatt tttgggttat gttgttttga cctttacctg caaatattaa 11520
tataatcact tcaaatggct ttcaatattc atcataggta tggttgcgga agtttcatca 11580
gctctaacag cgtgtggaat caccatatgc tcgtgtgtgg taaatggacc aacttgcctc 11640
aataatttag tatcatcctt ttttatgtga taatcaatgc aacattgcat catttaccct 11700
attaagttcc catcttgaat ttgtcagcca cctctttgta ctgtttgtgt ttgatcattt 11760
ctgctataat tcttaggcgg agcgagataa gagaagggga ataggtgtga tgttgttcca 11820
ctttgagggg gcatatgaga atgtggtgtg cttccttaac tgatctgtat tcctgttcta 11880
attgttgcat tgggcactgt acctaaatag aaaattgcaa ttgcaggtca gtgcatgctc 11940
cggtgttgat atgattcttg gggttcttgg ttggtccgtt ggatgcagct gtaatccttt 12000
gggtgttctt gaatgctagc ggacaacagg catcacgctg catcagttca ccatctccag 12060
caaaaaggag agacaatttt gaagcaccaa gaaatcagtc cgctcaatgg ttcaggagca 12120
gtccgatctt ggttgatgat gctgtgcaac ccataacttg tccttcaaag aaggtagagt 12180
gagggtagag caagctggag ccggatattc tggttcgttt ggaagcgaga ggagtgtaca 12240
tagctgagca agctactagt gaactgttag tccagggatt ggttgggtta tagtattata 12300
caaaagcctc catgaatgac caacaatggc agcttctctc ttctattttt tttgtttgcc 12360
attcgtacac tagttatgta tgacatgtgc agctagaatt ttgatctgat gggattccaa 12420
tgccccaaat tttgcccgta ttcgttattt cactcggtga ttatgactat gctgtagctt 12480
cgatttttca atggtataag ttttcttttc ttactttggg gcctaatgaa atgcgttggc 12540
ttaagaacat ctaactggca gataaataat tcagcgaaga gtcctctgtt ttgcagaggt 12600
aaaaaaacag acgcagtcca tactgtacag taactgaaac aagagaatgg cttgtttgct 12660
acagttaact tatatgaaat gcacctggat tgcgactgat ttagaatgtg gacaatgtgg 12720
accaagccaa gccattttct cacgtcttac cgagacgaat cgctcgtgcc aaggactcat 12780
tgacccttga ttcagttgag aaatgggaga tatttctgtt tggcatttga taaaatagtc 12840
tgttgcccgg cgaaaaataa aatatctgtt aatcgacata gtgagaacat tgatgtgttt 12900
attcaactat aacgcactct aataagcgaa aactacgtgt ttcgatcttg tttcatgtgc 12960
tagcgtgtgt gagccactct tcagctttgg tggcgtcgca ggaatacgca gt 13012
<210> 2
<211> 2679
<212> DNA
<213> Oryza sativa
<400> 2
atgcaacccc cgacgggcgc cgtgtcaggg tcgtcgtcgt cgtcgctgga gtgcgtgagc 60
tcgtgcagga cgtcgtggag gggcggaggg aggccgtacg aatgcagcgt gctctcgtgc 120
gcctggaacg cgccgcgggc gctcacgggg gcgctcgcca gcaccaccgc gcagtgctcc 180
tcctgcagcc acgccgaggc tggggcaggg tggaggcggc ggggccagtc gcagcggagt 240
aacaattcgt tactgcacat aacctgggca gaaggcatca acagggggaa gtttggttat 300
ggttcatcag cccattcttt tcccactgga aattttttca aatcttggtc aacttccgtg 360
gatccaacat ggagagtttt ctgctattca tcatctgaat cgttcaatca tatttctcca 420
gaaactttgt gggaggatct caagccagct atctcgtacc ttcaacctga agaattgaac 480
tttgtacacg atgctctgaa gttggcatat gaggcacata atgggcagaa acgccgaagt 540
ggggaacctt tcattattca tcctgttgaa gttgctcgta tccttgggga gcatgaactt 600
gactgggaat caatagctgc tggtttattg catgacactg ttgaagatac agacatggtt 660
acttttgaaa gaatagaaaa tgagtttggt gtaaccgtac gccgtattgt tgaaggggag 720
acaaaggtat ctaagctagg aaaacttcag tgcaaaaatg agggtaattc aaaacaggac 780
gtcaaggctg aagatttaag acagatgttt cttgccatga cagaagaggt tcgtgtaatc 840
attgtgaaac tggcagacag gctgcataat atgcgtacac tcacacatat gcctcagcac 900
aagcagtatg ccattgccat ggagacactg caggtttttg cacccctagc taaacttctc 960
gggatgtatc gaataaagtc tgagctagaa tatctgtcct tcatgtacat gaatcctggt 1020
gatttcgctg aactaaagaa aagagttgag gacctctaca aggcccatga acaagaattg 1080
gaagaggcaa atcaaatctt aggggaaaag attgctgagg atcaatttct tgatcttgtt 1140
agtgttgaaa cacaagtgcg ttcagtctgc aaagaactct acagcattta taaaactgcg 1200
ctgaagtcca agagttcaat aaatgagata aatcaggttg cacagctgcg gatcatcata 1260
aagccaaaat cctgcaatgg tgtggggcca ttgtgcactg cacaacagat ctgctaccat 1320
gtccttggtc ttgttcatgg tatctggaca cctatacctc aagctgtgaa agattacatt 1380
gcaaccccaa agcctaatgg ataccaaagt ctacacacga cagtgatacc atttctgaat 1440
gagagtatgt tccatttgga agttcagata agaacagagg atatggatct catagcagaa 1500
agaggcattg ctgcgcacta cagtggaaga ggggttgttt cagggcctgt tcgtcctgga 1560
atatcaagtg gaaggaattc aaatgggaaa gtgatatgtc tgaacaatac aggctttgct 1620
ctgaggattg gttggctcaa tgcaatccgt gaatggcaag aagagtttgt tggtaacatg 1680
agttctaggg aatttgttga tactatcacc cgagatcttc tgggaagccg tgtctttgtg 1740
tttacaccaa aaggcgagat taaaaacttg cctaaggggg ccactgtggt tgattatgct 1800
tacctgattc acacagaaat tgggaacaaa atggtagctg caaaggtgaa tggcaatcta 1860
gtttcaccaa tccatgtact tgcaaatgct gaagttgtgg agattataat ttatgataaa 1920
ttatctgcta aatatgcatt ccagcgtcac cagcagtggc ttcaacatgc gaaaactcgc 1980
agtgcaagac acaaaattat gaaattcttg cgggagcaag ctgctctttc tgctgctgaa 2040
ataactgccg acgccgttaa taactttgtt gccgatcttg aagatgaaag tgactatgag 2100
cagtcgattc caagctctga aaataaggac tatacattca actggcagaa gatattgaat 2160
tctgacaaac tatcctttgg aaacaagaag agcgactgct ttttacctgt taaaaatgtc 2220
tctgtgccaa aggttaatgg gaagcacaac aaaactgtca aagaactggg catcaaaatt 2280
aatggttcaa catttcgtgg tgatagcttc actgatttta ttcaccctgg tgtttccagc 2340
agtaaagaag ttctccctag tgtggataac tggaaagctg gtaaaatttg tgcgtggcac 2400
aatacagaag gcagctctat ccaatggctc tgcatagtgt gtgttgatcg aaaaggtatg 2460
gttgcggaag tttcatcagc tctaacagcg tgtggaatca ccatatgctc gtgtgtggcg 2520
gagcgagata agagaagggg aataggtgtg atgttgttcc actttgaggg ggcatatgag 2580
aatgtggtca gtgcatgctc cggtgttgat atgattcttg gggttcttgg ttggtccgtt 2640
ggatgcagct gtaatccttt gggtgttctt gaatgctag 2679
<210> 3
<211> 892
<212> PRT
<213> Oryza sativa
<400> 3
Met Gln Pro Pro Thr Gly Ala Val Ser Gly Ser Ser Ser Ser Ser Leu
1 5 10 15
Glu Cys Val Ser Ser Cys Arg Thr Ser Trp Arg Gly Gly Gly Arg Pro
20 25 30
Tyr Glu Cys Ser Val Leu Ser Cys Ala Trp Asn Ala Pro Arg Ala Leu
35 40 45
Thr Gly Ala Leu Ala Ser Thr Thr Ala Gln Cys Ser Ser Cys Ser His
50 55 60
Ala Glu Ala Gly Ala Gly Trp Arg Arg Arg Gly Gln Ser Gln Arg Ser
65 70 75 80
Asn Asn Ser Leu Leu His Ile Thr Trp Ala Glu Gly Ile Asn Arg Gly
85 90 95
Lys Phe Gly Tyr Gly Ser Ser Ala His Ser Phe Pro Thr Gly Asn Phe
100 105 110
Phe Lys Ser Trp Ser Thr Ser Val Asp Pro Thr Trp Arg Val Phe Cys
115 120 125
Tyr Ser Ser Ser Glu Ser Phe Asn His Ile Ser Pro Glu Thr Leu Trp
130 135 140
Glu Asp Leu Lys Pro Ala Ile Ser Tyr Leu Gln Pro Glu Glu Leu Asn
145 150 155 160
Phe Val His Asp Ala Leu Lys Leu Ala Tyr Glu Ala His Asn Gly Gln
165 170 175
Lys Arg Arg Ser Gly Glu Pro Phe Ile Ile His Pro Val Glu Val Ala
180 185 190
Arg Ile Leu Gly Glu His Glu Leu Asp Trp Glu Ser Ile Ala Ala Gly
195 200 205
Leu Leu His Asp Thr Val Glu Asp Thr Asp Met Val Thr Phe Glu Arg
210 215 220
Ile Glu Asn Glu Phe Gly Val Thr Val Arg Arg Ile Val Glu Gly Glu
225 230 235 240
Thr Lys Val Ser Lys Leu Gly Lys Leu Gln Cys Lys Asn Glu Gly Asn
245 250 255
Ser Lys Gln Asp Val Lys Ala Glu Asp Leu Arg Gln Met Phe Leu Ala
260 265 270
Met Thr Glu Glu Val Arg Val Ile Ile Val Lys Leu Ala Asp Arg Leu
275 280 285
His Asn Met Arg Thr Leu Thr His Met Pro Gln His Lys Gln Tyr Ala
290 295 300
Ile Ala Met Glu Thr Leu Gln Val Phe Ala Pro Leu Ala Lys Leu Leu
305 310 315 320
Gly Met Tyr Arg Ile Lys Ser Glu Leu Glu Tyr Leu Ser Phe Met Tyr
325 330 335
Met Asn Pro Gly Asp Phe Ala Glu Leu Lys Lys Arg Val Glu Asp Leu
340 345 350
Tyr Lys Ala His Glu Gln Glu Leu Glu Glu Ala Asn Gln Ile Leu Gly
355 360 365
Glu Lys Ile Ala Glu Asp Gln Phe Leu Asp Leu Val Ser Val Glu Thr
370 375 380
Gln Val Arg Ser Val Cys Lys Glu Leu Tyr Ser Ile Tyr Lys Thr Ala
385 390 395 400
Leu Lys Ser Lys Ser Ser Ile Asn Glu Ile Asn Gln Val Ala Gln Leu
405 410 415
Arg Ile Ile Ile Lys Pro Lys Ser Cys Asn Gly Val Gly Pro Leu Cys
420 425 430
Thr Ala Gln Gln Ile Cys Tyr His Val Leu Gly Leu Val His Gly Ile
435 440 445
Trp Thr Pro Ile Pro Gln Ala Val Lys Asp Tyr Ile Ala Thr Pro Lys
450 455 460
Pro Asn Gly Tyr Gln Ser Leu His Thr Thr Val Ile Pro Phe Leu Asn
465 470 475 480
Glu Ser Met Phe His Leu Glu Val Gln Ile Arg Thr Glu Asp Met Asp
485 490 495
Leu Ile Ala Glu Arg Gly Ile Ala Ala His Tyr Ser Gly Arg Gly Val
500 505 510
Val Ser Gly Pro Val Arg Pro Gly Ile Ser Ser Gly Arg Asn Ser Asn
515 520 525
Gly Lys Val Ile Cys Leu Asn Asn Thr Gly Phe Ala Leu Arg Ile Gly
530 535 540
Trp Leu Asn Ala Ile Arg Glu Trp Gln Glu Glu Phe Val Gly Asn Met
545 550 555 560
Ser Ser Arg Glu Phe Val Asp Thr Ile Thr Arg Asp Leu Leu Gly Ser
565 570 575
Arg Val Phe Val Phe Thr Pro Lys Gly Glu Ile Lys Asn Leu Pro Lys
580 585 590
Gly Ala Thr Val Val Asp Tyr Ala Tyr Leu Ile His Thr Glu Ile Gly
595 600 605
Asn Lys Met Val Ala Ala Lys Val Asn Gly Asn Leu Val Ser Pro Ile
610 615 620
His Val Leu Ala Asn Ala Glu Val Val Glu Ile Ile Ile Tyr Asp Lys
625 630 635 640
Leu Ser Ala Lys Tyr Ala Phe Gln Arg His Gln Gln Trp Leu Gln His
645 650 655
Ala Lys Thr Arg Ser Ala Arg His Lys Ile Met Lys Phe Leu Arg Glu
660 665 670
Gln Ala Ala Leu Ser Ala Ala Glu Ile Thr Ala Asp Ala Val Asn Asn
675 680 685
Phe Val Ala Asp Leu Glu Asp Glu Ser Asp Tyr Glu Gln Ser Ile Pro
690 695 700
Ser Ser Glu Asn Lys Asp Tyr Thr Phe Asn Trp Gln Lys Ile Leu Asn
705 710 715 720
Ser Asp Lys Leu Ser Phe Gly Asn Lys Lys Ser Asp Cys Phe Leu Pro
725 730 735
Val Lys Asn Val Ser Val Pro Lys Val Asn Gly Lys His Asn Lys Thr
740 745 750
Val Lys Glu Leu Gly Ile Lys Ile Asn Gly Ser Thr Phe Arg Gly Asp
755 760 765
Ser Phe Thr Asp Phe Ile His Pro Gly Val Ser Ser Ser Lys Glu Val
770 775 780
Leu Pro Ser Val Asp Asn Trp Lys Ala Gly Lys Ile Cys Ala Trp His
785 790 795 800
Asn Thr Glu Gly Ser Ser Ile Gln Trp Leu Cys Ile Val Cys Val Asp
805 810 815
Arg Lys Gly Met Val Ala Glu Val Ser Ser Ala Leu Thr Ala Cys Gly
820 825 830
Ile Thr Ile Cys Ser Cys Val Ala Glu Arg Asp Lys Arg Arg Gly Ile
835 840 845
Gly Val Met Leu Phe His Phe Glu Gly Ala Tyr Glu Asn Val Val Ser
850 855 860
Ala Cys Ser Gly Val Asp Met Ile Leu Gly Val Leu Gly Trp Ser Val
865 870 875 880
Gly Cys Ser Cys Asn Pro Leu Gly Val Leu Glu Cys
885 890
<210> 4
<211> 5009
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
tgcagcgtga cccggtcgtg cccctctcta gagataatga gcattgcatg tctaagttat 60
aaaaaattac cacatatttt ttttgtcaca cttgtttgaa gtgcagttta tctatcttta 120
tacatatatt taaactttac tctacgaata atataatcta tagtactaca ataatatcag 180
tgttttagag aatcatataa atgaacagtt agacatggtc taaaggacaa ttgagtattt 240
tgacaacagg actctacagt tttatctttt tagtgtgcat gtgttctcct ttttttttgc 300
aaatagcttc acctatataa tacttcatcc attttattag tacatccatt tagggtttag 360
ggttaatggt ttttatagac taattttttt agtacatcta ttttattcta ttttagcctc 420
taaattaaga aaactaaaac tctattttag tttttttatt taataattta gatataaaat 480
agaataaaat aaagtgacta aaaattaaac aaataccctt taagaaatta aaaaaactaa 540
ggaaacattt ttcttgtttc gagtagataa tgccagcctg ttaaacgccg tcgacgagtc 600
taacggacac caaccagcga accagcagcg tcgcgtcggg ccaagcgaag cagacggcac 660
ggcatctctg tcgctgcctc tggacccctc tcgagagttc cgctccaccg ttggacttgc 720
tccgctgtcg gcatccagaa attgcgtggc ggagcggcag acgtgagccg gcacggcagg 780
cggcctcctc ctcctctcac ggcaccggca gctacggggg attcctttcc caccgctcct 840
tcgctttccc ttcctcgccc gccgtaataa atagacaccc cctccacacc ctctttcccc 900
aacctcgtgt tgttcggagc gcacacacac acaaccagat ctcccccaaa tccacccgtc 960
ggcacctccg cttcaaggta cgccgctcgt cctccccccc cccccctctc taccttctct 1020
agatcggcgt tccggtccat ggttagggcc cggtagttct acttctgttc atgtttgtgt 1080
tagatccgtg tttgtgttag atccgtgctg ctagcgttcg tacacggatg cgacctgtac 1140
gtcagacacg ttctgattgc taacttgcca gtgtttctct ttggggaatc ctgggatggc 1200
tctagccgtt ccgcagacgg gatcgatttc atgatttttt ttgtttcgtt gcatagggtt 1260
tggtttgccc ttttccttta tttcaatata tgccgtgcac ttgtttgtcg ggtcatcttt 1320
tcatgctttt ttttgtcttg gttgtgatga tgtggtctgg ttgggcggtc gttctagatc 1380
ggagtagaat tctgtttcaa actacctggt ggatttatta attttggatc tgtatgtgtg 1440
tgccatacat attcatagtt acgaattgaa gatgatggat ggaaatatcg atctaggata 1500
ggtatacatg ttgatgcggg ttttactgat gcatatacag agatgctttt tgttcgcttg 1560
gttgtgatga tgtggtgtgg ttgggcggtc gttcattcgt tctagatcgg agtagaatac 1620
tgtttcaaac tacctggtgt atttattaat tttggaactg tatgtgtgtg tcatacatct 1680
tcatagttac gagtttaaga tggatggaaa tatcgatcta ggataggtat acatgttgat 1740
gtgggtttta ctgatgcata tacatgatgg catatgcagc atctattcat atgctctaac 1800
cttgagtacc tatctattat aataaacaag tatgttttat aattattttg atcttgatat 1860
acttggatga tggcatatgc agcagctata tgtggatttt tttagccctg ccttcatacg 1920
ctatttattt gcttggtact gtttcttttg tcgatgctca ccctgttgtt tggtgttact 1980
taagcttatg caacccccga cgggcgccgt gtcagggtcg tcgtcgtcgt cgctggagtg 2040
cgtgagctcg tgcaggacgt cgtggagggg cggagggagg ccgtacgaat gcagcgtgct 2100
ctcgtgcgcc tggaacgcgc cgcgggcgct cacgggggcg ctcgccagca ccaccgcgca 2160
gtgctcctcc tgcagccacg ccgaggctgg ggcagggtgg aggcggcggg gccagtcgca 2220
gcggagtaac aattcgttac tgcacataac ctgggcagaa ggcatcaaca gggggaagtt 2280
tggttatggt tcatcagccc attcttttcc cactggaaat tttttcaaat cttggtcaac 2340
ttccgtggat ccaacatgga gagttttctg ctattcatca tctgaatcgt tcaatcatat 2400
ttctccagaa actttgtggg aggatctcaa gccagctatc tcgtaccttc aacctgaaga 2460
attgaacttt gtacacgatg ctctgaagtt ggcatatgag gcacataatg ggcagaaacg 2520
ccgaagtggg gaacctttca ttattcatcc tgttgaagtt gctcgtatcc ttggggagca 2580
tgaacttgac tgggaatcaa tagctgctgg tttattgcat gacactgttg aagatacaga 2640
catggttact tttgaaagaa tagaaaatga gtttggtgta accgtacgcc gtattgttga 2700
aggggagaca aaggtatcta agctaggaaa acttcagtgc aaaaatgagg gtaattcaaa 2760
acaggacgtc aaggctgaag atttaagaca gatgtttctt gccatgacag aagaggttcg 2820
tgtaatcatt gtgaaactgg cagacaggct gcataatatg cgtacactca cacatatgcc 2880
tcagcacaag cagtatgcca ttgccatgga gacactgcag gtttttgcac ccctagctaa 2940
acttctcggg atgtatcgaa taaagtctga gctagaatat ctgtccttca tgtacatgaa 3000
tcctggtgat ttcgctgaac taaagaaaag agttgaggac ctctacaagg cccatgaaca 3060
agaattggaa gaggcaaatc aaatcttagg ggaaaagatt gctgaggatc aatttcttga 3120
tcttgttagt gttgaaacac aagtgcgttc agtctgcaaa gaactctaca gcatttataa 3180
aactgcgctg aagtccaaga gttcaataaa tgagataaat caggttgcac agctgcggat 3240
catcataaag ccaaaatcct gcaatggtgt ggggccattg tgcactgcac aacagatctg 3300
ctaccatgtc cttggtcttg ttcatggtat ctggacacct atacctcaag ctgtgaaaga 3360
ttacattgca accccaaagc ctaatggata ccaaagtcta cacacgacag tgataccatt 3420
tctgaatgag agtatgttcc atttggaagt tcagataaga acagaggata tggatctcat 3480
agcagaaaga ggcattgctg cgcactacag tggaagaggg gttgtttcag ggcctgttcg 3540
tcctggaata tcaagtggaa ggaattcaaa tgggaaagtg atatgtctga acaatacagg 3600
ctttgctctg aggattggtt ggctcaatgc aatccgtgaa tggcaagaag agtttgttgg 3660
taacatgagt tctagggaat ttgttgatac tatcacccga gatcttctgg gaagccgtgt 3720
ctttgtgttt acaccaaaag gcgagattaa aaacttgcct aagggggcca ctgtggttga 3780
ttatgcttac ctgattcaca cagaaattgg gaacaaaatg gtagctgcaa aggtgaatgg 3840
caatctagtt tcaccaatcc atgtacttgc aaatgctgaa gttgtggaga ttataattta 3900
tgataaatta tctgctaaat atgcattcca gcgtcaccag cagtggcttc aacatgcgaa 3960
aactcgcagt gcaagacaca aaattatgaa attcttgcgg gagcaagctg ctctttctgc 4020
tgctgaaata actgccgacg ccgttaataa ctttgttgcc gatcttgaag atgaaagtga 4080
ctatgagcag tcgattccaa gctctgaaaa taaggactat acattcaact ggcagaagat 4140
attgaattct gacaaactat cctttggaaa caagaagagc gactgctttt tacctgttaa 4200
aaatgtctct gtgccaaagg ttaatgggaa gcacaacaaa actgtcaaag aactgggcat 4260
caaaattaat ggttcaacat ttcgtggtga tagcttcact gattttattc accctggtgt 4320
ttccagcagt aaagaagttc tccctagtgt ggataactgg aaagctggta aaatttgtgc 4380
gtggcacaat acagaaggca gctctatcca atggctctgc atagtgtgtg ttgatcgaaa 4440
aggtatggtt gcggaagttt catcagctct aacagcgtgt ggaatcacca tatgctcgtg 4500
tgtggcggag cgagataaga gaaggggaat aggtgtgatg ttgttccact ttgagggggc 4560
atatgagaat gtggtcagtg catgctccgg tgttgatatg attcttgggg ttcttggttg 4620
gtccgttgga tgcagctgta atcctttggg tgttcttgaa tgccccgggg attacaagga 4680
tgacgacgat aagtgctaag ctagcggatc cactagttct agaggatccc cgggtaccga 4740
gctcgaattt ccccgatcgt tcaaacattt ggcaataaag tttcttaaga ttgaatcctg 4800
ttgccggtct tgcgatgatt atcatataat ttctgttgaa ttacgttaag catgtaataa 4860
ttaacatgta atgcatgacg ttatttatga gatgggtttt tatgattaga gtcccgcaat 4920
tatacattta atacgcgata gaaaacaaaa tatagcgcgc aaactaggat aaattatcgc 4980
gcgcggtgtc atctatgtta ctagatcgg 5009
<210> 5
<211> 3787
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ttttgaatga gcttattaaa ttatatataa agtatataca accaatatgc atattttctt 60
gtttatattc acctaataat aaccaatgaa ataataaaat acaaatgtat attattttcc 120
ttttggtcac aaatgtattt tcttttccct tcttatatta tatacacaat aaaataaaat 180
aaaaatatga aattatcctt tttttgtgtg gacattttat catttaagaa aatgaaatta 240
ataattctaa attactatct tattacaaat gaaaattgta aattaattaa atatttacaa 300
gcatccatat aattttggtc attcaatata attcctaaat actaaaaact attgactttt 360
tttttttttt tttttttttt tttgtaaacc ctaaaaacta ttgactaaaa aaaagtattt 420
taacagaaaa agaagagaat atataatttt aatgtttgac cacaaaggga aaaaaatatc 480
tcaaagtttt ttctttcttt ggtatatcgg acggtatttg tgtggccagg gagggctacc 540
tgagactcca tatctgtctc tcttcttctt cttcttcctc ttcttcctct gcttcttctt 600
cttcacatca ctgtgtgcgt ctctctatct ctctattcta tcatttcgaa atcctctcta 660
tccgaatttg aactcgtctc ttcttcgtaa agagttctta atctccgtct ctgtgatttc 720
ggaatctgga ggttttgaat ttcttgttcg tatcaatcaa atggtggatc gatttagtga 780
gattgcttta cctcattagc agtcgacatg acttctgctt cttccatgtc cgtgtctgtg 840
gaatgtgtga acatatgtaa tctaacgaaa ggagatggga atgcaagaag cgattgcagt 900
gctctctcct gtgcttggaa agctccaaga gcgttaactg ggtttctagc tagcactgct 960
catccacctg tgtgttctgt gtattcatgt ggcagaaatg gaagaaagag cagaatgaaa 1020
gcttgcgcct ggcagaggta tgaatatgaa gtaggctttt ctgaggctcc ttactttgta 1080
aatgtgagaa atatcttgaa gtccagatta tcttgtggtg gtcataaaag atgggaactg 1140
tattgcgtat cagctgaatc ttcttctggt gcatccagtg atgttaccgt cgaaacattg 1200
tgggaggacc ttttcccatc aatatcttat ctaccccgta aagaattaga atttgttcaa 1260
aagggcctta agttagcgtt tgaggcacat catggtcaaa agagacgtag tggggaacca 1320
ttcattatac atcccgttgc agttgctcgt atccttgggg aacttgaatt ggattgggag 1380
tctattgttg ctggattact acatgacaca gtcgaggata caaatttcat tacttttgaa 1440
aagatagaag aagagtttgg tgcaactgtg cgtcacatcg tagaagggga gaccaaggtg 1500
tcaaaactgg gaaagttaaa gtgtaaaacg gaaagtgaaa caatacaaga tgtaaaagca 1560
gatgatttgc ggcagatgtt tctggcgatg acagacgagg tccgcgtcat tattgtcaaa 1620
ctagctgacc ggttgcataa tatgcgaact ctctgccaca tgcctcccca taagcagtcc 1680
agcattgcag gggagacttt gcaggtcttt gctcctttag caaaattatt gggaatgtat 1740
tcaataaagt ctgaactgga aaatctgtct ttcatgtacg taagtgctga ggattatgat 1800
agagtcacta gcaggattgc taacctctac aaagagcatg aaaaagaact cactgaggca 1860
aacagaattt tggtgaaaaa gattgaagat gatcagtttc tggaccttgt gactgtgaat 1920
actgatgttc gatctgtttg caaggaaact tacagcatct acaaagctgc tctcaaatcg 1980
aaaggatcaa ttaatgatta caaccagatt gctcagcagt tacggattgt tgtaaagcca 2040
aaaccatctg taggggtcgg gcctttgtgc agtccacaac agatatgcta tcacgttctg 2100
gggcttgttc atgagatctg gaaacctatt ccacgaacag taaaagatta cattgcaacc 2160
ccgaagccca atggatacca gagcctccat actactgtga ttccattctt gtatgagagt 2220
atgtttcgac tggaggttca gatcagaacc gaggagatgg acttgattgc tgaaaggggc 2280
attgctgttt actacaatgg caagtctcta tctactggat tagttggaaa cgcggttcct 2340
ttaggtagaa attcaagggg gaagacgggt tgcctcaaca atgcagattt tgcactcagg 2400
gttgggtggc taaatgcaat aagggaatgg caagaggagt ttgtgggtaa catgagctct 2460
agagaatttg tggataccat tacgagggat cttttaggta gtcgtgtgtt tgtattcaca 2520
cctaaaggag agataaagaa cctcccgaaa ggggccaccg ttgttgacta cgcttatctg 2580
attcacaccg aaatcggaaa caagatggta gcagcaaagg tcaatggtaa tcttgtttcc 2640
ccaactcacg ttcttgagaa tgctgaggtc gtggagatag tcacctacaa cgccctctca 2700
agtaaatctg ctttccaaag acataaacag tggttgcaac atgccaaaac aaggagtgca 2760
agacacaaga ttatgaggtt cctaagggag caagctgcac aatgtgctgc cgaaattacc 2820
caggatcaag tgaatgactt tgtggcggac tctgatagtg atgtggaaga tctcacagaa 2880
gattcaagaa agagcctaca atggtgggag aaaatcctcg tcaatgttaa gcaattccag 2940
tcacaagaca aaagtagaga tacaacaccc gctcctcaaa acggaagcgt ttgggcccca 3000
aaggtgaatg gaaaacacaa caaagccata aagaactcga gttctgatga gccagagttc 3060
ctcctacctg gagatggaat tgccaggatt ttacctgcta atatccctgc ttataaggaa 3120
gtgttgcccg gcttagacag ttggcgagac agtaaaattg ccacatggca tcatctcgaa 3180
ggtcagtcca tcgaatggtt atgtgtagta tccatggatc gcaaaggcat aatcgcagag 3240
gttacaacag tcctcgcagc tgaaggcatt gcattatgtt cttgcgtggc cgagattgac 3300
agaggaagag gattagcagt aatgttattt caaatagaag caaacattga aagtttggtt 3360
agtgtttgcg ctaaggtgga tttagtcttg ggtgtgttgg gatggtccag tggttgtagc 3420
tggccaagat caacagagaa tgctcaagtt cttgagtgtc ccggggatta caaggatgac 3480
gacgataagt gctaagctag cggatccccg ggtaccgagc tcgaatttcc ccgatcgttc 3540
aaacatttgg caataaagtt tcttaagatt gaatcctgtt gccggtcttg cgatgattat 3600
catataattt ctgttgaatt acgttaagca tgtaataatt aacatgtaat gcatgacgtt 3660
atttatgaga tgggttttta tgattagagt cccgcaatta tacatttaat acgcgataga 3720
aaacaaaata tagcgcgcaa actaggataa attatcgcgc gcggtgtcat ctatgttact 3780
agatcgg 3787
<210> 6
<211> 3829
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
ttttgaatga gcttattaaa ttatatataa agtatataca accaatatgc atattttctt 60
gtttatattc acctaataat aaccaatgaa ataataaaat acaaatgtat attattttcc 120
ttttggtcac aaatgtattt tcttttccct tcttatatta tatacacaat aaaataaaat 180
aaaaatatga aattatcctt tttttgtgtg gacattttat catttaagaa aatgaaatta 240
ataattctaa attactatct tattacaaat gaaaattgta aattaattaa atatttacaa 300
gcatccatat aattttggtc attcaatata attcctaaat actaaaaact attgactttt 360
tttttttttt tttttttttt tttgtaaacc ctaaaaacta ttgactaaaa aaaagtattt 420
taacagaaaa agaagagaat atataatttt aatgtttgac cacaaaggga aaaaaatatc 480
tcaaagtttt ttctttcttt ggtatatcgg acggtatttg tgtggccagg gagggctacc 540
tgagactcca tatctgtctc tcttcttctt cttcttcctc ttcttcctct gcttcttctt 600
cttcacatca ctgtgtgcgt ctctctatct ctctattcta tcatttcgaa atcctctcta 660
tccgaatttg aactcgtctc ttcttcgtaa agagttctta atctccgtct ctgtgatttc 720
ggaatctgga ggttttgaat ttcttgttcg tatcaatcaa atggtggatc gatttagtga 780
gattgcttta cctcattagc aaagcttatg caacccccga cgggcgccgt gtcagggtcg 840
tcgtcgtcgt cgctggagtg cgtgagctcg tgcaggacgt cgtggagggg cggagggagg 900
ccgtacgaat gcagcgtgct ctcgtgcgcc tggaacgcgc cgcgggcgct cacgggggcg 960
ctcgccagca ccaccgcgca gtgctcctcc tgcagccacg ccgaggctgg ggcagggtgg 1020
aggcggcggg gccagtcgca gcggagtaac aattcgttac tgcacataac ctgggcagaa 1080
ggcatcaaca gggggaagtt tggttatggt tcatcagccc attcttttcc cactggaaat 1140
tttttcaaat cttggtcaac ttccgtggat ccaacatgga gagttttctg ctattcatca 1200
tctgaatcgt tcaatcatat ttctccagaa actttgtggg aggatctcaa gccagctatc 1260
tcgtaccttc aacctgaaga attgaacttt gtacacgatg ctctgaagtt ggcatatgag 1320
gcacataatg ggcagaaacg ccgaagtggg gaacctttca ttattcatcc tgttgaagtt 1380
gctcgtatcc ttggggagca tgaacttgac tgggaatcaa tagctgctgg tttattgcat 1440
gacactgttg aagatacaga catggttact tttgaaagaa tagaaaatga gtttggtgta 1500
accgtacgcc gtattgttga aggggagaca aaggtatcta agctaggaaa acttcagtgc 1560
aaaaatgagg gtaattcaaa acaggacgtc aaggctgaag atttaagaca gatgtttctt 1620
gccatgacag aagaggttcg tgtaatcatt gtgaaactgg cagacaggct gcataatatg 1680
cgtacactca cacatatgcc tcagcacaag cagtatgcca ttgccatgga gacactgcag 1740
gtttttgcac ccctagctaa acttctcggg atgtatcgaa taaagtctga gctagaatat 1800
ctgtccttca tgtacatgaa tcctggtgat ttcgctgaac taaagaaaag agttgaggac 1860
ctctacaagg cccatgaaca agaattggaa gaggcaaatc aaatcttagg ggaaaagatt 1920
gctgaggatc aatttcttga tcttgttagt gttgaaacac aagtgcgttc agtctgcaaa 1980
gaactctaca gcatttataa aactgcgctg aagtccaaga gttcaataaa tgagataaat 2040
caggttgcac agctgcggat catcataaag ccaaaatcct gcaatggtgt ggggccattg 2100
tgcactgcac aacagatctg ctaccatgtc cttggtcttg ttcatggtat ctggacacct 2160
atacctcaag ctgtgaaaga ttacattgca accccaaagc ctaatggata ccaaagtcta 2220
cacacgacag tgataccatt tctgaatgag agtatgttcc atttggaagt tcagataaga 2280
acagaggata tggatctcat agcagaaaga ggcattgctg cgcactacag tggaagaggg 2340
gttgtttcag ggcctgttcg tcctggaata tcaagtggaa ggaattcaaa tgggaaagtg 2400
atatgtctga acaatacagg ctttgctctg aggattggtt ggctcaatgc aatccgtgaa 2460
tggcaagaag agtttgttgg taacatgagt tctagggaat ttgttgatac tatcacccga 2520
gatcttctgg gaagccgtgt ctttgtgttt acaccaaaag gcgagattaa aaacttgcct 2580
aagggggcca ctgtggttga ttatgcttac ctgattcaca cagaaattgg gaacaaaatg 2640
gtagctgcaa aggtgaatgg caatctagtt tcaccaatcc atgtacttgc aaatgctgaa 2700
gttgtggaga ttataattta tgataaatta tctgctaaat atgcattcca gcgtcaccag 2760
cagtggcttc aacatgcgaa aactcgcagt gcaagacaca aaattatgaa attcttgcgg 2820
gagcaagctg ctctttctgc tgctgaaata actgccgacg ccgttaataa ctttgttgcc 2880
gatcttgaag atgaaagtga ctatgagcag tcgattccaa gctctgaaaa taaggactat 2940
acattcaact ggcagaagat attgaattct gacaaactat cctttggaaa caagaagagc 3000
gactgctttt tacctgttaa aaatgtctct gtgccaaagg ttaatgggaa gcacaacaaa 3060
actgtcaaag aactgggcat caaaattaat ggttcaacat ttcgtggtga tagcttcact 3120
gattttattc accctggtgt ttccagcagt aaagaagttc tccctagtgt ggataactgg 3180
aaagctggta aaatttgtgc gtggcacaat acagaaggca gctctatcca atggctctgc 3240
atagtgtgtg ttgatcgaaa aggtatggtt gcggaagttt catcagctct aacagcgtgt 3300
ggaatcacca tatgctcgtg tgtggcggag cgagataaga gaaggggaat aggtgtgatg 3360
ttgttccact ttgagggggc atatgagaat gtggtcagtg catgctccgg tgttgatatg 3420
attcttgggg ttcttggttg gtccgttgga tgcagctgta atcctttggg tgttcttgaa 3480
tgccccgggg attacaagga tgacgacgat aagtgctaag ctagcggatc cactagttct 3540
agaggatccc cgggtaccga gctcgaattt ccccgatcgt tcaaacattt ggcaataaag 3600
tttcttaaga ttgaatcctg ttgccggtct tgcgatgatt atcatataat ttctgttgaa 3660
ttacgttaag catgtaataa ttaacatgta atgcatgacg ttatttatga gatgggtttt 3720
tatgattaga gtcccgcaat tatacattta atacgcgata gaaaacaaaa tatagcgcgc 3780
aaactaggat aaattatcgc gcgcggtgtc atctatgtta ctagatcgg 3829

Claims (10)

  1. Use of an ARE2 protein for promoting precocity and/or shortening the growth cycle of a plant;
    the ARE2 protein is (a1) or (a2) or (a3) or (a4) or (a5) or (a6) or (a 7):
    (a1) protein shown in a sequence 3 in a sequence table;
    (a2) a protein derived from rice, having 98% or more identity to (a1) and having the same function;
    (a3) a protein obtained by substituting and/or deleting and/or adding one or more amino acid residues in (a1) and having the same function;
    (a4) a protein encoded by the DNA molecule shown in the 1581-12019 th site in the sequence 1 of the sequence table;
    (a5) a protein coded by a DNA molecule shown in the position 1301-12512 in the sequence 1 of the sequence table;
    (a6) protein coded by DNA molecule shown in sequence 1 of the sequence table;
    (a7) protein coded by DNA molecule shown in sequence 2 of the sequence table.
  2. Use of the ARE2 gene for breeding transgenic plants with early maturity and/or reduced growth period;
    the ARE2 gene is a DNA molecule encoding the ARE2 protein of claim 1.
  3. 3. Use according to claim 2, characterized in that:
    the ARE2 gene is (b1) or (b2) or (b3) or (b4) or (b5) or (b 6):
    (b1) the cDNA coding region is a DNA molecule shown as a sequence 2 in a sequence table;
    (b2) the genome DNA is shown as the DNA molecule at the 1581-12019 site in the sequence 1 of the sequence table;
    (b3) the genome DNA is shown as DNA molecule at position 1301-12512 in sequence 1 of the sequence table;
    (b4) the genome DNA is a DNA molecule shown as a sequence 1 in a sequence table;
    (b5) a DNA molecule derived from rice and having 98% or more identity to (b1) or (b2) or (b3) or (b4) and encoding the ARE2 protein;
    (b6) a DNA molecule that hybridizes under stringent conditions to (b1) or (b2) or (b3) or (b4) and encodes the ARE2 protein.
  4. 4. A method of breeding a transgenic plant with early maturity and/or reduced growth period comprising the steps of: introducing the ARE2 gene of claim 2 or 3 into a recipient plant to obtain a transgenic plant with early maturity and/or reduced fertility.
  5. The application of the ARE2 protein is (c1) or (c2) or (c3) as follows:
    (c1) regulating and controlling the tolerance of the plant to low nitrogen stress;
    (c2) regulating and controlling the nitrogen metabolism process of plants;
    (c3) affecting the balance between plant nitrogen metabolism and stress response;
    the ARE2 protein is the ARE2 protein of claim 1.
  6. 6. A method of breeding a transgenic plant with increased tolerance to low nitrogen stress comprising the steps of: inhibiting the expression of the ARE2 gene of claim 2 or 3 in a plant of interest to obtain a transgenic plant with increased tolerance to low nitrogen stress.
  7. 7. A method of breeding a transgenic plant with increased tolerance to low nitrogen stress comprising the steps of: a transgenic plant having increased tolerance to low nitrogen stress, which is obtained by mutating the ARE2 gene of claim 2 or 3 as a target gene in a target plant.
  8. 8. A protein which is the ARE2 protein according to claim 1.
  9. 9. A DNA molecule which is the ARE2 gene according to claim 3.
  10. 10. Use of the ARE2 protein of claim 1 as a ppGpp hydrolase.
CN202110122385.9A 2021-01-28 2021-01-28 Application of rice ARE2 gene in plant nitrogen metabolism regulation Active CN112708603B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110122385.9A CN112708603B (en) 2021-01-28 2021-01-28 Application of rice ARE2 gene in plant nitrogen metabolism regulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110122385.9A CN112708603B (en) 2021-01-28 2021-01-28 Application of rice ARE2 gene in plant nitrogen metabolism regulation

Publications (2)

Publication Number Publication Date
CN112708603A true CN112708603A (en) 2021-04-27
CN112708603B CN112708603B (en) 2022-06-14

Family

ID=75549785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110122385.9A Active CN112708603B (en) 2021-01-28 2021-01-28 Application of rice ARE2 gene in plant nitrogen metabolism regulation

Country Status (1)

Country Link
CN (1) CN112708603B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934055A (en) * 2022-06-24 2022-08-23 新昌中国大佛龙井研究院 Application of tea tree CsAMT1.3 gene in regulation and control of plant nitrogen metabolism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005952A2 (en) * 1999-07-21 2001-01-25 Plant Bioscience Limited Plant genes
US20040123343A1 (en) * 2000-04-19 2004-06-24 La Rosa Thomas J. Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
JP2012183040A (en) * 2011-03-07 2012-09-27 Tokyo Institute Of Technology Method for producing oligotrophication-resistant plant
WO2017137374A1 (en) * 2016-02-08 2017-08-17 Centre National De La Recherche Scientifique - Cnrs - Improvement of photosynthetic organisms through the modulation of guanosine tetraphosphate homeostatis
CN109912702A (en) * 2017-12-13 2019-06-21 中国科学院遗传与发育生物学研究所 Application of the protein OsARE1 in regulation plant low nitrogen resisting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005952A2 (en) * 1999-07-21 2001-01-25 Plant Bioscience Limited Plant genes
US20040123343A1 (en) * 2000-04-19 2004-06-24 La Rosa Thomas J. Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
JP2012183040A (en) * 2011-03-07 2012-09-27 Tokyo Institute Of Technology Method for producing oligotrophication-resistant plant
WO2017137374A1 (en) * 2016-02-08 2017-08-17 Centre National De La Recherche Scientifique - Cnrs - Improvement of photosynthetic organisms through the modulation of guanosine tetraphosphate homeostatis
US20190169630A1 (en) * 2016-02-08 2019-06-06 Centre National De La Recherche Scientifique (Cnrs ) Improvement of photosynthetic organisms through the modulation of guanosine tetraphosphate homeostatis
CN109912702A (en) * 2017-12-13 2019-06-21 中国科学院遗传与发育生物学研究所 Application of the protein OsARE1 in regulation plant low nitrogen resisting

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
NCBI: "PREDICTED: Oryza sativa Japonica Group putative GTP diphosphokinase RSH1 ,chloroplastic (LOC4332791 ), mRNA", 《GENBANK DATABASE》 *
NCBI: "PREDICTED: Oryza sativa Japonica Group putative GTP diphosphokinase RSH1 ,chloroplastic (LOC4332791 ), mRNA", 《GENBANK DATABASE》, 1 March 2016 (2016-03-01), pages 015776569 *
UNIPROTKB: "UniProtKB-Q9AYT5 (RSH1_ORYSJ)", 《EMBL DATABASE》 *
UNIPROTKB: "UniProtKB-Q9AYT5 (RSH1_ORYSJ)", 《EMBL DATABASE》, 1 June 2001 (2001-06-01) *
杜丽峨 等: "水稻OsRSH基因家族的生物信息学分析", 《分子植物育种》 *
杜丽峨 等: "水稻OsRSH基因家族的生物信息学分析", 《分子植物育种》, vol. 17, no. 22, 30 November 2019 (2019-11-30), pages 7280 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934055A (en) * 2022-06-24 2022-08-23 新昌中国大佛龙井研究院 Application of tea tree CsAMT1.3 gene in regulation and control of plant nitrogen metabolism

Also Published As

Publication number Publication date
CN112708603B (en) 2022-06-14

Similar Documents

Publication Publication Date Title
US20090192305A1 (en) Ap2 transcription factors for modifying plant traits
CN101883783A (en) Has plant of enhanced yield correlated character and preparation method thereof
CN108291234A (en) Multiple sporinite forms gene
AU2019466501A9 (en) Mutant hydroxyphenylpyruvate dioxygenase polypeptide, encoding gene thereof and use thereof
CN108250279B (en) Application of heat shock protein Hsp17.6CII in regulation and control of saline-alkali tolerance of plants
CN115612695A (en) Application of GhGPX5 and GhGPX13 genes in improving salt stress tolerance of plants
US10072271B2 (en) Methods for improving crop yield
CN112812161B (en) Application of protein IbMYC2 in regulation and control of plant drought resistance
CN112724213B (en) Sweet potato anthocyanin synthesis and stress resistance related protein IbMYB4, and coding gene and application thereof
CN112708603B (en) Application of rice ARE2 gene in plant nitrogen metabolism regulation
CN110592134A (en) Application of SDG40 gene or coding protein thereof
CN101595222B (en) Plants having enhanced seed yield-related traits and a method for making the same
CN109797158B (en) Application of gene OsNTL3 in improvement of rice high-temperature resistance and obtained rice high-temperature resistance gene
CN111979253A (en) TrFQR1 gene, clone thereof, expression vector construction method and application
CN114736280B (en) Application of ZmROA1 protein in regulation and control of plant tolerance
CN111826391A (en) Application of NHX2-GCD1 double genes or protein thereof
CN111560055B (en) Application of rice gene OsLAT3 in regulation of absorption and accumulation of diquat
CN113774043A (en) Related protein for controlling rice glume color character and coding gene thereof
CN109112157B (en) Silencer CNV-18bp of rice panicle development gene and application thereof in rice yield improvement
CN110358774A (en) Control gene, protein, expression casette, expression vector, host cell, method and the application of Rice Flowering time
CN111533807A (en) Application of AET1-RACK1A-eIF3h complex in plant environmental temperature adaptability
CN114644696B (en) Protein ZMCPK6 and coding gene and application thereof
CN114736919B (en) Method for cultivating drought-resistant corn by editing carbonic anhydrase gene and application thereof
CN114015666B (en) Application of OsPARP3 gene in regulation and control of plant drought tolerance
CN113337537B (en) OsCDKB1;1 protein and function and application of encoding gene thereof in salt tolerance of rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant