CN112697826B - 一种CaO-Al2O3系氧化物熔体的自由基测定方法 - Google Patents

一种CaO-Al2O3系氧化物熔体的自由基测定方法 Download PDF

Info

Publication number
CN112697826B
CN112697826B CN202011418215.7A CN202011418215A CN112697826B CN 112697826 B CN112697826 B CN 112697826B CN 202011418215 A CN202011418215 A CN 202011418215A CN 112697826 B CN112697826 B CN 112697826B
Authority
CN
China
Prior art keywords
cao
temperature furnace
measuring
oxide
mass content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011418215.7A
Other languages
English (en)
Other versions
CN112697826A (zh
Inventor
黄奥
李昇昊
顾华志
付绿平
张美杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202011418215.7A priority Critical patent/CN112697826B/zh
Publication of CN112697826A publication Critical patent/CN112697826A/zh
Priority to US17/396,261 priority patent/US20220178800A1/en
Application granted granted Critical
Publication of CN112697826B publication Critical patent/CN112697826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/2005Preparation of powder samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/605Specific applications or type of materials phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明提供一种CaO‑Al2O3系氧化物熔体的自由基测定方法,首先将所述待测CaO‑Al2O3系氧化物粉体按质量分成两等份,分别置于两个相同的刚玉坩埚中捣实,并分别放入普通高温炉和静磁场高温炉中升温至相同温度、保温相同时间后淬冷;然后从两个所述坩埚中钻取相同直径、相同高度、仅含坩埚底部与渣反应界面的圆柱样并磨成粉样;利用化学分析测得两份粉样中的CaO总质量含量,采用XRD测得其中的铝酸钙相质量含量,由铝酸钙相质量含量计算出CaO反应质量含量,将两份粉样中的CaO反应质量含量差值的绝对值除以CaO总质量含量得到的比值即为CaO‑Al2O3系氧化物熔体的自由基相对含量。本发明提供的测定方法能测定高温氧化物熔体中的自由基含量,流程简单、易于操作。

Description

一种CaO-Al2O3系氧化物熔体的自由基测定方法
技术领域
本发明属于高温熔体技术领域。具体涉及提供一种CaO-Al2O3系氧化物熔体的自由基测定方法。
背景技术
在火法冶金过程中,熔渣既是其必然产物,又对冶金工艺及其产品品质具有重要影响。冶金熔渣类型较多,体系成分复杂,但主要是由各种氧化物如CaO、SiO2、Al2O3、MgO、FeO、Fe2O3、MnO等组成的高温熔体。目前,熔渣结构理论主要有四种,分别为分子结构理论、离子结构理论、离子—分子共存理论和聚合物理论。研究发现,CaO-Al2O3系氧化物熔体在高温下会产生自由基。现有技术主要采用电子顺磁共振仪测定自由基,其原理基于自由基总磁矩的绝大部分(99%以上)的贡献来自电子自旋,直接检测物质原子或分子中所含的不配对电子即可测定自由基。但电子顺磁共振法仅限在低温和常温等条件下开展检测,难以在高温下进行氧化物熔体的自由基测定。
发明内容
本发明针对现有技术中缺乏高温熔体自由基测定方法的缺陷,提供一种流程简单、易于操作的CaO-Al2O3系氧化物高温熔体的自由基测定方法。
本发明提供一种CaO-Al2O3系氧化物熔体的自由基测定方法,具体步骤如下:
将所述CaO-Al2O3系氧化物粉体按质量分成两等份,分别置于两个相同的刚玉坩埚中捣实,并分别放入普通高温炉和静磁场高温炉中,升温至相同温度、保温相同时间后淬冷;从两个刚玉坩埚中钻取相同直径、相同高度、仅含坩埚底部与渣反应界面的熔体的圆柱样并磨制成粉样,利用化学分析测得其中的CaO总质量含量,采用XRD分别测得所述普通高温炉和所述静磁场高温炉中的两份粉样中的铝酸钙相质量含量,由铝酸钙相质量含量计算出CaO反应质量含量,将两份粉样中的CaO反应质量含量差值的绝对值除以CaO总质量含量得到的比值得到CaO-Al2O3系氧化物熔体的自由基相对含量。
优选地,所述普通高温炉和静磁场高温炉的升温温度≥1500℃,保温时间≥0.5小时。
优选地,所述静磁场高温炉的磁场方向与所述刚玉坩埚底部垂直、磁感应强度≥0.5mT。
优选地,所述CaO-Al2O3系氧化物粉体中CaO含量与Al2O3含量之和≥70wt%。
优选地,所述刚玉坩埚中Al2O3的含量≥99.5wt%。
优选地,所述铝酸钙相为一铝酸钙、二铝酸钙或六铝酸钙中的一种或多种。
优选地,所述化学分析选自但不限于电感耦合等离子体发射光谱法(ICP-OES或ICP-AES)、电感耦合等离子体质谱法(ICP-MS)和原子荧光分析法(AFS)。
优选地,所述CaO总质量含量通过测量从置于所述普通高温炉和所述静磁场高温炉的坩埚中分别切取的两个圆柱样的CaO质量含量并计算平均值获得。
在本发明中,所述CaO总质量含量的定义为从置于普通高温炉和静磁场高温炉的坩埚中分别切取的两个圆柱样的CaO质量含量的平均值,即:(圆柱样1的CaO质量含量+圆柱样2的CaO质量含量)/2。所述铝酸钙相质量含量的定义为圆柱样中包括一铝酸钙、二铝酸钙或六铝酸钙在内所有铝酸钙相的总质量与圆柱样总质量的比值。上述CaO反应质量含量的定义为由圆柱样中的铝酸钙相质量含量计算出来的发生了自由基反应的CaO的质量含量。具体而言,可根据铝酸钙相化学式统计所有铝酸钙相中的CaO所占的质量。例如,铝酸钙相假设全部是六铝酸钙CA6,则CaO占比为56/(56+10*26)。所述自由基相对含量等于从置于普通高温炉和静磁场高温炉的坩埚中分别切取的两个圆柱样中计算出的CaO反应质量含量的差值的绝对值除以CaO总质量含量的比值。
本发明采用与氧化物熔体向刚玉坩埚底部扩散反应方向平行的静磁场,可以消除静磁场的电磁阻尼影响。同时CaO-Al2O3系氧化物在高温作用下化学键断裂速度非常快,可能发生均裂并生成自由基,如CaO离子键在高温作用下发生均裂生成·Ca·和O,·其与刚玉坩埚中的Al2O3会产生自由基反应形成铝酸钙相。然而,单重态自由基和三重态自由基之间存在较大能量差,外加静磁场会使自由基发生塞曼分裂,促使自由基单重态与三重态能级简并发生系间窜越,从而形成三重态自由基,而三重态自由基无法成键,导致该铝酸钙反应难以进行。因此,合适强度的静磁场能够抑制高温下刚玉坩埚与CaO-Al2O3系氧化物熔体的自由基反应,从而减少包括一铝酸钙、二铝酸钙和六铝酸钙在内的铝酸钙相的生成总量。CaO-Al2O3系氧化物熔体中的自由基越多,其受到静磁场的抑制就越明显,进而可以测定CaO-Al2O3系氧化物熔体的自由基相对含量。
本发明提供的CaO-Al2O3系氧化物熔体的自由基测定方法能测定高温氧化物熔体中的自由基含量,并且流程简单、易于操作。
附图说明
图1置于普通高温炉(无磁场)处理后的氧化物熔体与刚玉坩埚反应界面的显微结构图。
图2置于静磁场高温炉中(有磁场)处理后的氧化物熔体与刚玉坩埚反应界面的显微结构图。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述:
实施例1
本实施例中将待测的CaO-Al2O3系氧化物粉体按质量分成两等份,分别置于两个相同的刚玉坩埚中并捣实,将这两个刚玉坩埚分别置于普通高温炉和静磁场高温炉中,使静磁场高温炉的磁场方向与坩埚底部垂直,调节磁感应强度为0.5mT并固定;然后将普通高温炉和静磁场高温炉均升温至1500℃,保温0.5小时后淬冷;从两个坩埚中钻取相同直径、相同高度、仅含坩埚底部与渣反应界面的圆柱样;将两个圆柱样均磨制成粉样,利用ICP-OES分别测量从置于普通高温炉和静磁场高温炉的坩埚中分别切取的两个圆柱样的CaO质量含量,然后计算其平均值得到其CaO总质量含量为20wt%,采用XRD定量分析得到置于普通高温炉的坩埚中的铝酸钙相质量含量为12wt%,置于静磁场高温炉的坩埚中铝酸钙相质量含量为8wt%,进一步根据铝酸钙的化学式组成分别计算对应CaO反应质量含量。在本实施例中,通过计算可知从置于普通高温炉的坩埚中切取的圆柱样中的CaO反应质量含量为3.4wt%,从置于静磁场高温炉的坩埚中切取的圆柱样中的CaO反应质量含量为1.0wt%,从而得到两份粉样中的CaO反应质量含量差值的绝对值为2.4wt%。最后用CaO反应质量含量差值的绝对值2.4wt%比上CaO总质量含量20wt%得到的比值为12%,即为本实施例中CaO-Al2O3系氧化物熔体的自由基相对含量。
在本实施例中,所述CaO-Al2O3系氧化物粉体的CaO+Al2O3=70wt%。所述刚玉坩埚中的Al2O3含量为99.5wt%。所述铝酸钙相为一铝酸钙、二铝酸钙和六铝酸钙。
从两个坩埚中所钻取的两个圆柱体样的剖面显微结构图如图1和图2所示。对比图1和2可见,在静磁场的作用下,CaO-Al2O3系氧化物在高温作用下均裂形成的自由基与Al2O3坩埚的反应明显被抑制,铝酸钙相的生成总量大大减少,因而对比普通高温炉与静磁场高温炉中CaO-Al2O3系氧化物熔体的CaO反应质量含量差值即可算出CaO-Al2O3系氧化物熔体的自由基相对含量。
实施例2
本实施例中将待测的CaO-Al2O3系氧化物粉体按质量分成两等份,分别置于两个相同的刚玉坩埚中并捣实,将这两个刚玉坩埚分别置于普通高温炉和静磁场高温炉中,使静磁场高温炉的磁场方向与坩埚底部垂直,调节磁感应强度为1.0mT并固定,然后将普通高温炉和静磁场高温炉均升温至1600℃,保温1小时后淬冷,从两个坩埚中钻取相同直径的仅含坩埚底部与渣反应界面的圆柱样,将两个圆柱样均磨制成粉样,利用AFS分别测量从置于普通高温炉和静磁场高温炉的坩埚中分别切取的两个圆柱样的CaO质量含量,然后计算其平均值得到其中的CaO总质量含量为20wt%,采用XRD定量分析得到置于普通高温炉的坩埚中的铝酸钙相质量含量为15wt%,置于静磁场高温炉的坩埚中铝酸钙相质量含量为10wt%,进一步根据铝酸钙的化学式组成分别计算对应CaO反应质量含量:在本实施例中,通过计算可知从置于普通高温炉的坩埚中切取的圆柱样中的CaO反应质量含量为4.5wt%,从置于静磁场高温炉的坩埚中切取的圆柱样中的CaO反应质量含量为1.3wt%,从而得到两份粉样中的CaO反应质量含量差值的绝对值为3.2wt%,最后用CaO反应质量含量差值的绝对值3.2wt%比上CaO总质量含量20wt%得到的比值为16%,即为本实施例中CaO-Al2O3系氧化物熔体的自由基相对含量。
在本实施例中,所述CaO-Al2O3系氧化物粉体的CaO+Al2O3=80wt%。所述刚玉坩埚中的Al2O3含量为99.7wt%。所述铝酸钙相为一铝酸钙和二铝酸钙。
实施例3
本实施例中将待测的CaO-Al2O3系氧化物粉体按质量分成两等份,分别置于两个相同的刚玉坩埚中并捣实,将这两个刚玉坩埚分别置于普通高温炉和静磁场高温炉中,使静磁场高温炉的磁场方向与坩埚底部垂直,调节磁感应强度为1.5mT并固定,然后将普通高温炉和静磁场高温炉均升温至1800℃,保温1.5小时后淬冷,从两个坩埚中钻取相同直径的仅含坩埚底部与渣反应界面的圆柱样,将两个圆柱样均磨制成粉样,利用ICP-MS分别测量从置于普通高温炉和静磁场高温炉的坩埚中分别切取的两个圆柱样的CaO质量含量,然后计算其平均值得到其中的CaO总质量含量为20wt%,采用XRD定量分析得到置于普通高温炉的坩埚中的铝酸钙相质量含量为16wt%,置于静磁场高温炉的坩埚中铝酸钙相质量含量为11wt%,进一步根据铝酸钙的化学式组成分别计算对应CaO反应质量含量。在本实施例中,通过计算可知从置于普通高温炉的坩埚中切取的圆柱样中的CaO反应质量含量为5.0wt%,从置于静磁场高温炉的坩埚中切取的圆柱样中的CaO反应质量含量为1.4wt%,从而得到两份粉样中的CaO反应质量含量差值的绝对值为3.6wt%,最后用CaO反应质量含量差值的绝对值3.6wt%比上CaO总质量含量20wt%得到的比值为18%,即为本实施例中CaO-Al2O3系氧化物熔体的自由基相对含量。
在本实施例中,所述CaO-Al2O3系氧化物粉体的CaO+Al2O3=90wt%。所述刚玉坩埚中的Al2O3含量为99.9wt%。所述铝酸钙相为二铝酸钙和六铝酸钙。
应该指出,上述详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语均具有与本申请所属技术领域的普通技术人员的通常理解所相同的含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请所述的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在上面详细的说明中,参考了附图,附图形成本文的一部分。在附图中,类似的符号典型地确定类似的部件,除非上下文以其他方式指明。在详细的说明书、附图及权利要求书中所描述的图示说明的实施方案不意味是限制性的。在不脱离本文所呈现的主题的精神或范围下,其他实施方案可以被使用,并且可以作其他改变。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种CaO-Al2O3系氧化物熔体的自由基测定方法,其特征在于:
将待测的CaO-Al2O3系氧化物粉体按质量分成两等份,分别置于两个相同的刚玉坩埚中捣实,并分别放入普通高温炉和静磁场高温炉中,升温至相同温度、保温相同时间后淬冷;
从两个所述刚玉坩埚中钻取相同直径、相同高度、仅含坩埚底部与渣反应界面的熔体的圆柱样并磨制成粉样,利用化学分析测得其中的CaO
总质量含量,采用XRD分别测得所述普通高温炉和所述静磁场高温炉中的所述两份粉样中的铝酸钙相质量含量,由铝酸钙相质量含量计算出CaO反应质量含量,将两份粉样中的CaO反应质量含量差值的绝对值除以CaO总质量含量得到的比值即为所述CaO-Al2O3系氧化物熔体的自由基相对含量;
其中,所述静磁场高温炉的磁场方向与所述刚玉坩埚底部垂直,其磁感应强度≥0.5mT;
所述CaO总质量含量通过测量从置于所述普通高温炉和所述静磁场高温炉的坩埚中分别切取的两个圆柱样的CaO质量含量并计算平均值获得。
2.根据权利要求1所述的CaO-Al2O3系氧化物熔体的自由基测定方法,其特征在于:所述普通高温炉和静磁场高温炉的升温温度≥1500℃,保温时间≥0.5小时。
3.根据权利要求1所述的CaO-Al2O3系氧化物熔体的自由基测定方法,其特征在于:所述CaO-Al2O3系氧化物粉体中CaO重量百分比和Al2O3的重量百分比之和≥70wt%。
4.根据权利要求1所述的CaO-Al2O3系氧化物熔体的自由基测定方法,其特征在于:所述刚玉坩埚中Al2O3的含量≥99.5wt%。
5.根据权利要求1所述的CaO-Al2O3系氧化物熔体的自由基测定方法,其特征在于:所述铝酸钙相为一铝酸钙、二铝酸钙或六铝酸钙中的一种或多种。
6.根据权利要求1所述的CaO-Al2O3系氧化物熔体的自由基测定方法,其特征在于:所述化学分析选自但不限于电感耦合等离子体发射光谱法、电感耦合等离子体质谱法和原子荧光分析法。
CN202011418215.7A 2020-12-07 2020-12-07 一种CaO-Al2O3系氧化物熔体的自由基测定方法 Active CN112697826B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011418215.7A CN112697826B (zh) 2020-12-07 2020-12-07 一种CaO-Al2O3系氧化物熔体的自由基测定方法
US17/396,261 US20220178800A1 (en) 2020-12-07 2021-08-06 METHOD FOR DETERMINING FREE RADICALS IN CaO-Al2O3 SERIES OXIDE MELTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011418215.7A CN112697826B (zh) 2020-12-07 2020-12-07 一种CaO-Al2O3系氧化物熔体的自由基测定方法

Publications (2)

Publication Number Publication Date
CN112697826A CN112697826A (zh) 2021-04-23
CN112697826B true CN112697826B (zh) 2023-04-14

Family

ID=75506780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011418215.7A Active CN112697826B (zh) 2020-12-07 2020-12-07 一种CaO-Al2O3系氧化物熔体的自由基测定方法

Country Status (2)

Country Link
US (1) US20220178800A1 (zh)
CN (1) CN112697826B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890803A (zh) * 2022-05-30 2022-08-12 武汉科技大学 一种含超氧自由基的高温氧化物熔体的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954078A (ja) * 1995-08-10 1997-02-25 Sumitomo Metal Ind Ltd 鋼中CaO量の測定方法
CN107192748A (zh) * 2017-04-13 2017-09-22 云南民族大学 环境自由基过氧化能力的测定方法
CN110161094A (zh) * 2019-07-04 2019-08-23 江苏省农业科学院 基于电化学传感器快速检测自由基的方法
CN110988010A (zh) * 2019-12-27 2020-04-10 桂林电子科技大学 一种在线检测聚合反应过程中自由基的方法
CN111650243A (zh) * 2020-06-11 2020-09-11 重庆大学 定量分析连铸保护渣中总碳和自由炭含量的判定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954078A (ja) * 1995-08-10 1997-02-25 Sumitomo Metal Ind Ltd 鋼中CaO量の測定方法
CN107192748A (zh) * 2017-04-13 2017-09-22 云南民族大学 环境自由基过氧化能力的测定方法
CN110161094A (zh) * 2019-07-04 2019-08-23 江苏省农业科学院 基于电化学传感器快速检测自由基的方法
CN110988010A (zh) * 2019-12-27 2020-04-10 桂林电子科技大学 一种在线检测聚合反应过程中自由基的方法
CN111650243A (zh) * 2020-06-11 2020-09-11 重庆大学 定量分析连铸保护渣中总碳和自由炭含量的判定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Melt free-radical grafting of maleic anhydride onto biodegradable poly (lactic acid) by using styrene as a comonomer;Ma P,et al;《Polymers》;20141231;第1528-1543页 *
低温氧化煤自由基的顺磁共振实验研究;叶敏 等;《洁净煤技术》;20061231;第53-55页 *

Also Published As

Publication number Publication date
US20220178800A1 (en) 2022-06-09
CN112697826A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
Bechgaard et al. Structure and mechanical properties of compressed sodium aluminosilicate glasses: Role of non-bridging oxygens
Le Saoût et al. Hydration degree of alkali‐activated slags: a 29 Si NMR study
Liao et al. Effect of Al2O3/SiO2 ratio on the viscosity and structure of slags
Brehault et al. Compositional dependence of solubility/retention of molybdenum oxides in aluminoborosilicate-based model nuclear waste glasses
CN112697826B (zh) 一种CaO-Al2O3系氧化物熔体的自由基测定方法
Shao et al. Effect of fluorine and CaO/Al2O3 mass ratio on the viscosity and structure of CaO–Al2O3‐based mold fluxes
Feng et al. Effects of MgO and TiO 2 on the viscous behaviors and phase compositions of titanium-bearing slag
Murakami et al. Reduction disintegration behavior of iron ore sinter under high H2 and H2O conditions
Shi et al. Structure and chemical durability of calcium iron phosphate glasses doped with La2O3 and CeO2
Mekki et al. XPS and magnetization studies of cobalt sodium silicate glasses
Østergaard et al. Temperature-dependent densification of sodium borosilicate glass
Higo et al. Effect of potassium oxide addition on viscosity of calcium aluminosilicate melts at 1673–1873 K
Begaudeau et al. Solid-state NMR analysis of Fe-bearing minerals: implications and applications for Earth sciences
Grandjean et al. Electrical conductivity and 11B NMR studies of sodium borosilicate glasses
Lecomte-Nana et al. Influence of iron onto the structural reorganization process during the sintering of kaolins
Yue et al. Formation of a nanocrystalline layer on the surface of stone wool fibers
Zhang et al. Structure, viscosity, and crystallization of glass melt from molten blast furnace slag
Ragoen et al. Structural modifications induced by Na+/K+ ion exchange in silicate glasses: A multinuclear NMR spectroscopic study
Wan et al. Effect of CaF2 and Li2O on structure and viscosity of low-fluoride slag for electroslag remelting of rotor steel
Siligardi et al. Densification of glass powders belonging to the CaO–ZrO2–SiO2 system by microwave heating
Ananthanarayanan et al. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass–ceramics having different Li2O/Al2O3 ratio
CN112697839B (zh) 一种高温氧化物熔体自由基的测定方法
Arahori et al. Transformation of tridymite to cristobalite below 1470 C in silica refractories
Zhang et al. Viscosity and Structure Changes of CaO-SiO2-Al2O3-CaF2 Melts with Substituting A12O3 for SiO2
Sinha Effect of variation of alumina on the microhardness of iron ore sinter phases

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant