CN112697751B - Multi-angle illumination lensless imaging method, system and device - Google Patents
Multi-angle illumination lensless imaging method, system and device Download PDFInfo
- Publication number
- CN112697751B CN112697751B CN202011418841.6A CN202011418841A CN112697751B CN 112697751 B CN112697751 B CN 112697751B CN 202011418841 A CN202011418841 A CN 202011418841A CN 112697751 B CN112697751 B CN 112697751B
- Authority
- CN
- China
- Prior art keywords
- function
- imaging
- illumination
- target sample
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 109
- 238000005286 illumination Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 45
- 238000006073 displacement reaction Methods 0.000 claims abstract description 41
- 230000008569 process Effects 0.000 claims abstract description 33
- 238000004364 calculation method Methods 0.000 claims abstract description 19
- 238000011084 recovery Methods 0.000 claims abstract description 12
- 230000003044 adaptive effect Effects 0.000 claims description 24
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000012937 correction Methods 0.000 claims description 13
- 238000004088 simulation Methods 0.000 claims description 10
- 230000001902 propagating effect Effects 0.000 claims description 6
- 230000000644 propagated effect Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 97
- 239000000523 sample Substances 0.000 description 72
- 239000011521 glass Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 238000004590 computer program Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 230000001427 coherent effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000000386 microscopy Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000012804 iterative process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- LFEUVBZXUFMACD-UHFFFAOYSA-H lead(2+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-][As]([O-])([O-])=O.[O-][As]([O-])([O-])=O LFEUVBZXUFMACD-UHFFFAOYSA-H 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4788—Diffraction
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及无透镜成像领域,尤其涉及一种多角度照明无透镜成像方法、系统及装置。The invention relates to the field of lensless imaging, in particular to a multi-angle illumination lensless imaging method, system and device.
背景技术Background technique
无透镜片上显微技术是一种新型的计算成像技术,其不需要成像透镜聚焦,而直接将目标样本载玻片紧贴于传感器以记录图像,并结合对应的图像恢复算法实现清晰图像的重建。无透镜显微技术已经被广泛接受为许多应用的一种替代和经济有效的解决方式,例如病理学、细胞计数等,无透镜显微技术的主要优点是其整体架构紧凑、简单,以及在空间分辨率和视场方面的可扩展性,然而,无透镜成像的有效性依赖于捕获图像的高信噪比,其可实现的空间分辨率与测量的信噪比密切相关,但在无透镜显微镜的光学系统中,高信噪比条件很难保证。Lensless on-chip microscopy is a new type of computational imaging technology that does not require focusing of the imaging lens, but directly attaches the target sample slide to the sensor to record the image, and combines the corresponding image restoration algorithm to achieve clear image reconstruction . Lensless microscopy has been widely accepted as an alternative and cost-effective solution for many applications, such as pathology, cell counting, etc. The main advantages of lensless microscopy are its overall compactness, simplicity, and space Scalability in terms of resolution and field of view, however, the effectiveness of lensless imaging relies on the high signal-to-noise ratio of the captured image, and the achievable spatial resolution is closely related to the measured signal-to-noise ratio, but in lensless microscopy It is difficult to guarantee the high signal-to-noise ratio condition in the optical system of .
噪声源包括光子噪声、来自图像传感器的电子噪声、因数模转换产生的量化噪声以及相干光源的散斑噪声;此外,一些具有高吸收率和低透光率的染色生物样品将导致结果图像具有低信噪比;如果记录的原始图像被噪声破坏,则恢复的图像结果会因产生伪像而恶化。除此之外,在无透镜成像结构中,因为传感器本身并不具备放大能力,成像的分辨率往往较低。传统的无透镜全息成像往往采用相干光进行照明,并将目标载玻片尽可能靠近光源以获得足够的放大率。但是这种方法有着根本的矛盾,即放大率与视场范围大小之间的矛盾,当放大率变大时,视场变小,反之亦然。前者限制了系统可实现的极限分辨率,而后者则决定了其成像的范围。Noise sources include photon noise, electronic noise from the image sensor, quantization noise from factor-to-analog conversion, and speckle noise from coherent light sources; in addition, some stained biological samples with high absorption and low transmittance will cause the resulting images to have Low signal-to-noise ratio; if the recorded original image is corrupted by noise, the restored image results will be degraded by the creation of artifacts. In addition, in the lensless imaging structure, because the sensor itself does not have the ability to magnify, the imaging resolution is often low. Conventional lensless holography tends to use coherent light for illumination and place the target slide as close as possible to the light source to obtain sufficient magnification. But this method has a fundamental contradiction, that is, the contradiction between the magnification and the size of the field of view. When the magnification becomes larger, the field of view becomes smaller, and vice versa. The former limits the ultimate resolution that the system can achieve, while the latter determines the range of its imaging.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术中的缺点,提供了一种能够优化成像结果的多角度照明无透镜成像方法、系统及装置。Aiming at the shortcomings in the prior art, the present invention provides a multi-angle illumination lensless imaging method, system and device capable of optimizing imaging results.
为了解决上述技术问题,本发明通过下述技术方案得以解决:In order to solve the above-mentioned technical problems, the present invention is solved by the following technical solutions:
一种多角度照明无透镜成像方法,包括以下步骤:A multi-angle illumination lensless imaging method, comprising the following steps:
S100、获取若干张衍射图样,所述衍射图样为不同光照角度的光波通过光阑照射到样本面上时,图像传感器所采集的成像;S100. Acquire a number of diffraction patterns, where the diffraction patterns are images collected by an image sensor when light waves with different illumination angles are irradiated on the sample surface through a diaphragm;
S200、基于所述衍射图样进行迭代重建,获得成像结果,具体步骤为:S200, performing iterative reconstruction based on the diffraction pattern to obtain an imaging result, and the specific steps are:
提取位于光轴处的光波所对应的衍射图样作为参考图样,将所述参考图样和各衍射图像进行交叉关联,获得相对位移;Extracting the diffraction pattern corresponding to the light wave located at the optical axis as a reference pattern, and cross-correlating the reference pattern and each diffraction image to obtain the relative displacement;
基于所述相对位移对成像过程进行模拟计算,获得传播到样本面上的光强数据;Perform a simulation calculation on the imaging process based on the relative displacement to obtain light intensity data propagating to the sample surface;
计算当前目标估计误差,基于光强数据和所述当前目标估计误差更新样本面所对应的目标样本函数;Calculate the current target estimation error, and update the target sample function corresponding to the sample surface based on the light intensity data and the current target estimation error;
重复上述步骤,直至达到预设的迭代条件,获取更新后的目标样本函数作为相应的成像结果并输出。The above steps are repeated until the preset iterative condition is reached, and the updated target sample function is obtained as the corresponding imaging result and output.
作为一种可实施方式:As an implementation:
基于所述相对位移模拟获得相应的平面波,所述平面波与所述光波一一对应;A corresponding plane wave is obtained based on the relative displacement simulation, and the plane wave corresponds to the light wave one-to-one;
基于光阑函数和所述平面波计算获得光照函数;The illumination function is obtained based on the aperture function and the plane wave calculation;
基于光照函数和目标样本函数计算获得相应的出口波估计,获得第一出口波估计;Calculate the corresponding exit wave estimate based on the illumination function and the target sample function, and obtain the first exit wave estimate;
对第一出口波估计传播到图像传感器上的过程进行模拟计算,获得相应的衍射图样估计;Simulate the process of the estimated propagation of the first exit wave to the image sensor to obtain the corresponding diffraction pattern estimate;
基于预设的约束条件对所述衍射图样估计反向传播回样本面的过程进行模拟计算,获得第二出口波估计;Based on preset constraints, simulate and calculate the process of back-propagating the diffraction pattern estimate back to the sample surface to obtain a second exit wave estimate;
计算当前目标估计误差,基于所述第一出口波估计、所述第二出口波估计和所述当前目标估计误差更新所述目标样本函数和所述光照函数;基于更新后的光照函数对所述光阑函数进行更新。Calculate the current target estimation error, update the target sample function and the illumination function based on the first exit wave estimate, the second exit wave estimate and the current target estimation error; The aperture function is updated.
作为一种可实施方式:As an implementation:
基于第二出口波估计、目标样本函数和光照函数计算获得相应的当前目标估计误差;Calculate and obtain the corresponding current target estimation error based on the second exit wave estimation, the target sample function and the illumination function;
基于所述当前目标估计误差相对于所述目标样本函数的梯度,计算获得相应的损失值;Calculate and obtain a corresponding loss value based on the gradient of the current target estimation error relative to the target sample function;
基于所述损失值计算获得第一更新权重和第二更新权重;Calculate and obtain a first update weight and a second update weight based on the loss value;
基于第一更新权重和目标样本函数计算获得第一自适应调节步长;Calculate and obtain the first adaptive adjustment step size based on the first update weight and the target sample function;
基于第二更新权重和光照函数计算获得第二自适应调节步长;Calculate and obtain a second adaptive adjustment step size based on the second update weight and the illumination function;
基于第一自适应调节步长、第一出口波估计、第二出口波估计和光照函数对目标样本函数进行更新,获得更新后的目标样本函数;Update the target sample function based on the first adaptive adjustment step size, the first exit wave estimate, the second exit wave estimate and the illumination function, and obtain the updated target sample function;
基于第二自适应调节步长、第一出口波估计、第二出口波估计和目标样本函数对光照函数进行更新,获得更新后的光照函数;基于所述更新后的光照函数更新光阑函数。The illumination function is updated based on the second adaptive adjustment step size, the first exit wave estimation, the second exit wave estimation and the target sample function to obtain an updated illumination function; and the aperture function is updated based on the updated illumination function.
作为一种可实施方式:As an implementation:
第n次迭代更新后所得的目标样本函数On+1(r)为:The objective sample function O n+1 (r) obtained after the nth iteration update is:
其中,On(r)表示第n次迭代的目标样本函数,表示第n次迭代中第j个光波对应的光照函数,表示第n次迭代中第j个光波对应的第一出口波估计,表示第n次迭代中第j个光波对应的第二出口波估计,*代表复共轭,aO表示第一自适应调节步长;Among them, On (r) represents the target sample function of the nth iteration, represents the illumination function corresponding to the jth light wave in the nth iteration, represents the estimation of the first exit wave corresponding to the jth light wave in the nth iteration, represents the estimation of the second exit wave corresponding to the jth light wave in the nth iteration, * represents the complex conjugate, and a O represents the first adaptive adjustment step;
第n次迭代更新后所得的光照函数为:The illumination function obtained after the nth iteration update for:
其中,ap表示第二自适应调节步长。Among them, a p represents the second adaptive adjustment step size.
作为一种可实施方式:As an implementation:
第一自适应调节步长为:The first adaptive adjustment step size is:
其中,表示第n次迭代的第一更新权重,其计算公式为:in, Represents the first update weight of the nth iteration, and its calculation formula is:
第二自适应调节步长为:The second adaptive adjustment step size is:
其中,表示第n次迭代的第二更新权重,其计算公式为:in, Represents the second update weight of the nth iteration, and its calculation formula is:
上述公式,en表示第n次迭代时所对应的损失值,η为常数。In the above formula, e n represents the loss value corresponding to the nth iteration, and η is a constant.
作为一种可实施方式:As an implementation:
第n次迭代时损失值en的计算公式为:The formula for calculating the loss value e n at the nth iteration is:
令:make:
上述Δεj(On(r))为当前目标估计误差相对于所述目标样本函数的梯度。The above Δε j (On ( r )) is the gradient of the current target estimation error with respect to the target sample function.
作为一种可实施方式,基于所述相对位移对成像过程进行模拟计算前,还包括相对位移矫正步骤,具体步骤为:As an embodiment, before the imaging process is simulated and calculated based on the relative displacement, a relative displacement correction step is also included, and the specific steps are:
基于相对应的衍射图样以及衍射图样估计,计算获得相对应矫正值;Calculate the corresponding correction value based on the corresponding diffraction pattern and the diffraction pattern estimation;
基于所述矫正值对所述相对位移进行矫正,基于矫正后的相对位移对成像过程进行模拟计算。The relative displacement is corrected based on the correction value, and an imaging process is simulated based on the corrected relative displacement.
作为一种可实施方式:As an implementation:
当迭代次数达到预设的次数阈值,或基于损失值判定所述目标样本函数收敛时,将所得更新后的目标样本函数作为成像结果输出;When the number of iterations reaches a preset number of times threshold, or when it is determined that the target sample function converges based on the loss value, outputting the obtained updated target sample function as an imaging result;
本发明还提出一种多角度照明无透镜成像系统,包括:The present invention also provides a multi-angle illumination lensless imaging system, comprising:
获取模块,用于获取若干张衍射图样,所述衍射图样为不同光照角度的光波通过光阑照射到样本面上时,图像传感器所采集的成像;an acquisition module, configured to acquire several diffraction patterns, the diffraction patterns are images collected by the image sensor when light waves of different illumination angles are irradiated on the sample surface through the diaphragm;
重建模块,用于基于所述衍射图样进行迭代重建,获得成像结果,其包括相位恢复单元、叠层成像单元和输出单元;a reconstruction module, configured to perform iterative reconstruction based on the diffraction pattern to obtain an imaging result, which includes a phase recovery unit, a stacked imaging unit and an output unit;
所述相位恢复单元,用于提取位于光轴处的光波所对应的衍射图样作为参考图样,将所述参考图样和各衍射图像进行交叉关联,获得相对位移;还用于基于所述相对位移对成像过程进行模拟计算,获得传播到样本面上的光强数据;The phase recovery unit is used to extract the diffraction pattern corresponding to the light wave located at the optical axis as a reference pattern, and to cross-correlate the reference pattern with each diffraction image to obtain a relative displacement; The imaging process is simulated and calculated to obtain the light intensity data propagating to the sample surface;
所述叠层成像单元,用于计算当前目标估计误差,基于光强数据和所述当前目标估计误差更新样本面所对应的目标样本函数;The stacked imaging unit is used to calculate the current target estimation error, and update the target sample function corresponding to the sample surface based on the light intensity data and the current target estimation error;
重建模块,用于在达到预设的迭代条件时,获取更新后的目标样本函数作为相应的成像结果并输出。The reconstruction module is used for obtaining and outputting the updated target sample function as the corresponding imaging result when the preset iterative condition is reached.
本发明还提出一种多角度照明无透镜成像装置,包括沿光轴依序设置的多角度发光源、光阑、目标载玻片及图像传感器;所述多角度发光源所产生的光束经过光阑后照射到目标载玻片上,由所述图像传感器进行成像采集,获得相应的若干张衍射图样。The present invention also provides a multi-angle illumination lensless imaging device, comprising a multi-angle light source, a diaphragm, a target glass slide and an image sensor arranged in sequence along the optical axis; the light beam generated by the multi-angle light source passes through the light After the diaphragm is irradiated onto the target glass slide, the image sensor performs imaging acquisition to obtain several corresponding diffraction patterns.
本发明由于采用了以上技术方案,具有显著的技术效果:The present invention has significant technical effects due to the adoption of the above technical solutions:
本发明通过多角度照明的设计,能够在各个角度上获得多幅低分辨率的衍射图像,通过模拟成像的过程,对所得衍射图像进行相位恢复和叠层成像,以获得相应的成像结果,与现有技术相比,无需增设机械位移结构即可恢复并优化成像;Through the design of multi-angle illumination, the present invention can obtain multiple low-resolution diffraction images at various angles, and by simulating the imaging process, phase recovery and stack imaging are performed on the obtained diffraction images to obtain corresponding imaging results. Compared with the existing technology, the imaging can be restored and optimized without adding a mechanical displacement structure;
本发明通过自适应步长的方法,基于当前估计误差对目标样本函数进行更新,能够有效避免迭代过程陷入局部最优解的问题。The present invention updates the target sample function based on the current estimation error by means of an adaptive step size, which can effectively avoid the problem that the iterative process falls into a local optimal solution.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1是本发明一种多角度照明无透镜成像装置的结构示意图;1 is a schematic structural diagram of a multi-angle illumination lensless imaging device of the present invention;
图2为成像结果的相位示意图,其中左图为第一次迭代所得成像结果的相位示意图,右图为第15次迭代所得成像结果的相位示意图;Figure 2 is a schematic diagram of the phase of the imaging result, wherein the left picture is a schematic phase diagram of the imaging result obtained by the first iteration, and the right picture is a schematic phase diagram of the imaging result obtained by the 15th iteration;
图3为成像结果的振幅示意图,其中左图为第一次迭代所得成像结果的振幅示意图,右图为第15次迭代所得成像结果的振幅示意图。Figure 3 is a schematic diagram of the amplitude of the imaging results, wherein the left picture is a schematic diagram of the amplitude of the imaging results obtained in the first iteration, and the right picture is a schematic diagram of the amplitude of the imaging results obtained in the 15th iteration.
图中:In the picture:
1表示多角度发光源、2表示漫射器、3表示光阑、4表示目标载玻片、5表示图像传感器。1 is a multi-angle light source, 2 is a diffuser, 3 is a diaphragm, 4 is a target slide, and 5 is an image sensor.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步的详细说明,以下实施例是对本发明的解释而本发明并不局限于以下实施例。The present invention will be further described in detail below in conjunction with the examples. The following examples are to explain the present invention and the present invention is not limited to the following examples.
由于光的波粒二象性,当具有弱相干性的光源散发出来的光通过光阑3之后,会出现光偏离直线传播的现象,称为光的衍射。根据衍射光波的传播距离不同,由近及原可划分为三个区域分别是瑞利-索墨菲衍射区、菲涅尔衍射区以及夫琅和费衍射区,本领域技术人员可根据传播距离自行选用对应区域的衍射公式表示对应光波的复振幅。Due to the wave-particle duality of light, when the light emitted by the light source with weak coherence passes through the
实施例1、一种多角度照明无透镜成像装置,包括沿光轴依序设置的多角度发光源1、光阑3、目标载玻片4及图像传感器5;
多角度发光源1与光阑3的距离d0为100-600mm、令光阑3与目标载玻片4的距离d1和目标载玻片4与图像传感器5的距离d2远小于d0即可。The distance d0 between the multi-angle light-emitting
所述多角度发光源1,用于产生低相干的光束,使图像传感器5获得多幅低分辨率的衍射图样,各衍射图样对应的角度不同,从而便于后续基于所采集的衍射图样重构获得优化后的成像结果;The multi-angle light-emitting
本实施例中多角度发光源1采用LED矩阵,所得衍射图样的数量与LED矩阵中LED的数量一致,理论上重构过程中所采用的衍射图样越多越好,但是随着LED数量的增加,外围LED所产生光束对于目标样本的测量角度较大,反而导致成像效果会不佳,故本领域技术人员可根据实际需要设置和合适的LED矩阵,例如可选5×5~10×10的LED矩阵,LED的间距例如可为2cm~5cm。In this embodiment, the multi-angle
所述光阑3,用于滤除杂散光,产生圆形的光波,该光波照射至装有目标样本的目标载玻片4上,并于所述图像传感器5成像采集,重建过程中利用光照函数表示该光波。The
本实施例中光阑3的微孔的半径为100~300um。In this embodiment, the radius of the micro-holes of the
所述图像传感器5例如可采用电荷耦合元件[Charge-coupled device,CCD]或互补金属半导体氧化物[Complementary Metal Oxide Semiconductor,CMOS]。The image sensor 5 may be, for example, a charge-coupled device (CCD, CCD) or a complementary metal semiconductor oxide (Complementary Metal Oxide Semiconductor, CMOS).
进一步地,所述多角度发光源1和光阑3之间设有漫射器2;Further, a
当所述多角度发光源1所发出的光束经过漫射器2,由所述漫射器2将一系列随机角度的光波引入光束,本实施例通过添加漫射器2,能够进一步提高图像的成像效果。When the light beam emitted by the multi-angle
案例:Case:
多角度照明无透镜成像装置,包括沿光轴依序设置的多角度发光源1、漫射器2、光阑3、目标载玻片4及图像传感器5;A multi-angle illumination lensless imaging device, comprising a multi-angle
其中多角度发光源1与光阑3的距离d0为300mm、光阑3与目标载玻片4的距离d1为5mm、目标载玻片4与图像传感器5的距离d2为0.5mm。The distance d0 between the multi-angle
所述多角度发光源1为10×10的LED矩阵,其中LED之间的间距为3.5cm。The multi-angle
光阑3的微孔的半径为150um;The radius of the aperture of
图像传感器5采用电荷耦合元件;The image sensor 5 uses a charge-coupled element;
多角度发光源1与光阑3的距离d0为、光阑3与目标载玻片4的距离d1为、目标载玻片4与图像传感器5的距离d2为。The distance d0 between the multi-angle light-emitting
各LED发出的光束通过漫射器2后,由光阑3过滤杂散光,形成圆形的光波;所述光波照射至装有目标样本的目标载玻片4上,并于所述图像传感器5成像采集,获得100张衍射图样,所述衍射图像与LED一一对应。After the light beam emitted by each LED passes through the
针对视场范围与成像分辨率之间相矛盾的问题,Feng等利用Ronchi光栅实现塔尔博特光栅照明,通过光栅在物面的暗条纹光强为0作为物面的支持域,通过迭代后恢复重建光强,但这个方法对样品的要求较高,且重建效果有限。Ozcan实验室提出多样品-传感器间距的相位恢复算法,但其对硬件要求较高,需要机械位移结构,且其迭代算法易陷入局部最优解。Aiming at the contradiction between the field of view and imaging resolution, Feng et al. used Ronchi grating to realize Talbot grating illumination, and the dark fringe light intensity of the grating on the object surface was 0 as the support domain of the object surface. The reconstructed light intensity is restored, but this method has high requirements on the sample and limited reconstruction effect. The Ozcan laboratory proposed a phase recovery algorithm with multiple sample-sensor distances, but it has high hardware requirements, requires a mechanical displacement structure, and its iterative algorithm is easy to fall into a local optimal solution.
本实施例中通过对于一种多角度照明无透镜成像装置的设计,能够通过多角度照明获取一组低分辨率的衍射图样,便于后续基于衍射图样进行叠层成像,提高成像结果的质量,还能在无需机械位移结构的前提下解决现有无透镜显微成像技术中视场范围和分辨率之间能的矛盾。In this embodiment, through the design of a multi-angle illumination lensless imaging device, a set of low-resolution diffraction patterns can be obtained through multi-angle illumination, which is convenient for subsequent layered imaging based on the diffraction patterns, improves the quality of imaging results, and also improves the quality of imaging results. The contradiction between the field of view range and the resolution in the existing lensless microscopic imaging technology can be solved without the need of a mechanical displacement structure.
实施例2、一种多角度照明无透镜成像方法,包括以下步骤:
S100、获取若干张衍射图样,所述衍射图样为不同光照角度的光波通过光阑3照射到样本面上时,图像传感器5所采集的成像;S100, acquiring several diffraction patterns, the diffraction patterns are images collected by the image sensor 5 when light waves of different illumination angles are irradiated on the sample surface through the
本实施例中衍射图样为实施例1所述的无透镜成像装置所采集成像。The diffraction pattern in this embodiment is the image captured by the lensless imaging device described in
S200、基于所述衍射图样进行迭代重建,获得成像结果。S200. Perform iterative reconstruction based on the diffraction pattern to obtain an imaging result.
具体步骤为:The specific steps are:
S210、提取位于光轴处的光波所对应的衍射图样作为参考图样,将所述参考图样和各衍射图像进行交叉关联,获得相对位移;S210, extracting the diffraction pattern corresponding to the light wave located at the optical axis as a reference pattern, and cross-correlating the reference pattern and each diffraction image to obtain a relative displacement;
所述光轴为无透镜成像装置的光轴。The optical axis is the optical axis of the lensless imaging device.
S220、基于所述相对位移对成像过程进行模拟计算,获得传播到样本面上的光强数据;S220. Perform a simulation calculation on the imaging process based on the relative displacement to obtain light intensity data propagated to the sample surface;
S230、计算当前目标估计误差,基于光强数据和所述当前目标估计误差更新样本面所对应的目标样本函数;S230, calculating the current target estimation error, and updating the target sample function corresponding to the sample surface based on the light intensity data and the current target estimation error;
所述目标样本函数为表示成像结果的像素矩阵,本步骤为基于光强数据进行叠层成像,以更新成像结果。The target sample function is a pixel matrix representing the imaging result, and this step is to perform stacked imaging based on the light intensity data to update the imaging result.
S240、重复上述步骤S220和步骤S230,直至达到预设的迭代条件,获取更新后的目标样本函数作为相应的成像结果并输出。S240. Repeat the above steps S220 and S230 until the preset iteration condition is reached, and obtain and output the updated target sample function as a corresponding imaging result.
本实施例中基于衍射图像进行重建的方法包括相位恢复和叠层成像两部分,其中相位恢复为通过计算所得的相对位移模拟成像的过程,并基于预设的约束条件对传播到样本面的的光强信息进行更新。叠层成像则将每块更新后的衍射图样进行叠加,因为LED处在不同位置,所以每个衍射图样都会有部分重叠,叠加在一起以组成完整的图像。The reconstruction method based on the diffraction image in this embodiment includes two parts: phase recovery and stack imaging, wherein the phase recovery is the process of simulating the imaging through the relative displacement obtained by calculation, and based on preset constraints, the propagation to the sample surface is analyzed. The light intensity information is updated. Stacked imaging superimposes each updated diffraction pattern. Because the LEDs are in different positions, each diffraction pattern is partially overlapped and superimposed to form a complete image.
本实施例中在各个角度获得多幅低分辨率的衍射图样,模拟不同角度照明光照射目标样品结合交叠孔径进行重构,从而有效提高重构的分辨率,且本实施例中基于当前目标估计误差自动调节步长,能够提高重构的分辨率,还能进一步提高收敛速度,且本实施例中当前目标估计误差为全局误差,能够有效避免迭代过程中陷入局部最优解。In this embodiment, multiple low-resolution diffraction patterns are obtained at various angles, and the target sample is reconstructed by simulating illumination light from different angles to illuminate the target sample in combination with overlapping apertures, thereby effectively improving the resolution of reconstruction. In this embodiment, based on the current target The estimation error automatically adjusts the step size, which can improve the resolution of reconstruction and further improve the convergence speed. In this embodiment, the current target estimation error is a global error, which can effectively avoid falling into a local optimal solution in the iterative process.
步骤S210中,选取与无透镜成像装置的中心光轴所对其的LED所测得的衍射图样作为参考图样,并将其与其他各衍射图样交叉关联,相应衍射图样的相对位移,本实施例中第j个LED所产生的衍射图样与参考图样之间的相对位移Δdj为:In step S210, the diffraction pattern measured by the LED corresponding to the central optical axis of the lensless imaging device is selected as the reference pattern, and it is cross-correlated with other diffraction patterns, and the relative displacement of the corresponding diffraction pattern, this embodiment The relative displacement Δd j between the diffraction pattern produced by the jth LED and the reference pattern is:
其中,d表示衍射平面的坐标,j为LED阵列的坐标位置(代表第j个LED所产生的衍射图样位置),Iref(d)表示参考图样,Ij(d+Δd)表示第j个LED所产生的衍射图样。Among them, d represents the coordinates of the diffraction plane, j is the coordinate position of the LED array (representing the position of the diffraction pattern generated by the j-th LED), I ref (d) represents the reference pattern, and I j (d+Δd) represents the j-th Diffraction patterns produced by LEDs.
步骤S220用于实现相位恢复,具体步骤为:Step S220 is used to realize phase recovery, and the specific steps are:
S221、基于所述相对位移模拟获得相应的平面波,所述平面波与所述光波一一对应;S221. Obtain a corresponding plane wave based on the relative displacement simulation, and the plane wave corresponds to the light wave one-to-one;
S222、基于光阑函数和所述平面波计算获得光照函数;S222, calculating and obtaining an illumination function based on the aperture function and the plane wave;
S223、基于光照函数和目标样本函数计算获得相应的出口波估计,获得第一出口波估计;S223, calculating and obtaining a corresponding exit wave estimate based on the illumination function and the target sample function, and obtaining a first exit wave estimate;
S224、对第一出口波估计传播到图像传感器5上的过程进行模拟计算,获得相应的衍射图样估计;S224, performing simulation calculation on the estimated propagation process of the first exit wave to the image sensor 5 to obtain a corresponding diffraction pattern estimate;
S225、基于预设的约束条件对所述衍射图样估计反向传播回样本面的过程进行模拟计算,获得第二出口波估计;S225. Perform a simulation calculation on the process of back-propagating the diffraction pattern estimate back to the sample surface based on a preset constraint condition, to obtain a second exit wave estimate;
所述光强数据包括上述计算获得的第一出口波估计和第二出口估计,本实施例中通过相对位移对成像的过程进行模拟计算,以获得第一出口波估计,再基于预设的约束条件更新所述第一出口波估计,以获得第二出口波估计。The light intensity data includes the first exit wave estimate and the second exit estimate obtained by the above calculation. In this embodiment, the imaging process is simulated and calculated by relative displacement to obtain the first exit wave estimate, and then based on preset constraints. The condition updates the first exit wave estimate to obtain a second exit wave estimate.
步骤S221中基于所述相对位移模拟对应LED的平面波,第j个LED对应的平面波Γj(r)为:In step S221, the plane wave corresponding to the LED is simulated based on the relative displacement, and the plane wave Γ j (r) corresponding to the jth LED is:
其中,r为真实空间内LED的坐标位置,M为整个窗口的像素值,Δdj为第j个LED对应的相对位移。Among them, r is the coordinate position of the LED in the real space, M is the pixel value of the entire window, and Δd j is the relative displacement corresponding to the jth LED.
步骤S222中模拟将所述平面波传播至光阑3后照射至样本面的过程,得到相应的光照函数;第n次迭代时第j个LED所对应的光照函数为 In step S222, the process of propagating the plane wave to the
其中,n表示迭代次数;表示光阑3到样本面的传播函数,即,光阑3中微孔到目标载玻片4的传播函数;An(r)表示第n次迭代的光阑函数;Among them, n represents the number of iterations; Represents the propagation function from
本实施例中光阑函数表示漫射器2与光阑3的粗略估计,第一次迭代时,光阑函数采用预设的初始光阑函数,本实施例中初始光阑函数采用与衍射图样大小相同的全零值,否则采用上一次迭代时所更新的光阑函数,更新方法如步骤S238所述。The aperture function in this embodiment represents a rough estimation of the
本实施例中传播函数采用角谱传播,具体过程为:The propagation function in this embodiment Using angular spectrum propagation, the specific process is:
Input=F(Γj(r)An(r))Input=F(Γ j (r)A n (r))
Output=Input*CTFOutput=Input*CTF
其中,F为傅里叶变化,F-1为反傅里叶变化,Input为平面波通过傅里叶变换到频域的函数,通过在与相干传递函数(Coherent Transfer Function,CTF)相乘得到频域内样品面的光照函数。Among them, F is the Fourier change, F -1 is the inverse Fourier change, Input is the function of the plane wave to the frequency domain through Fourier transform, and the frequency is obtained by multiplying the coherent transfer function (CTF) with the coherent transfer function (CTF). Lighting function for sample faces within the domain.
步骤S223中通过光照函数和目标样本函数的乘积,计算获得离开目标样本时的出口波估计,获得相应的第一出口波估计,第n次迭代时第j个LED所对应的第一出口波估计为:In step S223, through the product of the illumination function and the target sample function, the exit wave estimate when leaving the target sample is calculated and obtained, the corresponding first exit wave estimate is obtained, and the first exit wave estimate corresponding to the jth LED during the nth iteration is estimated. for:
其中,On(r)表示目标样本函数,其为上一次迭代重构是更新后的目标样本函数,当第一次迭代时,所述目标样本函数为预设的初始目标样本函数。Wherein, On ( r ) represents the target sample function, which is the target sample function after the last iterative reconstruction is updated, and in the first iteration, the target sample function is the preset initial target sample function.
步骤S224中模拟将所述第一出口波估计传播到图像传感器5进行成像的过程,得到相应的衍射图像估计;In step S224, the process of propagating the first exit wave estimate to the image sensor 5 for imaging is simulated to obtain a corresponding diffraction image estimate;
本实施例中基于角谱传播计算所述衍射图像估计,第n次迭代时第j个LED所对应的衍射图像估计为:In this embodiment, the diffraction image estimation is calculated based on the angular spectrum propagation, and the diffraction image estimation corresponding to the jth LED in the nth iteration for:
其中,F为傅里叶变化,h为样本面到图像传感器5的距离,即,目标载玻片4到图像传感器5的距离(d2),λ为光波长,r为真实空间内LED的坐标位置。Among them, F is the Fourier transform, h is the distance from the sample surface to the image sensor 5, that is, the distance (d2) from the
步骤S225中使用预设的约束条件将所得的衍射图像估计反向传播回样本面,更新所述第一出口波估计,以获得相应的第二出口波估计,第n次迭代时第j个LED所对应的第二出口波估计为:In step S225, the obtained diffraction image estimate is back-propagated back to the sample surface using preset constraints, and the first exit wave estimate is updated to obtain a corresponding second exit wave estimate, and the jth LED in the nth iteration The corresponding second exit wave estimate for:
本实施例中预设的约束条件为角谱传播的约束以及初始获取的衍射图样的约束。The preset constraint conditions in this embodiment are the constraint of angular spectrum propagation and the constraint of the initially acquired diffraction pattern.
由上可知,本实施例通过空域和频域中进行多次的切换恢复相位,此方式不仅能够重构物体在聚焦面的复振幅分布,还能进一步提高物体的重构分辨率。It can be seen from the above that in this embodiment, the phase is recovered by switching multiple times in the spatial domain and the frequency domain. This method can not only reconstruct the complex amplitude distribution of the object on the focal plane, but also further improve the reconstruction resolution of the object.
进一步地,步骤基于所述相对位移对成像过程进行模拟计算前,还包括相对位移矫正步骤,具体步骤为:Further, before performing the simulation calculation on the imaging process based on the relative displacement, the step further includes a relative displacement correction step, and the specific steps are:
基于相对应的衍射图样以及衍射图样估计,计算获得相对应矫正值;第n次迭代时第j个LED所对应的矫正值为:Based on the corresponding diffraction pattern and diffraction pattern estimation, the corresponding correction value is calculated and obtained; the correction value corresponding to the jth LED at the nth iteration for:
其中,Ij(d)表示第j个LED所对应的衍射图像,第n次迭代时d位置的衍射图样估计。Among them, I j (d) represents the diffraction image corresponding to the jth LED, Diffraction pattern estimation at position d at the nth iteration.
基于所述矫正值对所述相对位移进行矫正,基于矫正后的相对位移对成像过程进行模拟计算,第n+1次迭代时进行模拟成像的相对位移为。The relative displacement is corrected based on the correction value, the imaging process is simulated based on the corrected relative displacement, and the relative displacement of the simulated imaging is performed at the n+1th iteration for.
即,基于当前迭代时的衍射图样估计生成相应的矫正值,基于所得矫正值对相对位移进行更新,使下一次迭代时采用更新后的相对位移进行成像模拟,初始相对位移即步骤S210中计算获得的相对位移Δdj。That is, a corresponding correction value is generated based on the diffraction pattern estimation in the current iteration, and the relative displacement is updated based on the obtained correction value, so that the updated relative displacement is used for imaging simulation in the next iteration, and the initial relative displacement is calculated in step S210. The relative displacement Δd j .
由于在先计算获得的相对位移Δdj的相关度较低,又因为LED的低相干条件,使衍射图样被平滑处理,导致存在一定误差,故本实施例中通过对矫正值的设计建立相互相关以提高精度。Because the correlation degree of the relative displacement Δd j obtained by the previous calculation is low, and because of the low coherence condition of the LED, the diffraction pattern is smoothed, resulting in a certain error. Therefore, in this embodiment, a mutual correlation is established by designing the correction value. to improve accuracy.
步骤S230为叠层成像的步骤,本实施例中当前目标误差为基于全局的误差,通过当前目标估计误差自动调节步长,能够有效避免迭代过程陷入全局最优解的问题。Step S230 is the step of stack imaging. In this embodiment, the current target error is based on the global error, and the step size is automatically adjusted by the current target estimation error, which can effectively avoid the problem that the iterative process falls into the global optimal solution.
具体步骤如下:Specific steps are as follows:
S231、基于第二出口波估计、目标样本函数和光照函数计算获得相应的当前目标估计误差ε;S231, calculating and obtaining the corresponding current target estimation error ε based on the second exit wave estimation, the target sample function and the illumination function;
误差函数为:The error function is:
其中,表示当前迭代中第j个LED所对应的第二出口波估计,表示当前迭代中第j个LED所对应的光照函数,On(r)表示当前迭代中的目标样本函数(即,上一次迭代中更新后的目标样本函数)。in, represents the second exit wave estimate corresponding to the jth LED in the current iteration, represents the illumination function corresponding to the jth LED in the current iteration, and On ( r ) represents the target sample function in the current iteration (ie, the updated target sample function in the previous iteration).
S232、基于所述当前目标估计误差相对于所述目标样本函数的梯度,计算获得相应的损失值;S232, calculating and obtaining a corresponding loss value based on the gradient of the current target estimation error relative to the target sample function;
当前迭代时损失值en的计算公式为:The formula for calculating the loss value en at the current iteration is:
其中,Δεj(On(r))为当前目标估计误差相对于所述目标样本函数的梯度,其可被表示为:Among them, Δε j (On ( r )) is the gradient of the current target estimation error relative to the target sample function, which can be expressed as:
上式中*表示复共轭。In the above formula, * represents complex conjugate.
S233、基于所述损失值计算获得第一更新权重和第二更新权重;S233, calculating and obtaining a first update weight and a second update weight based on the loss value;
当前迭代时第一更新权重的计算公式为:The first update weights at the current iteration The calculation formula is:
其中,η为常数,本领域技术人员可根据实际需要自行设定η的取值,本实施例中η的值设为0.0001;Wherein, n is a constant, and those skilled in the art can set the value of n according to actual needs, and the value of n in this embodiment is set to 0.0001;
即,计算获得的损失值接近收敛时,令步长做自适应衰减。That is, when the calculated loss value is close to convergence, the step size is adaptively attenuated.
同上,当前迭代时第一更新权重的计算公式为:Same as above, the first update weight in the current iteration The calculation formula is:
第一次迭代时第一更新权重与第二更新权重均为预设的初始值,本领域技术人员可根据实际需要自行设定该初始值,本实施例中第一更新权重与第二更新权重的初始值均为0.001。During the first iteration, the first update weight and the second update weight are both preset initial values, and those skilled in the art can set the initial values according to actual needs. In this embodiment, the first update weight and the second update weight are The initial value of is 0.001.
S234、基于第一更新权重和目标样本函数计算获得第一自适应调节步长;S234, calculating and obtaining the first adaptive adjustment step size based on the first update weight and the target sample function;
当前迭代时第一自适应调节步长aO为:The first adaptive adjustment step size a O in the current iteration is:
S235、基于第二更新权重和光照函数计算获得第二自适应调节步长;S235, calculating and obtaining a second adaptive adjustment step size based on the second update weight and the illumination function;
当前迭代时第二自适应调节步长ap为:The second adaptive adjustment step size a p in the current iteration is:
S236、基于第一自适应调节步长、第一出口波估计、第二出口波估计和光照函数对目标样本函数进行更新,获得更新后的目标样本函数;S236, update the target sample function based on the first adaptive adjustment step size, the first exit wave estimation, the second exit wave estimation and the illumination function, and obtain the updated target sample function;
当前迭代(即第n次迭代)更新后所得的目标样本函数On+1(r)为:The target sample function O n+1 (r) obtained after the current iteration (ie the nth iteration) is updated is:
其中,On(r)表示第n次迭代的目标样本函数,表示第n次迭代中第j条光波(即,第j个LED)所对应的光照函数,表示第n次迭代中第j条光波(即,第j个LED)对应的第一出口波估计,表示第n次迭代中第j个光波(即,第j个LED)对应的第二出口波估计,*代表复共轭,ao表示第一自适应调节步长。Among them, On (r) represents the target sample function of the nth iteration, represents the illumination function corresponding to the jth light wave (ie, the jth LED) in the nth iteration, represents the first exit wave estimate corresponding to the jth light wave (ie, the jth LED) in the nth iteration, represents the second exit wave estimate corresponding to the jth light wave (ie, the jth LED) in the nth iteration, * represents the complex conjugate, and a o represents the first adaptive adjustment step size.
由上可知,更新目标样本函数的过程即基于更新后的衍射裕阳进行叠层成像的过程。It can be seen from the above that the process of updating the target sample function is the process of stacking imaging based on the updated diffraction Yuyang.
S237、基于第二自适应调节步长、第一出口波估计、第二出口波估计和目标样本函数对光照函数进行更新,获得更新后的光照函数;S237, update the illumination function based on the second adaptive adjustment step size, the first exit wave estimation, the second exit wave estimation and the target sample function, and obtain the updated illumination function;
当前迭代(即第n次迭代)更新后所得的光照函数为:The lighting function obtained after the current iteration (ie the nth iteration) is updated for:
S238、基于所述更新后的光照函数更新光阑函数。S238. Update the aperture function based on the updated illumination function.
本实施例中利用更新后的光照函数,移除倾斜的平面波后,更新光阑函数,令下一次迭代时基于更新的光阑函数计算获得相应的光照函数;In this embodiment, using the updated illumination function, after removing the inclined plane wave, the aperture function is updated, so that the corresponding illumination function is obtained by calculating based on the updated aperture function in the next iteration;
当前迭代(即第n次迭代)更新后的光阑函数An+1(r)为:The updated aperture function A n+1 (r) of the current iteration (ie the nth iteration) is:
本领域技术人员可根据实际需要自行对步骤S240中所述的迭代条件进行设置,例如:Those skilled in the art can set the iteration conditions described in step S240 by themselves according to actual needs, for example:
当迭代次数达到预设的次数阈值,或基于损失值判定所述目标样本函数收敛时,判定迭代终止,将所得更新后的目标样本函数作为成像结果输出。When the number of iterations reaches a preset number of times threshold, or when it is determined that the target sample function converges based on the loss value, it is determined that the iteration is terminated, and the obtained updated target sample function is output as an imaging result.
上述已告知损失值的计算方式,本领域技术人员可根据实际需要自行设置基于损失值判定目标样本函数收敛的条件,故不对其进行限定。For the above-mentioned calculation method of the loss value, those skilled in the art can set the conditions for determining the convergence of the target sample function based on the loss value by themselves according to actual needs, so it is not limited.
基于本实施例所提出的方法对相应衍射图样进行迭代重构,重构结果如图2和图3所示,由图2和图3对比可知,迭代15次后所输出的成像结果的分辨率远高于迭代1次后所输出的成像结果,由此可证明,本实施例所提出的成像方法能够有效提高分辨率,解决现有无透镜显微成像技术中的成像结果质量不佳、视场范围和成像分辨率之间相矛盾的问题。Based on the method proposed in this embodiment, the corresponding diffraction pattern is iteratively reconstructed. The reconstruction results are shown in Figures 2 and 3. From the comparison of Figures 2 and 3, it can be seen that the resolution of the output imaging results after 15 iterations Much higher than the imaging results output after one iteration, it can be proved that the imaging method proposed in this embodiment can effectively improve the resolution and solve the problems of poor imaging results and visual problems in the existing lensless microscopic imaging technology. Conflict between field range and imaging resolution.
实施例3、一种多角度照明无透镜成像系统,包括:
获取模块,用于获取若干张衍射图样,所述衍射图样为不同光照角度的光波通过光阑3照射到样本面上时,图像传感器5所采集的成像;an acquisition module, configured to acquire several diffraction patterns, the diffraction patterns are images collected by the image sensor 5 when light waves of different illumination angles are irradiated on the sample surface through the
重建模块,用于基于所述衍射图样进行迭代重建,获得成像结果,其包括相位恢复单元、叠层成像单元和输出单元;a reconstruction module, configured to perform iterative reconstruction based on the diffraction pattern to obtain an imaging result, which includes a phase recovery unit, a stacked imaging unit and an output unit;
所述相位恢复单元,用于提取位于光轴处的光波所对应的衍射图样作为参考图样,将所述参考图样和各衍射图像进行交叉关联,获得相对位移;还用于基于所述相对位移对成像过程进行模拟计算,获得传播到样本面上的光强数据;The phase recovery unit is used to extract the diffraction pattern corresponding to the light wave located at the optical axis as a reference pattern, and to cross-correlate the reference pattern with each diffraction image to obtain a relative displacement; The imaging process is simulated and calculated to obtain the light intensity data propagating to the sample surface;
所述叠层成像单元,用于计算当前目标估计误差,基于光强数据和所述当前目标估计误差更新样本面所对应的目标样本函数;The stacked imaging unit is used to calculate the current target estimation error, and update the target sample function corresponding to the sample surface based on the light intensity data and the current target estimation error;
输出单元,用于在达到预设的迭代条件时,获取更新后的目标样本函数作为相应的成像结果并输出。The output unit is configured to acquire and output the updated target sample function as a corresponding imaging result when a preset iteration condition is reached.
本实施例为与实施例2相对应的产品实施例,由于其与方法实施例2基本相似,所以描述的比较简单,相关之处参见方法实施例2的部分说明即可。This embodiment is a product embodiment corresponding to
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments may be referred to each other.
本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, apparatus, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, terminal devices (systems), and computer program products according to the invention. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal equipment to produce a machine that causes the instructions to be executed by the processor of the computer or other programmable data processing terminal equipment Means are created for implementing the functions specified in a flow or flows of the flowcharts and/or a block or blocks of the block diagrams.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing terminal equipment to operate in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising instruction means, the The instruction means implement the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing terminal equipment, so that a series of operational steps are performed on the computer or other programmable terminal equipment to produce a computer-implemented process, thereby executing on the computer or other programmable terminal equipment The instructions executed on the above provide steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
需要说明的是:It should be noted:
说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。Reference in the specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases "one embodiment" or "an embodiment" in various places throughout the specification are not necessarily all referring to the same embodiment.
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although preferred embodiments of the present invention have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of the present invention.
此外,需要说明的是,本说明书中所描述的具体实施例,其零、部件的形状、所取名称等可以不同。凡依本发明专利构思所述的构造、特征及原理所做的等效或简单变化,均包括于本发明专利的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。In addition, it should be noted that, in the specific embodiments described in this specification, the shapes and names of parts and components thereof may be different. All equivalent or simple changes made according to the structures, features and principles described in the patent concept of the present invention are included in the protection scope of the patent of the present invention. Those skilled in the art to which the present invention pertains can make various modifications or additions to the described specific embodiments or substitute in similar manners, as long as they do not deviate from the structure of the present invention or go beyond the scope defined by the claims, All should belong to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011418841.6A CN112697751B (en) | 2020-12-07 | 2020-12-07 | Multi-angle illumination lensless imaging method, system and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011418841.6A CN112697751B (en) | 2020-12-07 | 2020-12-07 | Multi-angle illumination lensless imaging method, system and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112697751A CN112697751A (en) | 2021-04-23 |
CN112697751B true CN112697751B (en) | 2022-05-03 |
Family
ID=75506335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011418841.6A Active CN112697751B (en) | 2020-12-07 | 2020-12-07 | Multi-angle illumination lensless imaging method, system and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112697751B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110927115B (en) * | 2019-12-09 | 2022-05-13 | 杭州电子科技大学 | Device and method for lensless dual-type fusion target detection based on deep learning |
CN113189101B (en) * | 2021-04-27 | 2024-01-30 | 浙江大学 | A lensless imaging method with negative feedback adjustment |
CN114202612A (en) * | 2021-11-24 | 2022-03-18 | 北京理工大学 | A computational illumination imaging method and device |
CN114757915A (en) * | 2022-04-15 | 2022-07-15 | 杭州电子科技大学 | Oral detection device, oral image processing method and system |
CN117974454B (en) * | 2022-10-30 | 2024-11-26 | 珠海乘数信息科技有限公司 | Method, system and storage medium for recovering transmission function and incident wave of object in high-resolution imaging |
CN119223922A (en) * | 2024-06-03 | 2024-12-31 | 南方科技大学 | A coherent diffraction imaging method and device |
CN118295225B (en) * | 2024-06-06 | 2024-09-13 | 南昌大学 | Double-channel priori constrained multi-distance lens-free digital holographic reconstruction method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108780218A (en) * | 2016-03-24 | 2018-11-09 | 分子装置有限公司 | Use the imaging system of the assistant images detector for sample position |
CN111670358A (en) * | 2017-12-26 | 2020-09-15 | 彼得·佩纳 | Apparatus and method for yarn quality monitoring |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201017108Y (en) * | 2007-02-02 | 2008-02-06 | 中国科学院上海光学精密机械研究所 | Intensity Correlation Diffraction Imaging Device |
CN107655405B (en) * | 2017-08-29 | 2020-01-24 | 南京理工大学 | A Method of Eliminating Axial Distance Error Between Object and CCD Using Self-focusing Iterative Algorithm |
CN107861360B (en) * | 2017-12-20 | 2020-01-10 | 清华大学 | Single-exposure lens-free imaging system and method based on multi-angle illumination multiplexing |
CN111861850B (en) * | 2020-07-21 | 2022-04-29 | 中国科学院大学 | Information hiding method and system for laminated imaging |
-
2020
- 2020-12-07 CN CN202011418841.6A patent/CN112697751B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108780218A (en) * | 2016-03-24 | 2018-11-09 | 分子装置有限公司 | Use the imaging system of the assistant images detector for sample position |
CN111670358A (en) * | 2017-12-26 | 2020-09-15 | 彼得·佩纳 | Apparatus and method for yarn quality monitoring |
Non-Patent Citations (1)
Title |
---|
基于多距离相位恢复的无透镜计算成像技术;刘正君等;《红外与激光工程》;20181031;第47卷(第10期);图1 * |
Also Published As
Publication number | Publication date |
---|---|
CN112697751A (en) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112697751B (en) | Multi-angle illumination lensless imaging method, system and device | |
Zhou et al. | Diffraction tomography with a deep image prior | |
Chapman et al. | High-resolution ab initio three-dimensional x-ray diffraction microscopy | |
Shajkofci et al. | Spatially-variant CNN-based point spread function estimation for blind deconvolution and depth estimation in optical microscopy | |
CN108051930B (en) | Large-view-field super-resolution dynamic phase lens-free microscopic imaging device and reconstruction method | |
CN110455834B (en) | X-ray single exposure imaging device and method based on light intensity transmission equation | |
JP4499331B2 (en) | System and method for recovering wavefront phase information | |
CN111650738A (en) | A method and device for reconstructing Fourier stack microscopic images based on deep learning | |
US20110032586A1 (en) | Light microscope with novel digital method to achieve super-resolution | |
Chen et al. | 3D imaging based on depth measurement technologies | |
CN115099389B (en) | Non-training phase reconstruction method and device based on complex neural network | |
CN111556257B (en) | Imaging method and device based on narrow dynamic range acquisition and adaptive phase recovery | |
CN112837390A (en) | A low-quality digital holographic image reconstruction method and system | |
Wu et al. | Adaptive correction method of hybrid aberrations in Fourier ptychographic microscopy | |
Wu et al. | A lensless LED matrix-based ptychographic microscopy imaging method using loss correction and adaptive step size | |
CN119164921A (en) | Large-angle tilted reflective stacked diffraction imaging method and related device | |
CN105739279B (en) | Iterative reconstruction imaging method based on hologram intensity information | |
CN110231310A (en) | A kind of imaging method for the target being hidden in opaque scattering medium | |
CN115131201B (en) | Far-field diffuse reflection synthetic aperture super-resolution imaging method based on stacked reconstruction | |
CN118190884A (en) | Optical tomography system and method | |
JPWO2021024420A1 (en) | Refractive index distribution estimation system | |
Yang et al. | Alternating projection combined with fast gradient projection (FGP-AP) method for intensity-only measurement optical diffraction tomography in LED array microscopy | |
CN114384780A (en) | Method, apparatus, computer device and storage medium for imaging through scattering medium | |
CN110044474A (en) | A kind of relevance imaging optimization method based on interpolation algorithm | |
CN117314915B (en) | In-situ detection methods, equipment and storage media for microstructure processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |