CN112673451A - 具有实时分析和信号优化的电荷检测质谱分析 - Google Patents

具有实时分析和信号优化的电荷检测质谱分析 Download PDF

Info

Publication number
CN112673451A
CN112673451A CN201980051680.0A CN201980051680A CN112673451A CN 112673451 A CN112673451 A CN 112673451A CN 201980051680 A CN201980051680 A CN 201980051680A CN 112673451 A CN112673451 A CN 112673451A
Authority
CN
China
Prior art keywords
ion
elit
processor
ions
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980051680.0A
Other languages
English (en)
Inventor
M·F·贾罗德
B·E·德拉普尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council Of Indiana University
Indiana University
Original Assignee
Council Of Indiana University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council Of Indiana University filed Critical Council Of Indiana University
Publication of CN112673451A publication Critical patent/CN112673451A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/4245Electrostatic ion traps
    • H01J49/425Electrostatic ion traps with a logarithmic radial electric potential, e.g. orbitraps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers
    • H01J49/027Detectors specially adapted to particle spectrometers detecting image current induced by the movement of charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/4245Electrostatic ion traps

Abstract

电荷检测质谱仪可以包括静电线性离子阱(ELIT)或轨道阱、向其供应离子的离子源、可操作地耦合到ELIT或轨道阱的至少一个放大器、耦合到ELIT或轨道阱和放大器的处理器、以及被编程为控制ELIT或轨道阱作为俘获事件的一部分以试图在其中俘获由离子源供应的单个离子的处理器,以基于在俘获事件的持续时间内由放大器产生的输出信号来记录离子测量信息,基于测量信息确定对ELIT或轨道阱的控制是否导致俘获单个离子、无离子或多个离子,并且仅当单个离子在俘获事件期间被俘获的情况下,根据测量信息计算离子质量或质荷比。

Description

具有实时分析和信号优化的电荷检测质谱分析
相关申请的交叉引用
本申请要求2018年6月4日提交的美国临时专利申请序列号62/680,245的权益和优先权,其公开内容通过引用整体并入本文。
政府权利
本发明是在国家科学基金会授予的CHE1531823的资助下完成的。美国政府对这项发明拥有一定的权利。
技术领域
本公开一般涉及电荷检测质谱仪器,并且更具体地涉及利用这种仪器执行质量和电荷测量。
背景技术
质谱分析通过根据离子质量和电荷分离物质的气态离子来实现对物质的化学成分的识别。已经开发了各种仪器和技术来确定这种分离的离子的质量,并且一种这样的技术被称为电荷检测质谱分析(CDMS)。在CDMS中,根据测量的离子质荷比(通常称为“m/z”)和测量的离子电荷来单独确定每个离子的离子质量。
早期CDMS检测器的m/z和电荷测量的高度不确定性已经导致静电线性离子阱(ELIT)检测器的开发,在该检测器中,使离子通过电荷检测圆筒来回振荡。离子多次通过这种电荷检测圆筒提供了针对每个离子的多次测量,并且已经表明,电荷测量的不确定性以n1/2减小,其中n是电荷测量的次数。
因为CDMS常规上是单粒子方法,在这种方法中,直接确定每个离子的质量,单个离子被俘获并使其在ELIT内振荡。然而,单个离子俘获事件的条件受到严格约束,因为如果进入的离子信号强度太低,则大多数离子俘获事件将是空的,并且如果进入的离子信号强度太高,则多个离子将被俘获。此外,因为在常规的CDMS系统中对每个离子收集的测量值的分析会花费比收集时间长得多的时间,所以分析过程通常离线进行;例如,过夜或在从离子测量和收集过程转移的一些其他时间。因此,通常直到已经进行离子测量之后才知道离子俘获事件是空的还是包含多个离子。因此,期望在这样的CDMS系统和技术中寻求改进。
发明内容
本公开可以包括所附权利要求中列举的一个或多个特征,和/或一个或多个以下特征及其组合。在一个方面,电荷检测质谱仪可以包括静电线性离子阱(ELIT)或轨道阱、被配置成向ELIT或轨道阱供应离子的离子源、具有可操作地耦合到ELIT或轨道阱的输入端的至少一个放大器、可操作地耦合到ELIT或轨道阱并耦合到所述至少一个放大器的输出端的至少一个处理器、以及其中存储有指令的至少一个存储器,所述指令在由所述至少一个处理器执行时,使所述至少一个处理器:(i)控制ELIT或轨道阱作为离子俘获事件的一部分,以试图在其中俘获由离子源供应的单个离子,(ii)基于在离子俘获事件的持续时间内由所述至少一个放大器产生的输出信号来记录离子测量信息,(iii)基于记录的离子测量信息,确定对ELIT或轨道阱的控制是否导致在其中俘获单个离子、无离子或多个离子,以及(iv)仅当单个离子在俘获事件期间被俘获在ELIT或轨道阱中的情况下,基于记录的离子测量信息来计算离子质量和离子质荷比中的至少一者。
在另一方面,提供了一种用于操作电荷检测质谱仪的方法,该质谱仪包括静电线性离子阱(ELIT)或轨道阱、被配置成向ELIT或轨道阱供应离子的离子源、以及至少一个放大器,该放大器具有可操作地耦合到ELIT或轨道阱的输入端。该方法可以包括:利用处理器控制ELIT或轨道阱作为离子俘获事件的一部分,以试图在其中俘获由离子源供应的单个离子;利用处理器,基于在离子俘获事件的持续时间内由所述至少一个放大器产生的输出信号,记录离子测量信息;基于记录的离子测量信息,利用处理器确定对ELIT或轨道阱的控制是否导致在其中俘获单个离子、无离子或多个离子;并且仅当单个离子在俘获事件期间被俘获在ELIT或轨道阱中的情况下,才基于记录的离子测量信息计算离子质量和离子质荷比中的至少一者。
在又另一方面,电荷检测质谱仪可以包括静电线性离子阱(ELIT)或轨道阱、被配置成向ELIT或轨道阱供应离子的离子源、用于控制ELIT或轨道阱的操作的装置、可操作地耦合到ELIT或轨道阱和用于控制ELIT或轨道阱的装置的至少一个处理器、耦合到所述至少一个处理器的显示监视器、以及其中存储有指令的至少一个存储器,所述指令在由所述至少一个处理器执行时,使所述至少一个处理器:(i)执行控制图形用户界面(GUI)应用,(ii)在所述显示监视器上产生所述控制GUI应用的控制GUI,所述控制GUI包括用于所述ELIT或轨道阱的至少一个对应操作参数的至少一个可选GUI元素,(iii)经由与控制GUI的用户交互,接收第一用户命令,其对应于对所述至少一个可选GUI元素的选择,以及(iv)响应于第一用户命令的接收,控制用于控制ELIT或轨道阱的操作的装置,以控制ELIT或轨道阱的至少一个对应的操作参数。
在仍另一方面,电荷检测质谱仪可以包括静电线性离子阱(ELIT)或轨道阱、被配置成向ELIT或轨道阱供应离子的离子源、设置在离子源和ELIT或轨道阱之间的离子强度或流量控制设备、可操作地耦合到ELIT或轨道阱和离子强度或流量控制设备的至少一个处理器、以及其中存储有指令的至少一个存储器,所述指令在由所述至少一个处理器执行时使所述至少一个处理器:(i)控制ELIT或轨道阱作为多个连续俘获事件中的每一个的一部分,以试图在其中俘获来自离子源的单个离子,(ii)对于所述多个连续俘获事件中的每一个,确定俘获事件是否在ELIT或轨道阱中俘获了单个离子、无离子或多个离子,以及(iii)选择性地控制离子强度或流量控制设备,以控制从离子源进入ELIT或轨道阱中的离子的强度或流量,其方式是,在多个连续俘获事件的过程中,相对于单个离子俘获事件的发生,最小化无离子和多个离子俘获事件的发生,以便最大化单个离子俘获事件的发生。
在另外的方面,电荷检测质谱仪可以包括静电线性离子阱(ELIT)或轨道阱、被配置成向ELIT或轨道阱供应离子的离子源、可操作地耦合到ELIT或轨道阱的至少一个放大器、设置在离子源和ELIT或轨道阱之间的质荷过滤器、可操作地耦合到ELIT或轨道阱和所述至少一个放大器的至少一个处理器、以及其中存储有指令的至少一个存储器,所述指令在被所述至少一个处理器执行时使所述至少一个处理器:(i)控制所述质荷过滤器以使仅在选定的质荷比或质荷比范围内的离子从离子源流入ELIT或轨道阱中,(ii)控制ELIT或轨道阱作为多个连续俘获事件中每一个的一部分,以试图在其中俘获由质荷过滤器供应的单个离子,(iii)对于多个连续俘获事件中的每一个,从在俘获事件的持续时间内由所述至少一个放大器产生的离子测量信息确定俘获事件是否是单个离子俘获事件、无离子俘获事件还是多个离子俘获事件,以及(iv)对于所述多个连续俘获事件中的每一个,仅在离子俘获事件被确定为单个离子俘获事件的情况下,才根据离子测量信息计算呈离子质量和离子质荷比中的至少一者形式的离子分布信息,由此计算的离子分布信息仅包括具有选定质荷比或在选定质荷比范围内的离子的信息。
在又一另外的方面,一种用于分离离子的系统可以包括配置成从样品生成离子的离子源、被配置成根据质荷比分离生成的离子的第一质谱仪、定位成接收离开第一质谱仪的离子并被配置成解离离开第一质谱仪的离子的离子解离级、被配置成根据质荷比分离离开离子解离级的解离离子的第二质谱仪、以及上述方面的任一者或组合的电荷检测质谱仪(CDMS),其与离子解离级并联耦合并耦合到离子解离级使得CDMS可以接收离开第一质谱仪或离子解离级中的任一者的离子,其中使用CDMS测量离开第一质谱仪的前体离子的质量,使用第二质谱仪测量质量值低于阈值质量的前体离子的解离离子的质荷比,并且使用CDMS测量质量值等于或高于阈值质量的前体离子的解离离子的质荷比和电荷值。
附图说明
图1是包括静电线性离子阱(ELIT)的实施例的CDMS系统的简化示意图,其中控制和测量部件耦合到该静电线性离子阱。
图2A是图1所示的ELIT的离子镜M1的放大图,其中M1的镜电极被控制以在其中产生离子传输电场。
图2B是图1所示的ELIT的离子镜M2的放大图,其中M2的镜电极被控制以在其中产生离子反射电场。
图3是图1所示处理器的实施例的简化示意图。
图4A-4C是图1的ELIT的简化示意图,其展示了离子镜和电荷发生器的顺序控制和操作,以在ELIT内俘获至少一个离子,并使离子在离子镜之间以及通过电荷检测圆筒来回振荡,以测量和记录多个电荷检测事件。
图5是用于当由CDMS仪器产生离子测量事件数据时实时分析离子测量事件数据的过程的实施例的简化流程图。
图6A是由图1的CDMS仪器的用户进行实时虚拟控制的图形用户界面的实施例的示意图。
图6B是对由CDMS仪器产生的离子测量事件数据的实时分析产生的输出数据的示例集合的示意图。
图6C是当由CDMS仪器产生离子测量事件数据时对由实时分析离子测量事件数据产生的输出数据构建的直方图的实时快照。
图7A是类似于图1和3所示的CDMS系统的简化示意图,并且该CDMS系统包括介于离子源和ELIT之间的设备的实施例,用于控制离子入口条件以优化ELIT的单个离子俘获事件。
图7B是形成图7A所示设备的一部分的可变孔径盘的简化示意图。
图8是类似于图1和图3所示的CDMS系统并且包括介于离子源和ELIT之间的滤质器的实施例的简化示意图。
图9A是对于示例生物样品的由图1的CDMS产生的完整质谱图。
图9B是对于用于产生图9A的完整质谱的相同样品,由图8的CDMS产生的质谱图,其中具有在完整质谱的指定范围内的质量的离子在由ELIT分析之前已经通过滤质器去除。
图10A是包括图1、7A-7B和8的CDMS仪器中的任一个的离子分离仪器的实施例的简化框图,其示出了示例离子处理仪器,这些离子处理仪器可在ELIT的上游形成离子源的一部分和/或可设置在ELIT的下游以进一步处理离开ELIT的离子。
图10B是包括图1、图7A-7B和图8的CDMS仪器中的任一个的离子分离仪器的另一个实施例的简化框图,其示出了将常规离子处理仪器与本文图示和描述的CDMS系统的实施例中的任一者组合的示例实施方式。
具体实施方式
为了促进对本公开的原理的理解,现在将参考附图中所示的多个说明性实施例,并且将使用特定的语言来描述这些实施例。
本公开涉及用于实时控制电荷检测质谱仪(CDMS)的操作的设备和技术,该质谱仪包括用于测量和确定离子电荷、质荷和质量的静电线性离子阱(ELIT)。出于本公开的目的,短语“电荷检测事件”被定义为对由离子通过电荷检测器一次而在ELIT的电荷检测器上感应的电荷的检测,并且短语“离子测量事件”被定义为由离子通过电荷检测器来回振荡选定次数或历时选定时间段而导致的电荷检测事件的集合。由于离子通过电荷检测器来回振荡是由离子在ELIT内的受控俘获引起的,如下面将详细描述的那样,所以短语“离子测量事件”在本文中可替代地被称为“离子俘获事件”或简称为“俘获事件”,并且短语“离子测量事件”、“离子俘获事件”、“俘获事件”及其变型应被理解为彼此同义。
参考图1,示出了CDMS系统10,其包括静电线性离子阱(ELIT)14的实施例,其中控制和测量部件耦合到该静电线性离子阱14。在图示的实施例中,CDMS系统10包括离子源12,其可操作地耦合到ELIT 14的入口。如将参照图10A进一步描述的,离子源12说明性地包括用于从样品生成离子的任何常规装置或设备,并且可以进一步包括用于根据一个或多个分子特性分离、收集、过滤、碎片化和/或标准化或转换离子的电荷态的一个或多个装置和/或仪器。作为一个说明性的示例,其不应被认为是以任何方式进行限制,离子源12可以包括耦合到常规质谱仪的入口的常规的电喷雾电离源、基质辅助激光解吸电离(MALDI)源等。质谱仪可以是任何常规设计,包括例如但不限于飞行时间(TOF)质谱仪、反射式质谱仪、傅里叶变换离子回旋共振(FTICR)质谱仪、四极质谱仪、三重四极质谱仪、磁扇形质谱仪等。在任何情况下,质谱仪的离子出口可操作地耦合到ELIT 14的离子入口。从其生成离子的样品可以是任何生物或其他材料。在一些实施例中,CDMS系统10可以包括轨道阱来代替ELIT 14或者除了14之外还包括轨道阱。
在图示的实施例中,ELIT 14说明性地包括电荷检测器CD,该电荷检测器CD被接地腔室或圆筒GC包围,并且可操作地耦合到分别定位在其相对端处的相对的离子镜M1、M2。离子镜M1可操作地定位在离子源12和电荷检测器CD的一端之间,并且离子镜M2可操作地定位在电荷检测器CD的相对端处。每个离子镜M2、M1在其中限定相应的离子镜区域R1、R2。离子镜M1、M2的区域R1、R2、电荷检测器CD以及电荷检测器CD和离子镜M1、M2之间的空间一起限定穿过其中心的纵向轴线20,该纵向轴线20说明性地表示穿过ELIT 14和离子镜M1、M2之间的理想离子行进路径,这将在下面更详细地描述。
在图示的实施例中,电压源V1、V2分别电连接到离子镜M1、M2。每个电压源V1、V2说明性地包括一个或多个可切换的DC电压源,这些电压源可以被控制或编程以选择性地产生数量为N的可编程或可控制的电压,其中N可以是任何正整数。这种电压的说明性示例将在下面参考图2A和2B进行描述,以建立离子镜M1、M2中的每一者的两种不同操作模式中的一种,这将在下面详细描述。在任何情况下,在由电压源V1、V2选择性建立的电场的影响下,离子靠近纵向轴线20在ELIT 14内移动,纵向轴线20延伸穿过电荷检测器CD和离子镜M1、M2的中心。
电压源V1、V2被说明性地示出为通过数量为P的信号路径电连接到常规处理器16,常规处理器16包括存储器18,存储器18中存储有指令,该指定在由处理器16执行时使处理器16控制电压源V1、V2产生期望的DC输出电压,以用于分别在相应离子镜M1、M2的区域R1、R2内选择性地建立离子传输和离子反射电场TEF、REF。P可以是任何正整数。在一些替代实施例中,电压源V1、V2中任一者或两者可以是可编程的,以选择性地产生一个或多个恒定输出电压。在其他替代实施例中,电压源V1、V2中的任一者或两者可以被配置成产生一个或多个任何期望形状的时变输出电压。应当理解,在替代实施例中,更多或更少的电压源可电连接到镜M1、M2。
电荷检测器CD说明性地以导电圆筒的形式提供,其电连接到电荷灵敏前置放大器CP的信号输入端,并且电荷前置放大器CP的信号输出端电连接到处理器16。电压源V1、V2说明性地以如下详细描述的方式被控制,该方式选择性地俘获进入ELIT 14的离子,并使其在离子镜M1、M2之间来回振荡,使得被俘获的离子重复地穿过电荷检测器CD。在离子被俘获在ELIT 14内并在离子镜M1、M2之间来回振荡的情况下,电荷前置放大器CP说明性地可以常规方式操作,以检测当离子穿过离子镜M1、M2之间的电荷检测圆筒CD时在电荷检测圆筒CD上感应的电荷,以产生与之对应的电荷检测信号(CHD)。以振荡周期值的形式说明性地记录电荷检测信号CHD,并且,在这方面,每个振荡周期值表示单个相应电荷检测事件的离子测量信息。在相应的离子测量事件期间(即,在离子俘获事件期间)针对所俘获的离子测量并记录多个这样的振荡周期值,并且对于该离子测量事件,对得到的多个记录的振荡周期值(即记录的离子测量信息的集合)进行处理以确定离子电荷、质荷比和/或质量值,如以下将详细描述的。以这种方式处理多个离子测量事件,并且说明性地实时构建样品的质荷比和/或质谱,如下文也将详细描述的。
现在参考图在2A和2B,分别示出了图1中描绘的ELIT 14的离子镜M1、M2的实施例。说明性地,离子镜M1、M2彼此相同,这在于,每个离子镜包括4个间隔开的导电镜电极的级联布置。对于离子镜M1、M2中的每一者,第一镜电极301具有厚度W1,并限定直径为P1的穿过其中心的通路。端盖32被固定或以其他方式耦合到第一镜电极301的外表面,并限定穿过其中心的中心孔A1,该孔A1分别用作去往和/来自对应的离子镜M1、M2的离子入口和/或出口。在离子镜M1的情况下,端盖32耦合到图1所示的离子源12的离子出口,或者是其一部分。每个端盖32的孔A1说明性地具有直径P2。
每个离子镜M1、M2的第二镜电极302与第一镜电极301间隔开具有宽度W2的空间。第二镜电极302与镜电极301一样,具有厚度W1,并限定直径为P2的穿过其中心的通路。每个离子镜M1、M2的第三镜电极303同样与第二镜电极302间隔开宽度W2的空间。第三镜电极303具有厚度W1,并且限定宽度为P1的穿过其中心的通路。
第四镜电极304与第三镜电极303间隔开宽度为W2的空间。第四镜电极304说明性地具有W1的厚度,并且由围绕电荷检测器CD设置的接地圆筒GC的相应端形成。第四镜电极304限定穿过其中心的孔A2,该孔的形状说明性地是圆锥形的并且在接地圆筒GC的内面与外面之间从在接地圆筒GC的内面处限定的直径P3线性地增大到在接地圆筒GC的外面(其也是相应的离子镜M1、M2的内面)处的直径P1。
在一些实施例中,镜电极301-304之间限定的空间可以是空隙,即,真空间隙,并且在其他实施例中,这种空间可以填充有一种或多种非导电(例如,电介质)材料。镜电极301-304和端盖32轴向对准,即,共线,使得纵向轴线22穿过每个对准的通路的中心并且还穿过孔A1、A2的中心。在其中镜电极301-304之间的空间包括一种或多种非导电材料的实施例中,这种材料将同样限定从其穿过的相应通路,这些通路与通过镜电极301-304限定的通路轴向对准(即,共线)并且其说明性地具有P2或更大的直径。说明性地, P1 > P3 > P2,尽管在其他实施例中,其他相对直径布置是可能的。
区域R1被限定在离子镜M1的孔A1、A2之间,并且另一个区域R2同样被限定在离子镜M2的孔A1、A2之间。区域R1、R2在形状和体积上说明性地彼此相同。
如上所述,电荷检测器CD说明性地以细长的导电圆筒体的形式提供,该导电圆筒体被定位在离子镜M1、M2中的对应离子镜之间并且在它们之间间隔开宽度为W3的空间。在一个实施例中,W1 > W3 > W2,并且P1 > P3 > P2,尽管在替代实施例中,其他相对宽度布置是可能的。在任何情况下,纵向轴线20说明性地延伸通过被限定为穿过电荷检测圆筒CD的通路的中心,使得纵向轴线20延伸通过离子镜M1、M2和电荷检测圆筒CD的组合的中心。在操作中,接地圆筒GC说明性地被控制为地电位,使得每个离子镜M1、M2的第四镜电极304始终处于地电位。在一些替代实施例中,可以将离子镜M1、M2中的任一者或两者的第四镜电极304设置为任何所期望的DC参考电位,或设置为可切换的DC或其他时变电压源。
在图2A和2B所示的实施例中,电压源V1、V2各自被配置成各自产生四个DC电压D1-D4,并将电压D1-D4供应给相应离子镜M1、M2的镜电极301-304中的相应一者。在其中镜电极301-304中的一个或多个始终保持在地电位下的一些实施例中,所述一个或多个这样的镜电极301-304可替代地电连接到相应电压供应V1、V2的接地参考,并且对应的一个或多个电压输出D1-D4可以省略。替代地或附加地,在其中任何两个或更多个镜电极301-304被控制为相同的非零DC值的实施例中,任何这样的两个或更多个镜电极301-304可以电连接到电压输出D1-D4中的单个电压输出,并且输出电压D1-D4中的多余电压可以被省略。
通过选择性地施加电压D1-D4,每个离子镜M1、M2可以在离子传输模式(图2A)和离子反射模式(图2B)之间控制和切换,在离子传输模式中由相应的电压源V1、V2产生的电压D1-D4在其相应的区域R1、R2中建立离子传输电场(TEF),在离子反射模式中,由相关电压源V1、V2产生的电压D1-D4在其相应的区域R1、R2中建立离子反射电场(REF)。如图2A中的示例所示,一旦来自离子源12的离子通过离子镜M1的入口孔A1飞入离子镜M1的区域R1中,该离子通过经由V1的电压D1-D4的选择性控制在离子镜M1的区域R1中建立的离子传输电场TEF被朝向ELIT 14的纵向轴线20集中。作为离子镜M1的区域R1中的传输电场TEF的集中效应的结果,通过接地腔室GC的孔A2离开离子镜M1的区域R1的离子获得进入并穿过电荷检测器CD的窄轨迹,即,以便保持离子行进穿过靠近纵向轴线2的电荷检测器CD的路径。经由对电压源V2的电压D1-D4的类似控制,可以在离子镜M2的区域R2内选择性地建立相同的离子传输电场TEF。在离子传输模式中,经由M2的孔A2从电荷检测圆筒CD进入区域R2的离子被区域R2内的离子传输电场TEF朝向纵向轴线20集中,使得离子离开离子镜M2的孔A1。
如图2B中的示例所示,经由对V2的电压D1-D4的选择性控制在离子镜M2的区域R2中建立的离子反射电场REF用于使从电荷检测圆筒CD经由M2的离子入口孔A2进入离子区域R2的离子减速和停止,以在相反方向上加速被停止的离子返回通过M2的孔A2,并进入如离子轨迹42所描绘的的邻近于M2的电荷检测圆筒CD的端部,并将离子在离子镜M2的区域R2内朝向中心纵向轴线20集中,以便保持离子朝向离子镜M1返回通过电荷检测器CD的窄轨迹。经由对电压源V1的电压D1-D4的类似控制,可以在离子镜M1的区域R1内选择性地建立相同的离子反射电场REF。在离子反射模式中,从电荷检测圆筒CD经由M1的孔A2进入R1区域的离子被在R1区域内建立的离子反射电场REF减速并停止,然后在相反方向上加速返回通过M1的孔A2并进入电荷检测圆筒CD的邻近于M1的端部,并在离子镜M1的R1区域内朝向中心纵向轴线20集中,以便保持离子朝向离子镜M1返回通过电荷检测器CD的窄轨迹。穿过ELIT 14的长度并被离子区域R1、R2中的离子反射电场REF反射的离子被认为被俘获在ELIT 14内,离子反射电场REF反射离子的方式使得离子能够继续来回行进通过离子镜M1、M2之间的电荷检测圆筒CD,如刚刚描述的那样。
下表I示出了由电压源V1、V2分别产生的输出电压D1-D4以用于将相应离子镜M1、M2控制为上述离子传输和反射模式的示例集合。应当理解,D1-D4的以下值仅作为示例提供,并且也可以替代使用D1-D4的一个或多个其他值。
表I
Figure 126110DEST_PATH_IMAGE002
虽然离子镜M1、M2和电荷检测圆筒CD在图1-2B中被图示为限定从其穿过的圆筒形通路,但是应当理解,在替代实施例中,离子镜M1、M2中的任一者或两者和/或电荷检测圆筒CD可以限定从其穿过的非圆筒形通路,使得纵向轴线20穿过其中心的的一个或多个通路代表非圆形的横截面区域和轮廓。在仍其他实施例中,不管横截面轮廓的形状如何,通过离子镜M1限定的通路的横截面区域可以不同于通过离子镜M2限定的通路。
现在参考图3,示出了图1所示的处理器16的实施例。在图示的实施例中,处理器16包括常规的放大器电路40,其具有接收由电荷前置放大器CP产生的电荷检测信号CHD的输入端和电连接到常规模数(A/D)转换器42的输入端的输出端。A/D转换器42的输出端电连接到第一处理器50(P1)。放大器40可以常规方式操作以放大由电荷前置放大器CP产生的电荷检测信号CHD,并且A/D转换器进而可以常规方式操作来将放大的电荷检测信号转换成数字电荷检测信号CDS。在所示实施例中,处理器50可操作以接收每个电荷检测事件的电荷检测信号CDS,并将每个这种事件的相关联的电荷和定时测量数据传递到下游处理器52,以用于实时分析,如将在下面详细描述的。
图3所示的处理器16还包括常规的比较器44,其具有接收由电荷前置放大器CP产生的电荷检测信号CHD第一输入端、接收由阈值电压发生器(TG)46产生的阈值电压CTH的第二输入端、以及电连接到处理器50的输出端。比较器44可以以常规方式操作,以在其输出端处产生触发信号TR,该触发信号取决于电荷检测信号CDH的大小相对于阈值电压CTH的大小。在一个实施例中,例如,比较器44可操作以在只要CHD小于CTH的情况下在参考电压(例如接地电位)处或其附近产生“无效”触发信号TR,并且可操作以在CHD等于或超过CTH时在电路40、42、44、46、50的供应电压处或其附近产生“有效”TR信号或者可与无效TR信号相区别的“有效”TR信号。在替代实施例中,比较器44就可以可操作意在只要CHD小于CTH的情况下在供应电压处或附近产生“无效”触发信号TR,并且可操作以在CHD等于或超过CTH时在参考电位处或其附近产生“有效”触发信号TR。本领域技术人员将认识到可以用于建立触发信号TR的“无效”和“有效”状态的其他不同触发信号大小和/或不同触发信号极性,只要这种不同触发信号大小和/或不同触发信号极性可由处理器50区分,并且应当理解,任何这种其他不同触发信号大小和/或不同触发信号极性都旨在落入本公开的范围内。在任何情况下,比较器44可以另外以常规方式设计成包括期望的滞后量,以防止输出在参考电压和供应电压之间快速切换。
处理器50说明性地可操作以产生阈值电压控制信号THC,并将THC供应给阈值发生器46以控制其操作。在一些实施例中,处理器50被编程或可编程以控制阈值电压发生器46产生具有期望大小和/或极性的CTH的方式来控制阈值电压控制信号THC的产生。在其他实施例中,用户可以向处理器50实时提供指令,例如,通过下游处理器52,经由如下所述的虚拟控制和可视化单元56,以同样实时控制阈值电压发生器46以产生具有期望大小和/或极性的CTH的方式控制阈值电压控制信号THC的产生。在任一种情况下,在一些实施例中,阈值电压发生器46说明性地以常规可控DC电压源的形式实施,该电压源被配置成响应于数字形式的阈值控制信号THC(例如,呈单个串行数字信号或多个并行数字信号的形式)以产生具有由数字阈值控制信号THC限定的极性和大小的模拟阈值电压CTH。在一些替代实施例中,阈值电压发生器46可以响应于串行或并行数字阈值电压TCH以常规数模(D/A)转换器的形式提供,以产生模拟阈值电压CTH,该模拟阈值电压CTH具有由数字阈值控制信号THC限定的大小,并且在一些实施例中具有由数字阈值控制信号THC限定的极性。在一些这样的实施例中,D/A转换器可以形成处理器50的一部分。本领域技术人员将认识到用于响应于控制信号THC的一个或多个数字和/或模拟形式而选择性地产生期望大小和/或极性的阈值电压CTH的其他常规电路和技术,并且应当理解,任何这样的其他常规电路和/或技术旨在落入本公开的范围内。
除了由处理器50执行的前述功能之外,处理器50还可操作来控制电压源V1、V2(如以上参考图2A、2B所述)以分别在离子镜M1、M2的区域R1、R2内选择性地建立离子传输和反射场。在一些实施例中,处理器50被编程或可编程以控制电压源V1、V2。在其他实施例中,电压源V1和/或V2可以由用户实时编程或以其他方式控制,例如经由如下所述的虚拟控制和可视化单元56通过下游处理器52来控制。在任一情况下,在一个实施例中,处理器50说明性地以现场可编程门阵列(FPGA)的形式提供,该现场可编程门阵列被编程或由用户以其他方式指示来收集和存储电荷检测事件和离子测量事件的电荷检测信号CDS,以产生阈值控制信号TCH,从该阈值控制信号TCH确定或导出阈值电压CTH的大小和/或极性,并控制电压源V1、V2。在该实施例中,参照图1描述的存储器18集成到FPGA的编程中,并形成其一部分。在替代实施例中,处理器50可以以一个或多个常规微处理器或控制器以及一个或多个附带的存储器单元的形式提供,存储器单元中存储有指令,该指令在由一个或多个微处理器或控制器执行时使所述一个或多个微处理器或控制器如刚刚描述的那样操作。在其他替代实施例中,处理电路50可以完全以被设计成如上所述操作的一个或多个常规硬件电路的形式来实施,或者作为一个或多个这样的硬件电路和可操作来执行存储在存储器中的指令以如上所述操作的至少一个微处理器或控制器的组合来实施。
图3中描绘的处理器16的实施例进一步说明性地包括耦合到第一处理器50以及至少一个存储器单元54的第二处理器52。在一些实施例中,处理器52可以包括一个或多个外围装置,诸如显示监视器、一个或多个输入和/或输出装置等,尽管在其他实施例中,处理器52可以不包括任何这样的外围装置。在任何情况下,处理器52被说明性地配置(即,被编程)成实时执行用于分析离子测量事件的至少一个过程,即,因为处理器50收集了离子测量事件。处理器50经由电荷检测信号CDS接收的呈电荷大小和检测定时数据形式的数据说明性地从处理器50直接传送到处理器52,用于在每个离子测量事件完成时进行处理和分析。处理器52说明性地以高速服务器的形式提供,该高速服务器可操作来执行这种数据的收集/存储和分析。一个或多个高速存储器单元54耦合到处理器52,并且可操作来存储由处理器52接收和分析的数据。在一个实施例中,一个或多个存储器单元54说明性地包括用于存储处理器52正在使用或将要使用的数据的至少一个本地存储器单元以及用于长期存储数据的至少一个永久存储存储器单元。
在一个实施例中,处理器52被说明性地以具有四个Intel® XeonTM处理器(例如,E5-465L v2、12核、2.4 GHz)的Linux®服务器(例如,OpenSuse Leap 42.1)的形式提供。在这个实施例中,与常规Windows® PC(例如,i5-2500K,4核,3.3 GHz)相比,实现了超过100x的单个离子测量事件文件的平均分析时间的改进。同样,该实施例的处理器52与高速/高性能存储器单元54一起说明性地提供数据存储速度超过100x的改进。本领域技术人员将认识到可以实施为处理器52的一个或多个其他高速数据处理和分析系统,并且应当理解的是,任何这样的一个或多个其他高速数据处理和分析系统旨在落入本公开的范围内。
在所图示的实施例中,存储器单元54(例如,本地存储器单元)说明性地具有存储在其中的指令,这些指令可由处理器52执行以提供用于由CDMS系统10的用户进行实时虚拟控制的图形用户界面(GUI)(“实时控制GUI”)。这种实时控制GUI的一个实施例在图6A中通过示例示出并且将在下面详细描述。存储器单元54进一步具有存储在其中的指令,这些指令可由处理器52执行以在由ELIT 14产生离子测量事件数据时实时地对离子测量事件数据进行分析,从而确定用于分析(“实时分析过程”)中的样品的离子质谱信息。在实时分析处理的一个实施例中,处理器52可操作以在处理器50收集离子测量事件数据时从处理器50接收离子测量事件数据(即,呈在构成“离子测量事件”(如以上定义的该术语)的多个“电荷检测事件”(如以上定义的该术语)中的每一者期间测量的电荷大小和电荷检测定时信息的形式),以在每个这样的离子测量事件结束时创建这样的离子测量事件数据的文件,从而实时处理每个这种创建的离子测量事件文件以确定它是否为空俘获事件、单个离子俘获事件或多个离子俘获事件,以便仅处理单个离子俘获事件文件来确定离子电荷、质荷和质量数据,并且当新的离子测量数据变得可用时,用新的离子测量数据来创建并连续更新用于分析中的样品的质谱信息。下面将参照图5详细描述这种实时分析过程的示例性实施例。
在一些实施例中,可以直接从处理器52管理以上简要描述的实时控制GUI,其中,可以例如实时地或在任何时间特别是选择CDMS系统10和ELIT 14的操作参数,并且可以管理输出文件管理和显示。在其他实施例中,处理器16包括耦接到处理器52的单独的处理器56,如图3中的示例所示。在这种实施例中,处理器56说明性地是常规处理器或处理系统,广泛已知和使用的绘图工具和数据处理程序可用于所述常规处理器或处理系统。在一个示例实施例中,处理器56以常规的基于windows®的个人计算机(PC)的形式实施,该个人计算机(PC)包括一个或多个这样的绘图工具和安装在其上的数据处理程序。本领域技术人员将认识到可以适合于用作处理器56的其他常规处理器或处理系统,并且应当理解的是,任何这样的其他常规处理器或处理系统都旨在落入本公开的范围内。
在任何情况下,在包括处理器56的实施例中,包括图形用户界面(GUI)(例如,RTAGUI)以提供可经由处理器56访问的用户友好且实时控制GUI。在一个实施例中,实时控制GUI存储在存储器54中并由处理器52执行,并且处理器56用于例如经由两个处理器52、56之间的安全外壳(ssh)连接从处理器52访问用户GUI。在替代实施例中,实时控制GUI可存储在处理器56上且由处理器56执行。在任一情况下,处理器56说明性地充当虚拟控制和可视化(VCV)单元,利用该VCV单元,用户可以经由实时控制GUI来可视化和控制CDMS 10的实时分析过程和实时操作的所有方面,并且用户还可以利用其可视化在实时分析过程的控制下由CDMS仪器产生的实时输出数据和质谱信息。一个这样的实时控制GUI的示例屏幕在图6A-6C中示出并且将在下文中详细描述。
如上面参考图2A和2B简要描述的,电压源V1、V2说明性地由处理器50以这样的方式控制(例如,经由处理器52和/或经由处理器56),其方式选择性地在离子镜M1的区域R1和离子镜M2的区域R2中建立离子传输和离子反射电场,从而引导从离子源12通过ELIT 14引入ELIT 14中的离子,并且然后使单个离子被选择性地俘获和限制在ELIT 14内,使得被俘获的离子在其在M1和M2之间来回振荡时重复地穿过电荷检测器CD。参照图4A–4C,示出了图1中ELIT 14的简化示意图,其描绘了ELIT 14的离子镜M1、M2的这种顺序控制和操作的示例。在下面的示例中,处理器52将被描述为根据其编程来控制电压源V1、V2的操作,尽管应当理解,电压源V1的操作和/或电压源V1的操作可以至少部分地由用户经由处理器56虚拟地控制,如上面简要描述的。
如图4A所示,ELIT控制序列开始于处理器52控制电压源V1以通过在离子镜M1的区域R1内建立离子传输场来将离子镜M1控制到离子传输操作模式(T),并且还控制电压源V2以通过同样在离子镜M2的区域R2内建立离子传输场来将离子镜M2控制到离子传输操作模式(T)。结果,由离子源12生成的离子进入离子镜M1中,并且当它们进入电荷检测圆筒CD中时,由在区域R1中建立的离子传输场朝向纵向轴线20集中。然后,离子穿过电荷检测圆筒CD并进入离子镜M2中,在那里,在M2的区域R2内建立的离子传输场将离子朝向纵向轴线20集中,使得离子穿过M2的出口孔A1,如图4A中描绘的离子轨迹60所示。在一些实施例中,ELIT14的一个或多个操作条件可以在图4A所示的状态期间被控制,例如,经由上述用户界面,以控制ELIT 14的操作,其一些示例将在下面参照图6A进行描述。替代的或附加地,一个或多个设备可以介于离子源12和ELIT 14之间,从而以优化ELIT 14内的单个离子俘获的方式控制离子入口条件,作为图4A所示状态的一部分或独立于图1所示状态。这种设备的一个示例在图7A和7B中示出,这将在下面详细描述。
现在参考图4B,在两个离子镜M1、M2已经在离子传输操作模式下操作了选定的时间段和/或直到已经实现了从其通过的成功离子传输之后,例如通过监视由处理器50捕获的电荷检测信号CDS,并根据需要调整/修改ELIT 14的一个或多个操作参数或条件,处理器52说明性地可操作来控制电压源V2,以通过在离子镜M2的区域R2内建立离子反射场来将离子镜M2控制到离子反射操作模式(R),同时将离子镜M1保持在如图所示的离子传输操作模式(T)。结果,由离子源12生成的至少一个离子进入离子镜M1中,并被在区域R1中建立的离子传输场朝向纵向轴线20集中,使得该至少一个离子穿过离子镜M1并进入电荷检测圆筒CD,如刚才参考图4A所述。然后,离子穿过电荷检测圆筒CD并进入离子镜M2中,在那里,在M2的R2区域内建立的离子反射场反射离子,以使其在相反方向上行进并返回电荷检测圆筒CD中,如图4B中的离子轨迹62所示。
现在参考图4C,在离子镜M2的区域R2中已经建立了离子反射电场之后,处理器52可操作来控制电压源V1,以通过在离子镜M1的区域R1内建立离子反射场来将离子镜M1控制到离子反射操作模式(R),同时将离子镜M2保持在离子反射操作模式(R),以便将离子俘获在ELIT 14内。在一些实施例中,处理器52说明性地可操作(即,被编程为),以在“随机俘获模式”或“连续俘获模式”下控制ELIT 14,在“随机俘获模式”或“连续俘获模式”下,处理器52可操作以在ELIT 14已经在图4B所示的状态(即,M1处于离子传输模式且M2处于离子反射模式)下操作历时选定的时间段之后,将离子镜M1控制到反射操作模式(R)。直到选定的时间段已经过去,ELIT 14被控制为在图4B所示的状态下操作。
由于M1至离子反射操作模式的定时控制而没有至少一个离子在ELIT 14内行进的任何确认,使用随机俘获操作模式,在ELIT 14中俘获至少一个离子的概率相对较低。在随机俘获操作模式期间在ELIT 14内俘获的离子的数目遵循泊松分布,并且离子入口信号强度被调整以最大化单个离子俘获事件的数量,已经显示,在随机俘获模式中仅约37%的俘获事件可以包含单个离子。如果离子入口信号强度太小,则大多数俘获事件将是空的,并且如果它太大,则大多数将包含多个离子。
在其他实施例中,处理器52可操作(即,被编程)成以“触发俘获模式”控制ELIT14,“触发俘获模式”说明性地携带在其中俘获单个离子的显著更大的概率。在触发俘获模式的第一版本中,处理器50可操作以监测由比较器44产生的触发信号TR,并且如果/当触发信号TR将其“无效”状态改变为“有效”状态时,控制电压源V1以将离子镜M1控制到反射操作模式(R)以在ELIT 14内俘获离子。在一些实施例中,处理器50可操作,以控制电压源V1,从而在检测到触发信号TR的状态变化时立即将离子镜M1控制到反射模式(R),并且在其他实施例中,处理器50可以可操作以控制电压源V1,从而在检测到触发信号TR的状态变化之后的预定义或可选延迟时段期满时将离子镜M1控制到反射模式(R)。在任何情况下,触发信号TR的从其“无效”状态到“有效”状态的状态变化起因于由电荷前置放大器CP产生的电荷检测信号CHD达到或超过阈值电压CTH,并且因此对应于对通过包含在电荷检测圆筒CD中的离子在电荷检测圆筒CD上感应出的电荷的检测。通过因此包含在电荷检测圆筒CD内的离子,处理器50对电压源V1的以将离子镜M1控制到反射操作模式(R)的控制导致相对于随机俘获模式在ELIT 14内俘获单个离子的显著改进的概率。因此,当离子已经经由离子镜M1进入ELIT 14并且在第一次朝向离子镜M2通过电荷检测圆筒CD抑或在已经被离子镜M2的区域R2内建立的离子反射场反射之后返回通过电荷检测筒CD时被检测到,如图4B所示,离子镜M1被控制成如图4C中所示的反射模式(R)以在ELIT 14内俘获离子。还期望如以上关于操作的随机俘获模式简要描述的那样利用触发俘获来优化信号强度。在具有优化的离子入口信号强度的触发俘获模式中,例如,已经显示俘获效率(在此定义为单个离子俘获事件与所有获取的俘获事件的比率)与利用随机俘获的37%相比可以接近90%。然而,如果离子入口信号强度太大,则俘获效率将小于90%,并且将有必要降低离子入口信号强度。
在触发俘获模式的第二种版本中,图4B所示的过程或步骤被省略或绕过,并且其中ELIT 14如图4A所示操作,处理器50可操作以监视由比较器44产生的触发信号TR,并控制两个电压源V1、V2,以如果/当触发信号TR将其“无效”状态改变为“有效”状态时将相应的离子镜M1、M2控制为反射操作模式(R),从而在ELIT 14内俘获或捕获离子。因此,当离子已经经由离子镜M1进入ELIT 14并且在如图4A所示第一次朝向离子镜M2穿过电荷检测圆筒CD时被检测到,离子镜M1和M2两者都被控制到如图4C所示的反射模式(R),以在ELIT 14内俘获离子。
在任何情况下,在两个离子镜M1、M2都被控制为离子反射操作模式(R)以在ELIT14内俘获离子的情况下,分别在离子镜M1和M2的R1和R2区域中建立的相反的离子反射场导致离子在离子镜M1和M2之间来回振荡,每次都通过如图4C中描绘以及如上所述的离子轨迹64穿过电荷检测圆筒CD。在一个实施例中,处理器50可操作以保持图4C所示的操作状态,直到离子穿过电荷检测圆筒CD选定的次数。在替代实施例中,处理器50可操作以在将M1(以及在一些实施例中的M2)控制为离子反射操作模式(R)之后,在选定的时间段内保持图1所示的操作状态。在任一实施例中,处于图4C所示状态中的周期数或花费时间可以说明性地经由用户界面来控制,如下面将参考图6A描述的,并且在任何情况下,由离子每次通过电荷检测圆筒CD产生的离子检测事件信息被临时存储在处理器50中。当离子已经穿过电荷检测圆筒CD选定的次数或者已经在M1、M2的离子镜之间来回振荡了选定的时间段时,存储在处理器50中的电荷检测事件的总数限定离子测量事件,并且在离子测量事件完成时,限定离子测量事件的存储的离子检测事件被传递到处理器52或者由处理器52检索。图4A–4C所示的序列然后返回到图中4A所示的序列,在该序列处,电压源V1、V2如上所述被控制,以通过分别在离子镜M1、M2的区域R1、R2内建立离子传输场来将离子镜M1、M2分别控制为离子传输操作模式(T)。然后,图示的序列根据期望重复多次。
现在参照图5,示出了流程图,其图示了上面简要描述的实时分析过程80的实施例,以针对给定样品(由离子源12从该样品产生离子),在图4A-4C所示的重复序列期间,当处理器50收集离子测量事件信息时连续处理和分析处理器50收集的离子测量事件信息。说明性地,实时分析过程80以指令的形式存储在存储器54中,该指令在由处理器52执行时使处理器52实施下面描述的步骤。过程80说明性地开始于步骤82,其中处理器52可操作以创建输出文件,在该输出文件中存储要分析的多个离子测量事件中的每一个的电荷检测事件数据。此后,并且开始于步骤84,处理器52可操作以在如上所述的事件结束时接收和处理来自处理器50的离子测量事件信息的每个新集合。在步骤84处,处理器52可操作以打开创建的离子测量事件文件,并将从处理器50接收的未格式化的离子测量事件信息读取到整数阵列中。
每个离子测量文件说明性地包含针对一个离子测量事件(即,针对一个离子俘获事件)的电荷检测数据。在一些实施例中,每个离子测量文件进一步说明性地包括短的预俘获和后俘获时段,这些时段包含当电压源V1、V2在如上所述的离子透射模式与离子反射模式之间来回切换时在电荷检测圆筒CD上感应出的噪声。说明性地,俘获事件时段的范围可以在几 ms(ms)和几十秒之间,其中典型的俘获事件时段的范围在10 ms和30秒之间。在图1至图3中图示并且在上文详细描述的CDMS 10的情况下,可以说明性地使用100 ms的示例俘获事件时段,因为该示例俘获事件时段提供数据收集速度与电荷确定的不确定性之间的可接受的平衡。
在任何情况下,过程80从步骤84前进到步骤86,在步骤86中,包含未格式化的离子测量事件信息的离子测量文件被预处理。在一个实施例中,处理器52在步骤86处可操作以通过截断整数阵列来预处理离子测量文件,以便仅包括离子检测事件信息,即,以在包括预俘获和后俘获噪声信息的实施例中去除预俘获和后俘获噪声信息,并且然后出于计算效率的目的将阵列零填充到最近的2的幂。作为说明性示例,在俘获事件时段为100 ms的实施例中,步骤86的完成说明性地导致262144个点。
在步骤86之后,过程80的一个实施例包括步骤88,其中处理器52将预处理的离子测量文件中的数据通过高通滤波器以去除在CDMS系统10中和由CDMS系统10生成的低频噪声。在其中不存在这种低频噪声或使其最小化的实施例中,可以省略步骤88。此后在步骤90处,处理器52可操作以计算离子测量文件(即构成离子测量文件的电荷检测事件的整个时域集合)中的数据的傅里叶变换。处理器52说明性地可操作以使用任何常规数字傅里叶变换(DFT)技术(诸如,例如但不限于常规快速傅里叶变换(FFT)算法)来计算这种傅里叶变换。
此后,在步骤92处,针对峰对得到的频域谱进行扫描。在一个实施例中,峰被定义为上升到噪声基底的均方根偏差(RMSD)的倍数(例如,6倍)以上的任何大小。应当理解,倍数6仅作为示例提供,并且可以替代地使用其他倍数。此外,本领域技术人员将认识到用于定义傅立叶变换后的离子测量文件数据中的频域峰的其他合适的技术,并且应当理解,任何这样的其他合适的技术都旨在落入本公开的范围内。
在步骤92之后,处理器52在步骤94处可操作以通过处理峰寻找步骤92的结果将俘获事件标识符分配给离子测量文件。如果在峰寻找步骤92中没有发现峰,则离子测量文件被识别为空俘获或无离子事件。如果发现峰,则处理器52可操作以将具有最大大小的峰识别为频域离子测量文件数据的基频。处理器52然后可操作以处理相对于基峰的其余峰以确定其余峰是否位于基频的谐波频率处。如果不是,则该离子测量文件被识别为多个离子俘获事件。如果其余的峰全部位于基频的谐波频率处,则离子测量文件被识别为单个离子俘获事件。
在步骤94之后,如果离子测量文件被识别为多个俘获事件,则处理器52可在步骤96处操作以将如此识别的离子测量文件存储在存储器54中(例如,长期或永久存储器)。多个俘获事件不被包括在随后的离子质量确定步骤中,并且因此不影响样品的质谱分布。过程80因此从步骤94前进到步骤106。
如果离子测量文件被识别为空俘获事件或识别为单个离子俘获事件,则过程80也从步骤94前进到步骤98。空俘获事件文件说明性地前进到步骤98,因为它们实际上可能包含弱带电离子的电荷检测事件,该弱带电离子可能已经在小于整个离子测量事件内被俘获。在步骤90处计算的完整事件傅立叶变换中,这种弱带电离子的频域峰的大小可能不超过上述峰确定阈值,并且因此在步骤94处离子测量文件可能已经被识别为空俘获事件,即使离子测量文件可能仍然包含有用的电荷检测事件数据。因此,在步骤94处将离子测量文件识别为空俘获事件代表了初步的这种识别,并且在步骤98和100处实施文件的附加处理,以确定该文件是否确实是空俘获事件或者可以替代地包含可能有助于样品的质谱分布的离子检测事件信息。
在步骤98,处理器52可操作来进行傅立叶变换窗口处理,其中处理器52在离子测量文件中的时域电荷检测数据的开始处计算信息的小部分或窗口的傅立叶变换。此后,在步骤100处,处理器52可操作以对在步骤98计算的傅立叶变换的频域频谱进行扫描以寻找峰。说明性地,处理器52可操作以使用以上关于步骤92描述的相同峰寻找技术来执行步骤100,尽管在其他实施例中,在步骤100处可以使用一种或多种替代的或附加的峰寻找技术。在任何情况下,如果在步骤100处没有发现峰,则过程80循环回到步骤98,在步骤98处,处理器52可操作以增加窗口大小,例如增加预定义的增量、增加当前窗口大小的预定义或动态部分或增加一些其他量,并且在离子测量文件中的时域电荷检测信号数据的开始处重新计算新信息窗口的傅立叶变换。
重复执行步骤98和100,直到发现峰。如果当窗口最终被扩展以包括离子测量文件中的所有时域电荷检测数据时没有发现峰,则离子测量文件最终被处理器52识别为空俘获事件,并且处理器52此后在步骤102处可操作以将如此识别的离子测量文件存储在存储器54中(例如,长期或永久存储器)。由步骤98和100的重复执行导致的已验证或已确认的空俘获事件不包括在后续的离子质量测定步骤中,并且因此将不会对样品的质谱分布产生影响。过程80因此从步骤102前进到步骤106。
如果/当在步骤98和100的窗口处理期间发现峰时,则记录其中发现频域峰的对应最小窗口大小,并且过程80前进到步骤104。在初步被识别为空的俘获事件的离子测量文件的窗口处理期间发现峰的情况下,离子测量文件被重新识别为单个离子俘获事件,并且对该文件的处理前进到步骤104。
在步骤104处,处理器52可操作以在离子测量文件中的时域电荷检测信号数据上对在步骤98/100处中发现的最小窗口大小递增地进行扫描,其中离子测量文件可以是最初被识别为单个离俘获事件的文件,或者是初步被识别为空俘获事件但然后在步骤98/100的执行期间被重新识别为单个离子俘获事件的文件。在任何情况下,在步骤104处,处理器52可在最小窗口大小扫描的每个阶段处操作,以计算包含在窗口的当前位置内的时域电荷检测信息的傅立叶变换,并确定窗口内的频域数据的振荡频率和大小。
根据这些值,在步骤106处使用已知的关系来确定俘获事件长度、平均质荷、离子电荷和质量值,并且这些值形成离子测量事件文件的一部分。例如,质荷与从计算的傅里叶变换直接确定的基频ff的平方成反比,并且,考虑到离子振荡周期的数量,离子电荷与傅里叶变换的基频的大小成正比。在一些情况下,为了确定离子电荷z的目的,可以将FFT的一个或多个谐波频率的大小加到基频的大小上。在任何情况下,离子质量m然后都是根据平均质荷和电荷值来计算的。如图6C中的示例所描绘的,当离子测量事件信息变得可用并由处理器52根据如刚刚描述的实时分析过程80进行处理时,处理器52根据每个离子测量事件文件的离子质量和质荷值实时构建质荷比和质谱。在替代实施例中,处理器52在步骤106处可操作以仅构建质荷谱或质谱。在一些实施例中,仅允许对于完整离子测量事件保持被俘获的离子对质量或质荷分布有贡献,尽管在其他实施例中,对于小于完整离子测量事件被俘获的离子可以包括在质量或质荷分布中。作为俘获事件,即,离子测量彼此独立,刚刚描述的大多数数据分析步骤可以是多线程的,以最小化或至少减少总分析时间,如图5的步骤84-104周围的虚线边界108所描绘的。在任何情况下,过程80说明性地从步骤106循环回到步骤84,以处理另一个离子测量事件文件。多个(例如,数百个或数千个或更多个)离子俘获事件通常针对离子源12从其生成离子的任何特定样品来实施,并且使用刚刚描述的过程80针对每个这样的离子俘获事件从每个这样的离子俘获事件的离子测量事件文件来确定/计算离子质荷、离子电荷和离子质量值。
现在参考图6A,示出了上面参考图3简要描述的实时控制GUI的实施例。在图示的实施例中,实时控制GUI以虚拟控制面板120的形式提供,虚拟控制面板120描绘了数个控制部分,每个控制部分包括多个可选GUI元素,用于总体控制CDMS系统10的操作,以及特别是控制ELIT 14的操作。一个这样的控制部分是俘获模式部分122,其说明性地包括用于在连续(即,随机)俘获和触发俘获之间进行选择的可选GUI元素,这些俘获模式如上所述。在图示的控制面板120中,用户已经选择了随机或连续俘获。
图示的虚拟控制面板120中包括的另一个控制部分是ELIT定时部分124,其说明性地包括用于为选定的俘获模式设置与ELIT 14的操作相关的定时参数的GUI元素。在图6A所示的示例中,如上所述,已经在俘获模式部分122中选择了连续俘获模式,并且在ELIT定时部分124顶部处突出显示的标签因此指示ELIT定时参数GUI元素与连续俘获模式相关。不同的标签将在触发俘获模式被选择时被突出显示,如图6A所示。对于如图所示在部分122中选择的连续俘获模式,ELIT定时部分124说明性地包括用于选择俘获事件之间的定时(“俘获时间之间”)的GUI元素,这里说明性地设置为1.0 ms。还提供了GUI元素,用于选择预俘获和俘获后文件写入时间,如以上关于图5所示的过程80的步骤86所述,这里说明性地分别设置为0.1 ms和0.8 ms。还提供了GUI元素,用于选择在控制电压源V2以将离子镜M2控制为离子反射模式之后控制电压源V1以将离子镜M1控制为离子反射模式之间的延迟时间(“前盖延迟时间”),如上面参考图4B和4C针对连续俘获模式所述。这里,延迟时间被设置为0.5 ms。最后,提供可选GUI元素来选择俘获时间,即,被其中俘获的离子被允许在离子镜M1、M2之间来回振荡并通过ELIT 14的电荷检测圆筒CD的时间,在本文也称为离子测量事件时间。在本示例中,俘获时间被设置为99 ms。
图示的虚拟控制面板120中包括的另一控制部分是分析部分126,其说明性地包括用于从分析师列表中选择分析师、用于开始常规或LC分析以及用于停止正在进行的分析的GUI元素。
图示的虚拟控制面板120中包括的另一个控制部分是文件夹命名部分128,其说明性地包括用于输入文件夹名称的GUI字段,其中分析结果将由处理器52存储在存储器54中。
图示的虚拟控制面板120中包括的又另一控制部分是数据采集部分130,其说明性地包括用于开始和停止上述实时分析过程的可选GUI元素。在图示的实施例中,数据采集部分130进一步说明性地包括用于选择性地查看离子计数GUI的可选“离子计数”GUI元素。
现在参考图6B,示出了由上述实时分析过程产生的输出数据的示例集合。在图示的示例中,每一行(排)代表单个俘获事件文件,该行或排中的第一项134标识文件名。空俘获事件文件136由零标识,并且多个俘获事件文件138被指定为“多个离子事件(MULTIPLEION EVENT)”。每个单个离子俘获事件将包括质荷比(m/z)值140、电荷(z)值142、离子质量(m)值144和总俘获时间(时间)146。在图示的示例中,0.968……的俘获时间指示离子在图6A所示的控制面板120中设定的完整俘获时间内被俘获。本示例中的总俘获时间为100 ms(包括控制面板120中选择的99 ms“俘获时间”和1.0 ms“俘获时间间隔”参数),但是时域信号的一小部分被丢弃,以允许电荷前置放大器CP从在离子传输和离子反射模式之间切换的离子镜电位中恢复。
现在参考图6C,示出了示例显示GUI包括分析结果GUI的实时快照,该分析结果GUI包括当由ELIT 14产生离子测量事件数据时从离子测量时间数据的实时分析产生的输出数据构建的直方图。说明性地,GUI包括多个部分,每个部分包括用于控制显示GUI的呈现的可选GUI元素。例如,显示选择部分137说明性地包括用于选择质量-电荷直方图和质量直方图的显示以及用于选择低电荷或标准电荷离子的分析参数的GUI元素。在图6C中,已经选择了低电荷分析参数,并且在显示GUI中显示了得到的离子质谱135,其代表到拍摄快照时为止累积的数据。离子电荷显示控制部分139说明性地包括GUI元素,用于选择离子电荷区间大小以及要在直方图中显示的离子的电荷上限和下限。类似的离子质量显示控制部分141同样包括GUI元素,用于当在显示部分137中选择质量直方图时,选择离子质量区间大小以及要在直方图中显示的离子的质量上限和质量下限,如图6C所示的示例中所描绘的。在显示部分137中选择质荷直方图的情况下,控制部分141将类似地包括GUI元素,用于选择离子质荷比区间大小以及要在直方图中显示的离子的质荷比上限和下限。俘获效率监测部分143说明性地跟踪和显示单个离子、多个离子和空俘获事件的运行记录,并进一步说明性地显示所得的俘获效率。如上所述,对于随机时间到达的离子,可获得的最大单个离子阱俘获效率是37%,并且在图6C的部分143中显示的35.7%的俘获效率因此接近最大俘获效率。
经由实时控制GUI的实时分析过程和分析结果的实时可视化的组合说明性地提供实时修改CDMS系统10的操作的机会,以选择性地总体优化CDMS系统10和/或具体优化ELIT系统14的一个或多个操作参数,和/或选择性地将分析结果限制于一个或多个可选范围。参照图7A和7B,例如,示出了CDMS系统150的另一个实施例。CDMS系统150在许多方面与上面详细描述的CDMS系统10相同,并且在这方面,相似的数字用于标识相似的部件。特别地,离子源12说明性地如上所述,ELIT 14也是如此。尽管在图7A和7B中没有具体示出,但是应当理解,CDMS系统150还包括电部件和耦合到其上的电压源,如图1–3所示以及如上所述可操作。CDMS 150说明性地不同于CDMS系统10,因为在CDMS系统150中包括介于离子源12和ELIT 14之间的设备152的实施例,该设备152可以例如由实时控制GUI的用户选择性地或由处理器52自动地控制,以修改离开离子源12和进入ELIT 14的离子的信号强度,其方式使单个离子俘获事件相对于空俘获事件和/或多个离子俘获事件的数量最大化,从而减少离子测量事件收集时间。
在图示的实施例中,离子信号强度控制设备152采用可变孔径控制设备的形式,包括经由驱动轴158可操作地耦合到可变孔径构件156的电控马达154。在图示的实施例中,可变孔径构件156说明性地以可旋转盘的形式提供,该可旋转盘限定从其穿过的多个不同直径的孔1601-160L,这些孔以公共半径162为中心并沿着该公共半径162定位成与ELIT 14的纵向轴线20对准,以便与ELIT 14的离子镜M1的离子入口对准,如图所示。变量L可以是任何正整数,并且在图7B所示的示例中,八个这样的孔1601-1608围绕半径162均匀分布并且以半径162为中心,半径162与驱动轴158间隔开,驱动轴158说明性地耦合到盘156的中心点,其中孔1601-1608的直径说明性地在最小直径的孔1601和最大直径的孔1608之间逐渐增加。
马达154说明性地是精密旋转定位马达,其被配置成响应于马达控制信号MC,以将盘156从孔1601-1608中的一者与轴线120对准的位置旋转到下一个孔或孔1601-1608中选定的一者与轴线120对准的位置。在一些实施例中,马达154可操作以仅在单个方向上(即顺时针或逆时针)旋转盘156,并且在其他实施例中,马达154可操作以在任一方向上旋转盘156。在一些实施例中,马达154可以是连续驱动马达,并且在其他实施例中,马达154可以是步进驱动器或步进马达。在一些实施例中,马达154可以是单速马达,并且在其他实施例中,马达154可以是变速马达。
在操作中,马达154被说明性地控制,以选择性地将孔1601-1608中期望的孔定位成与进入ELIT 14的离子的轨迹成一直线。相对于较大直径的孔,较小直径的孔通过限制从其穿过的离子流来降低进入ELIT 14的离子的信号强度,并且相对于较小直径的孔,较大直径的孔通过增加从其穿过的离子流来增加进入ELIT 14的离子的信号强度。取决于样品组成、CDMS和ELIT部件的尺寸以及其他因素,与空俘获事件的数量和/或多个离子俘获事件的数量相比,孔1601-1608中的至少一者将导致更多数量的单个离子俘获事件。例如,增加孔径将增加进入离子的信号强度,并且将因此减少空俘获事件的数量。另一方面,减小孔径将降低进入的离子的信号强度,并且将因此减少多个离子俘获事件的数量。因此,孔1601-1608中的一者将通过最小化空离子俘获事件和多个离子捕获事件两者来优化进入的离子的信号强度,从而相对于空离子俘获事件以及还相对于多个离子俘获事件最大化单个离子捕获事件的数量。
在一些实施例中,选择孔1601-1608中期望的一者可以是由CDMS 150的用户进行的手动过程。在这样的实施例中,实时控制GUI将说明性地包括孔径控制部分,该孔径控制部分包括一个或多个可选GUI元素,用于以使马达154将盘156驱动到孔1601-1608中对应一者的或期望一者的方式控制马达控制信号MC。通过查看图6C所示的显示GUI的俘获效率监视器部分143,用户可以选择性地控制可变孔径控制设备152以最大化单个离子俘获效率。在替代实施例中,或者作为经由实时控制GUI的可选选项,存储器54可以包括指令,这些指令在由处理器52执行时使处理器52监视俘获效率并自动控制可变孔径控制设备152以最大化单个离子俘获事件。
本领域技术人员将认识到用于控制进入ELIT 14的离子的强度或流量以便相对于空俘获事件和/或相对于多个离子俘获事件最大化单个离子俘获事件的其它结构和/或技术,并且应当理解,任何这样的其它结构和/或技术旨在落入本公开的范围内。作为替代的离子强度或流量控制设备的一个非限制性示例,图7A和7B中所示的马达154和盘156可以由具有单个可变直径孔的设备代替,其中所述单个孔的直径可以如上所述手动或自动控制到期望的孔径。作为另一个非限制性示例,马达154和盘156可以用线性驱动马达和板或其它结构来代替,所述板或其它结构具有沿着公共线性路径布置和居中的孔,其中线性驱动马达可以类似于上述被控制以沿着孔的线性路径选择孔中的一个,以便与轴线20对准,使得进入ELIT的离子必须穿过所选择的孔。作为替代离子强度或流量控制设备的又一非限制性示例,常规的离子阱可以放置在离子源12和ELIT 14之间。这种离子阱可以以常规方式控制,以随着时间的推移积累离子,并且可以实时调整打开该离子阱和打开/关闭ELIT 14的定时,以最大化单个离子俘获事件的数量,同时避免对特定质荷值的歧视,例如,诸如通过控制离子阱和ELIT之间的定时来将随时间推移的质荷过滤效果进行平均。替代地,可以调整该定时,以优先俘获具有特定质荷值或范围的离子,同时还最大化单个离子俘获事件。这种离子阱可以说明性地以常规RF阱(例如,四极、六极或分段四极)或另一个ELIT的形式实施。
参考图8,示出了CDMS系统180的另一示例性实施例,通过该实施例,实时分析过程和经由实时控制GUI的分析结果的实时可视化的组合说明性地提供了将分析结果选择性地限制于一个或多个期望范围。CDMS系统180在许多方面与上面详细描述的CDMS系统10相同,并且在这方面,相似的数字用于标识相似的部件。特别地,离子源12说明性地如上所述,ELIT 14也是如此。尽管图8中没有具体示出,但是应当理解,CDMS系统180还包括电部件和耦合到其上的电压源,其如图1-3所示且如上所述可操作。CDMS 180说明性地不同于CDMS系统10,因为在CDMS系统180中包括介于离子源12和ELIT 14之间的可被控制的质荷过滤器182的实施例,其由实时控制GUI的用户选择性地或由处理器52自动地控制,以将进入ELIT14的离子限制于选定的质荷比或离子质荷比范围,使得所得的质谱类似地被限制于选定的离子质荷比范围或质荷比范围。
在图示的实施例中,质荷过滤器182采用常规四极装置的形式,包括围绕CDMS 180的纵向轴线20彼此间隔开的四个细长杆。细长杆中两个相对的细长杆的在图8中如184表示,并且细长杆中另外两个相对的细长杆如186表示。质荷过滤器电压源188(VMF)以常规方式电连接到四极杆,使得两个相对的杆184与另两个相对的杆186异相180度,如图所示。质荷过滤器电压源188可以说明性地包括一个或多个时变电压源,例如常规的RF电压源,并且在一些实施例中可以包括一个或多个DC电压源。任何数量(K个)的信号线可以耦合在处理器52和质量过滤器电压源188之间,用于由处理器52控制电压源188,以便产生选定频率的一个或多个时变电压和/或产生一个或多个DC电压,其中K可以是任何整数。
在操作中,由质荷过滤器电压源188产生的电压被控制以选择性地使仅具有选定质荷比或质荷比范围的离子穿过质荷过滤器182并进入ELIT 14中。因此,只有这样的离子将被包括在离子测量事件中,并因此被包括在由其分析产生的质量或质荷比谱中。在一些实施例中,由质荷过滤器电压源188产生的一个或多个电压的选择可以通过CDMS 180的用户进行的手动过程来进行。在这样的实施例中,实时控制GUI将说明性地包括质荷过滤器控制部分,其包括一个或多个可选 GUI元素,用于控制由电压源188产生的电压,以选择要被选择并穿过过滤器182进入ELIT 14中的离子的对应质荷比或质荷比范围。这种选择可以在样品分析开始时实施,或者可以在查看图6C所示的显示GUI中实时构建的质谱之后实施。后者的示例如图9A和9B所示。
参考图9A,示出了对于乙型肝炎病毒(HBV)衣壳样品,在其实时组装时的离子计数相对于离子质量(以百万道尔顿或MDa为单位)的质量分布图190。应当理解,图190是图6C中所示的分析结果GUI的一部分,并且因此表示当其由处理器152根据上述实时分析过程构建的HBV样品的实时质谱。在图9A所示的质量分布190的组装中的时间点处,质谱说明性地包含来自在26.7分钟内记录的15,999个俘获事件的5,737个离子。如图9A所描绘的,质量分布190包括大量低质量物种(例如,< 500 kDa)和较小量接近4 MDa的高质量物种,这接近于HBV Cp149 T=4衣壳的预期质量,该衣壳刚刚超过4.1 MDa。
在图9A所示的分析中,用户(分析师)可能对支配质谱190的低质量物种不感兴趣。因此,很大一部分离子收集和分析时间已经被浪费了,因为CDMS是单粒子技术,俘获和分析低质量离子所花费的时间也不能用于俘获和分析高质量离子。为了避免收集和分析低质量离子,电压源188可以说明性地被控制以仅产生时变电压(例如,RF),以由此使质荷过滤器182充当高通质荷过滤器,以由此仅使高于选定质荷比或质荷比范围的离子通过。众所周知,对于纯RF四极杆,将从其通过的最低质荷比取决于由电压源188产生的时变电压的频率。在一个示例实验中,由电压源188施加到四极滤质器182的时变电压的频率被设置为120kHz,并且在图9B中示出了对于乙型肝炎病毒(HBV)衣壳的相同样品(用于生成图9A中所示的图)在其实时组装时得到的离子计数线轨道与离子质量((以百万道尔顿或MDa为单位))的质量分布图192。通过将电压源188产生的仅RF电压的频率设置为120 kHz,ELIT 14中俘获的大多数离子具有大于400 kDa的质量,由此从质谱192中省略了存在于图9A的质谱190中的大量的低质量物质(例如,< 500 kDa)。产生图9B所示的质谱192的大部分离子收集和分析时间因此被用来俘获和分析更高质量的离子。应注意的是,仅RF四极作为质荷过滤器而不是滤质器工作,这就是为什么图9B中的质量截止不锐利。还应当注意,质量大于400kDa的被俘获离子的图192包括质量约为3.1 MDa的低强度峰,这在图9A的质量分布中并不明显。
应当理解,电压源188可以说明性地被控制成仅施加特定频率下的时变电压组(例如,180度异相),以使四极过滤器182充当仅使质荷比高于选定质荷比值的离子通过的高通质荷过滤器。替代地,质荷过滤器电压源188可以说明性地被控制成施加特定频率下的时变电压组和具有选定大小的dc电压的组合(例如,将相反的极性施加到不同的相对的四极杆对),以使四极过滤器182充当仅使质荷比在选定范围内的质荷比值的离子通过的带通过滤器,其中时变电压组的频率和DC电压组的大小将一起限定可通过的质荷比范围。在其中进入ELIT 14的离子的质荷比范围不受限制的其他实施例中,四极过滤器182可以说明性地作为仅DC四极来操作,即,通过仅向相对的四极杆对及其之间施加DC电压,以将进入ELIT 14的离子朝向其纵向轴线20集中。
本领域技术人员将认识到用于限制进入ELIT 14的离子的质荷比范围的其他结构和/或技术,并且应当理解,任何这样的其他结构和/或技术都旨在落入本公开的范围内。作为一个非限制性示例,质荷过滤器182可替代地采取常规六极或八极离子导向器的形式。作为另一个非限制性示例,质荷过滤器182可替代地采取一个或多个常规离子阱的形式,该离子阱以常规方式操作,以在其中俘获离开离子源的离子,并且仅允许在选定的质荷比范围内的离子离开并因此进入ELIT 14。
现在参考图10A中,示出了离子分离仪器200的实施例的简化框图,该离子分离仪器200可以包括在本文中图示和描述的ELIT 14,并且其可以包括在本文中图示和描述的电荷检测质谱仪(CDMS)10、150、180,并且其可以包括任何数量的可以形成ELIT 14上游的离子源12的一部分的离子处理仪器和/或可以包括任何数量的可以设置在ELIT 14的下游以进一步处理离开ELIT 14的离子的离子处理仪器。在这方面,离子源12在图10A中图示为包括数量为Q的离子源级IS1-ISQ,其可以是或形成离子源12的一部分。替代地或附加地,离子处理仪器210在图10A中图示为耦合到ELIT 14的离子出口,其中,离子处理仪器210可以包括任何数量的离子处理级OS1-OSR,其中R可以是任何正整数。
集中在离子源12上,应当理解的是,进入ELIT 14的离子源12可以是或包括呈一个或多个离子源级IS1 – ISQ形式的一个或多个如上所述的常规离子源,并且还可以包括根据一个或多个分子特性(例如,根据离子质量、离子质荷、离子迁移率、离子保留时间等)分离离子的一个或多个常规仪器和/或一个或多个常规的离子处理仪器,用于收集和/或存储离子(例如,一个或多个四极、六极和/或其他离子阱)、用于过滤离子(例如,根据一个或多个分子特性,诸如离子质量、离子质荷、离子迁移率、离子保留时间等)、用于碎片化或以其他方式解离离子、用于标准化或转换离子电荷态,等等。应当理解,离子源12可以以任何顺序包括任何这种常规离子源、离子分离仪器和/或离子处理仪器中的一个或任何组合,并且一些实施例可以包括任何这种常规离子源、离子分离仪器和/或离子处理仪器中的多个相邻或间隔开的仪器,其一些非限制性示例在图7A、7B和图8中示出。在包括一个或多个质谱仪的任何实施方式中,任何一个或多个这样的质谱仪可以以本文描述的任何形式实施。
现在转到离子处理仪器210,应当理解,仪器210可以是或包括呈一个或多个离子处理级OS1-OSR形式的用于根据一个或多个分子特性(例如,根据离子质量、离子质荷、离子迁移率、离子保留时间等)分离离子的一个或多个常规仪器,和/或一个或多个常规离子处理仪器,用于收集和/或存储离子(例如,一个或多个四极、六极和/或其他离子阱)、用于过滤离子(例如,根据一个或多个分子特性,诸如离子质量、离子质荷、离子迁移率、离子保留时间等)、用于碎片化或以其他方式解离离子、用于标准化或转换离子电荷态等。应当理解,离子处理仪器110可以以任何顺序包括任何这种常规离子分离仪器和/或离子处理仪器中的一个或任何组合,并且一些实施例可以包括任何这种常规离子分离仪器和/或离子处理仪器中的多个相邻的或间隔开的仪器。在包括一个或多个质谱仪的任何实施方式中,任何一个或多个这样的质谱仪可以以本文描述的任何形式实施。
作为图10A(其不应被认为是以任何方式进行限制)所示的离子分离仪器200的一个具体实施方式,离子源12说明性地包括3个级,并且省略了离子处理仪器210。在该示例实施方式中,离子源级IS1是常规的离子源,例如电喷雾、MALDI等,离子源级IS2是常规的离子过滤器,例如四极杆或六极杆离子导向器,并且离子源级IS3是上述任何类型的质谱仪。在该实施例中,离子源级IS2以常规方式被控制,以预选具有期望的分子特性的离子供下游质谱仪分析,并且仅将这样的预选离子传递到质谱仪,其中,由ELIT 14分析的离子将是由质谱仪根据质荷比分离的预选离子。离开离子过滤器的预选离子例如可以是具有规定的离子质量或质荷比的离子、具有高于和/或低于规定的离子质量或离子质荷比的离子质量或离子质荷比的离子、具有在规定离子质量或离子质荷比范围内的离子质量或离子质荷比的离子等。该示例图示了图8所示的CDMS系统180的实施例的一种可能的变型。在该示例的一些替代实施方式中,离子源级IS2可以是质谱仪,并且离子源级IS3可以是离子过滤器,并且离子过滤器可以如刚刚描述的那样以其他方式可操作,以预选离开质谱仪的具有期望的分子特性的离子,以供由下游ELIT 14进行分析。这是由图8中的示例说明的构型。在该示例的其他替代实施方式中,离子源级IS2可以是离子过滤器,并且离子源级IS3可以包括质谱仪,随后是另一个离子过滤器,其中,每个离子过滤器如刚刚描述的那样操作,并且因此用作图8所示示例的又一变型。
作为图10A(其不应被认为是以任何方式进行限制)所示的离子分离仪器200的另一个具体实施方式,离子源12说明性地包括两个级,并且离子处理仪器210再次被省略。在该示例实施方式中,离子源级IS1是常规的离子源,例如,电喷雾、MALDI等,离子源级IS2是上述任何类型的常规质谱仪。这是上面参考图1描述的实施方式,其中ELIT 14可操作以对离开质谱仪的离子进行分析。
作为图10A(其不应被认为是以任何方式进行限制)所示的离子分离仪器200的又另一具体实施方式,离子源12说明性地包括两个级,并且省略了离子处理仪器210。在该示例实施方式中,离子源级IS1是常规的离子源,例如,电喷雾、MALDI等,并且离子处理级OS2是常规的单级或多级离子迁移率谱仪。在该实施方式中,离子迁移率谱仪可操作以根据离子迁移率的一个或多个功能随时间的推移分离由离子源级IS1生成的离子,并且ELIT 14可操作以对离开离子迁移率谱仪的离子进行分析。在该示例的替代实施方式中,离子源12可以仅包括呈常规离子源形式的单级IS1,并且离子处理仪器210可以包括常规的单级或多级离子迁移率谱仪作为单个级OS1(或者作为多级仪器210的级OS1)。在该替代实施方式中,ELIT14可操作以对由离子源级IS1生成的离子进行分析,并且离子迁移率谱仪OS1可操作以根据离子迁移率的一个或多个功能随时间的推移分离离开ELIT 14的离子。作为该示例的另一替代实施方式,单级或多级离子迁移率谱仪可以跟随离子源级IS1和ELIT 14两者。在该替代实施方式中,离子源级IS1之后的离子迁移率谱仪可操作以根据离子迁移率的一个或多个功能随时间的推移而分离由离子源级IS1生成的离子,ELIT 14可操作以对离开离子源级离子迁移率谱仪的离子进行分析,并且ELIT 14之后的离子处理级OS1的离子迁移率谱仪可操作以根据离子迁移率的一个或多个功能随时间的推移而分离离开ELIT 14的离子。在本段描述的实施例的任何实施方式中,附加的变型可以包括质谱仪,该质谱仪可操作地定位在离子源12和/或离子处理仪器210中的单级或多级离子迁移率谱仪的上游和/或下游。
作为图10A(其不应被认为是以任何方式进行限制)所示的离子分离仪器200的又一具体实施方式,离子源12说明性地包括两个级,并且省略了离子处理仪器210。在该示例实施方式中,离子源级IS1是常规的液相色谱仪,例如,被配置成根据分子保留时间来分离溶液中的分子的HPLC等,并且离子源级IS2是常规的离子源,例如电喷雾等。在该实施方式中,液相色谱仪可操作以分离溶液中的分子成分,离子源级IS2可操作以从离开液相色谱仪的溶液流中生成离子,并且ELIT 14可操作以对由离子源级IS2生成的离子进行分析。在该示例的替代实施方式中,离子源级IS1可以替代地是常规的尺寸排阻色谱仪(SEC),其可操作以按尺寸分离溶液中的分子。在另一替代实施方式中,离子源级IS1可以包括常规液相色谱仪,随后是常规SEC,或反之亦然。在该实施方式中,离子由离子源级IS2从两次分离的溶液中生成;一次根据分子保留时间,随后一秒根据分子尺寸,或者反之亦然。在本段描述的实施例的任何实施方式中,附加的变型可以包括质谱仪,其可操作地定位在离子源级IS2和ELIT 14之间。
现在参考图10B,示出了离子分离仪器220的另一个实施例的简化框图,该离子分离仪器220说明性地包括多级质谱仪仪器230,并且其还包括离子质量检测系统10、150、180,即CDMS,在本文中图示和描述为高质量离子分析部件。在所示实施例中,多级质谱仪仪器230包括离子源(IS)12,如本文所示和所述,随后是第一常规质谱仪(MS1)232并耦合到第一常规质谱仪(MS1)232,随后是常规离子解离级(ID)234并耦合到常规离子解离级(ID)234,其可操作来解离离开质谱仪232的离子,例如通过碰撞诱导解离(CID)、表面诱导解离(SID)、电子俘获解离(ECD)和/或光诱导解离(PID)等中的一种或多种来解离离开质谱仪232的离子,随后是第二常规质谱仪(MS2)236并且耦合到第二常规质谱仪(MS2)236,随后是是常规离子检测器(D)238,例如,诸如微通道板检测器或其它常规离子检测器。离子质量检测系统10、150、180(即CDMS)与离子解离级234并联耦合并与其耦合,使得离子质量检测系统10、150、180(即CDMS)可以选择性地从质谱仪236和/或离子解离级232接收离子。
MS/MS,例如,仅使用离子分离仪器230,是一种行之有效的方法,其中特定分子量的前体离子由第一质谱仪232(MS1)基于它们的m/z值进行选择。在离子解离级234中,例如通过碰撞诱导解离、表面诱导解离、电子捕获解离或光诱导解离将质量选定的前体离子片段化。碎片离子然后由第二质谱仪236 (MS2)进行分析。在MS1和MS2两者中只测量前体离子和碎片离子的m/z值。对于高质量的离子,电荷态没有被解析的,并且因此不可能仅基于m/z值来选择具有特定分子量的前体离子。然而,通过将仪器230耦合到本文图示和描述的CDMS10,有可能选择窄范围的m/z值,并且然后使用CDMS 10、150、180来确定m/z所选的前体离子的质量。质谱仪232、236可以是例如磁扇形质谱仪、飞行时间质谱仪或四极质谱仪中的一种或任何组合,尽管在替代实施例中可以使用其他类型的质谱仪。在任何情况下,离开MS1的具有已知质量的m/z所选的前体离子可以在离子解离级234中被碎片化,并且然后所得的碎片离子可以通过MS2(其中仅测量m/z比)和/或通过CDMS仪器10、150、180(其中同时测量m/z比和电荷)进行分析。低质量碎片,即质量值低于阈值质量值(例如10,000 Da(或其他质量值))的前体离子的解离离子因此可以通过常规质谱使用MS2进行分析,而高质量碎片(其中电荷态未被解析),即质量值等于或高于质量阈值的前体离子的解离离子可以通过CDMS进行分析。
应当理解,可以说明性地选择ELIT 14的各种部件的尺寸和在其中建立的电场的大小(如在附图中图示并在上面描述的系统10、150、180、200、220中的任何一个中实施的那样),以便在ELIT 14内建立期望的离子振荡占空比,其对应于在一个完整的振荡周期期间离子在电荷检测圆筒CD中花费的时间与离子穿过离子镜M1、M2和电荷检测圆筒CD的组合所花费的总时间的比。例如,出于降低由测量信号的谐波频率分量导致的基频大小确定中的噪声的目的,近似50%的占空比可能是理想的。在2018年1月12日提交的共同未决的美国专利申请序列号62/616,860、2018年6月4日提交的共同未决的美国专利申请序列号62/680,343以及2019年1月11日提交的共同未决的国际专利申请号PCT/US2019/____中图示和描述了与实现期望占空比(诸如50%)的尺寸和操作考虑相关的细节,所有这些专利申请的标题均为ELECTROSTATIC LINEAR ION TRAP DESIGN FOR CHARGE DETECTION MASSSPECTROMETRY(用于电荷检测质谱的静电线性离子阱设计),其公开内容均通过引用整体明确并入本文。
将进一步理解,一种或多种电荷检测优化技术可以与在附图中图示并本文中描述的任何系统10、150、180、200、220中的ELIT 14一起用于例如触发俘获或其他电荷检测事件。在2018年6月4日提交的共同未决的美国专利申请序列号62/680,296和2019年1月11日提交的共同未决国际专利申请号PCT/US2019/_____中图示和描述了一些这样的电荷检测优化技术的示例,这两个专利申请标题均为“ APPARATUS AND METHOD FOR CAPTURINGIONS IN AN ELECTROSTATIC LINEAR ION TTAP(用于在静电线性离子阱中捕获离子的设备和方法)”,其公开内容均通过引用整体明确并入本文。
还应当理解,一个或多个电荷校准或重置设备可以与附图图示和本文所述的任何系统10、150、180、200、220中的ELIT 14的电荷检测筒CD一起使用。在2018年6月4日提交的共同未决的美国专利申请序列号62/680,272和在2019年1月11日提交的共同未决的国际专利申请号PCT/US2019/____中图示和描述了一个这样的电荷校准或重置设备的示例,这两个申请的的标题均为“APPARATUS AND METHOD FOR CALIBRATING OR RESETTING A CHARGEDETECTOR(用于校准或重置电荷检测器的设备和方法)”,其公开内容均通过引用整体明确并入本文。
还将进一步理解,在附图中图示并在本文中描述的ELIT 14,作为也在附图中图示并在此描述的系统10、150、180、200、220中的任何一者的一部分,可以替代地以具有两个或更多个ELIT或ELIT区域的至少一个ELIT阵列的形式和/或在包括两个或更多个ELIT区域的任何单个ELIT形式提供,并且本文描述的概念可直接应用于包括一个或更多个这样的ELIT和/或ELIT阵列的系统。在2018年6月4日提交的共同未决的美国专利申请序列号62/680,315中和2019年1月11日提交的共同未决的国际专利申请号PCT/US2019/____示出和描述了一些这样的ELIT和/或ELIT阵列的示例,这两个申请的标题均为 ION TRAP ARRAY FORHIGH THROUGHPUT CHARGE DETECTION MASS SPECTROMETRY(用于高通量电荷检测质谱的离子阱阵列),其公开内容均通过引用整体明确并入本文。
还应当理解,一个或多个离子源优化设备和/或技术可以与在本文中图示和描述的离子源12的一个或多个实施例一起使用,作为在附图中图示和在本文中描述的系统10、150、180、200、220中的任一者的一部分或与其结合使用,其一些示例在2018年6月4日提交的共同未决的美国专利申请号62/680,223和2018年6月4日提交的且题为 HYBRID IONFUNNEL-ION CARPET (FUNPET)ATMOSPHERIC PRESSURE INTERFACE FOR CHARGE DETECTIONMASS SPECTROMETRY的共同未决的美国专利申请序列号62/680,223以及在2019年1月11日提交的且题为“INTERFACE FOR TRANSPORTING IONS FROM AN ATMOSPHERIC PRESSUREENVIRONMENT TO A LOW PRESSURE ENVIRONMENT”的共同未决的国际专利申请号PCT/US2019/_____中图示和描述,其公开内容均通过引用整体明确并入本文。
还将进一步理解的是,在附图图示和本文所述的任何系统10、150、180、200、220中,ELIT 14可以用轨道阱代替。在这样的实施例中,附图中图示的和上面描述的电荷前置放大器可以用常规设计的一个或多个放大器代替。在2018年11月20日提交的共同未决的美国专利申请序列号62/769,952和在2019年1月11日提交的共同未决的国际专利申请号PCT/US2019/____中图示和描述了一个这样的轨道阱的示例,这两个申请的题均为ORBITRAPFOR SINGLE PARTICLE MASS SPECTROMETRY(用于单粒子质谱分析的轨道阱),其公开内容均通过引用整体并入本文。
还将进一步理解,一个或多个离子入口轨迹控制设备和/或技术可以与附图中所示和本文所述的系统10、150、180、200、220中的任一者的ELIT 14一起使用,以提供对ELIT14内多个单独离子的同时测量。在2018年12月3日提交的共同未决的美国专利申请序列号62/774,703号和2019年1月11日提交的共同未决的国际专利申请号PCT/US2019/_____中图示和描述了一些这样的离子入口轨迹控制设备和/或技术的示例,这两个申请的题均为“APPARATUS AND METHOD FOR SIMULTANEOUSLY ANALYZING MULTIPLE IONS WITH ANELECTROSTATIC LINEAR ION TRAP(利用静电线性离子阱同时分析多种离子的设备和方法)”,其公开内容均通过引用整体并入本文。
虽然在前述附图和描述中已经详细图示和描述了本公开,但是这些附图和描述被认为是说明性的,而不是限制性的,应当理解,仅示出和描述了其说明性实施例,并且期望保护落入本公开精神内的所有变型和修改。例如,可以理解的是,在附图中示出并在本文中描述的ELIT 14仅作为示例提供,并且上述概念、结构和技术可以直接在各种替代设计的ELIT中实施。任何这样的替代ELIT设计可以例如包括两个或更多个ELIT区域、更多、更少和/或不同形状的离子镜电极、更多或更少的电压源、由一个或多个电压源产生的更多或更少的DC或时变信号、限定附加电场区域的一个或多个离子镜等中的任何一个或其组合。

Claims (54)

1.一种电荷检测质谱仪,包括:
静电线性离子阱(ELIT)或轨道阱,
被配置成向所述ELIT或轨道阱供应离子的离子源,
至少一个放大器,其具有可操作地耦合到所述ELIT或轨道阱的输入端,
至少一个处理器,其可操作地耦合到所述ELIT或轨道阱和所述至少一个放大器的输出端,以及
至少一个存储器,其中存储有指令,所述指令在被所述至少一个处理器执行时使所述至少一个处理器:(i)控制所述ELIT或轨道阱作为离子俘获事件的一部分,以试图在其中俘获由所述离子源供应的单个离子,(ii)基于在所述离子俘获事件的持续时间内由所述至少一个放大器产生的输出信号记录离子测量信息,(iii)基于所记录的离子测量信息,确定对所述ELIT或轨道阱的控制是否导致在其中俘获单个离子、无离子或多个离子,以及(iv)仅当单个离子在所述俘获事件期间在ELIT或轨道阱中被俘获时,基于所记录的离子测量信息来计算离子质量和离子质荷比中的至少一者。
2.根据权利要求1所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的所述指令还包括这样的指令,所述这样的指令当由所述至少一个处理器执行时使所述至少一个处理器(v)重复执行:(i)-(iv),以及(vi)为多个不同离子俘获事件中的每一个构建所计算的离子质量和离子质荷比中的至少一者的直方图。
3.根据权利要求2所述的电荷检测质谱仪,其中(vi)包括在每次确定对所述ELIT或轨道阱的控制导致在其中俘获单个离子并随后计算所述离子质量和离子质荷比中的所述至少一者之后,实时构建所述直方图。
4.根据权利要求1或权利要求2所述的电荷检测质谱仪,还包括显示监视器,
其中,存储在所述至少一个存储器中的指令还包括当由所述至少一个处理器执行时使所述至少一个处理器控制所述显示监视器显示直方图的指令。
5.根据权利要求3所述的电荷检测质谱仪,还包括显示监视器,
其中,存储在所述至少一个存储器中的指令还包括当由所述至少一个处理器执行时使所述至少一个处理器控制所述显示监视器实时显示所述直方图的构造的指令。
6.根据权利要求4或5所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令还包括当由所述至少一个处理器执行时使所述至少一个处理器重复执行(i)-(iv)并控制所述显示监视器显示单个离子俘获事件、无离子俘获事件和多个离子俘获事件的运行总数的指令。
7.根据权利要求1至6中任一项所述的电荷检测质谱仪,其中,所述ELIT可操作地耦合到所述离子源和所述至少一个处理器,并且所述至少一个放大器包括可操作地耦合到所述ELIT和所述至少一个处理器的电荷前置放大器,并且其中,所述ELIT包括限定第一通路的第一离子镜、限定第二通路的第二离子镜和限定从其穿过的第三通路的电荷检测圆筒,其中,所述第一、第二和第三通路与定位在所述第一和第二离子镜之间的电荷检测圆筒同轴对准,使得纵向轴线穿过所述第一、第二和第三通路中的每一者的中心,所述第一离子镜限定离子入口孔,由所述离子源供应的离子经由所述离子入口孔进入所述ELIT,
并且其中,所述电荷检测质谱仪进一步包括
至少一个电压源,其可操作地耦合到所述至少一个处理器以及所述第一和第二离子镜,并且被配置成选择性地在其中建立离子传输电场或离子反射电场,所述离子传输电场将穿过所述第一和第二离子镜中相应一者的离子朝向所述纵向轴线集中,所述离子反射电场使从所述电荷检测圆筒进入所述第一和第二离子镜中相应一者的离子停止并在相反的方向上加速,朝向所述第一和第二离子镜中的另一者返回通过所述电荷检测圆筒,同时还朝向所述纵向轴线集中离子,
并且其中,存储在所述至少一个存储器中的指令包括这样的指令:所述这样的指令在由所述至少一个处理器执行时使所述至少一个处理器通过控制所述至少一个电压源来选择性地在所述第一和第二离子镜中的每一者中建立离子传输电场使得由所述离子源供应的离子穿过所述ELIT来控制所述ELIT以试图俘获其中的单个离子,随后控制所述至少一个电压源以在所述第一和第二离子镜的每一者中选择性地建立离子反射电场,使得在所述ELIT内俘获的任何一个或多个离子通过所述第一和第二离子镜之间的电荷检测圆筒来回振荡。
8.根据权利要求7所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器控制所述ELIT,以试图根据连续俘获过程在其中俘获单个离子,这通过控制所述至少一个电压源在所述第一和第二离子镜中的每一者中建立所述离子传输电场历时至少第一时间段,或者直到由所述电荷前置放大器信号产生至少一个电荷检测信号,所述电荷前置放大器信号由通过至少一个相应的离子轴向移动穿过所述电荷检测筒而在所述电荷检测筒上感应出的至少一个对应的电荷产生,随后控制所述至少一个电压源以在第二离子镜中建立离子反射电场,在延迟时段之后,随后控制所述至少一个电压源以在所述第一离子镜中建立离子反射电场。
9.根据权利要求7所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器控制所述ELIT,以试图根据第一触发俘获过程在其中俘获单个离子,这通过控制所述至少一个电压源在所述第一和第二离子镜的每一者中建立离子传输电场历时至少第一时间时段,或者直到由所述电荷前置放大器信号产生至少一个电荷检测信号,所述电荷前置放大器信号通过至少一个相应的离子轴向移动穿过所述电荷检测筒而在所述电荷检测筒上感应的至少一个对应的电荷产生,随后控制所述至少一个电压源以在所述第二离子镜中建立离子反射电场,随后控制所述至少一个电压源以响应于由所述电荷前置放大器信号产生的电荷检测信号在所述第一离子镜中建立所述离子反射电场,所述电荷前置放大器信号由离子轴向移动通过所述电荷检测圆筒而在所述电荷检测圆筒上感应的对应电荷产生。
10.根据权利要求7所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器根据第二触发俘获过程控制所述ELIT以试图俘获其中的单个离子,这通过控制所述至少一个电压源在所述第一和第二离子镜的每一者中建立离子传输电场,随后控制所述至少一个电压源,以响应于由所述电荷前置放大器信号产生的电荷检测信号而在所述第一和第二离子镜的每一者中建立离子反射电场,所述电荷前置放大器信号由离子轴向移动通过所述电荷检测圆筒而在电荷检测圆筒上感应的对应电荷产生。
11.根据权利要求7至10中任一项所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时使所述至少一个处理器:在控制所述至少一个电压源以在所述第一和第二离子镜的每一者中建立所述离子反射电场之后,通过在所述俘获事件的持续时间内在所述至少一个存储器中存储由所述电荷前置放大器信号产生的每个电荷检测信号来记录所述离子测量信息。
12.根据权利要求1至11中任一项所述的电荷检测质谱仪,还包括用于将离开所述离子源并进入所述ELIT或轨道阱的离子的强度或流量控制到最小化多个离子俘获事件和无离子俘获事件的离子强度或离子流量的装置。
13.根据权利要求1至12中任一项所述的电荷检测质谱仪,进一步包括:
至少一个离子质荷过滤器,其可操作地定位在所述离子源和所述ELIT或轨道阱之间,
至少另一个电压源,其可操作地耦合到所述至少一个处理器和离子质荷过滤器,以及
用于控制所述至少另一个电压源以产生至少一个选定电压的装置,所述离子质荷过滤器响应于所述至少一个选定电压而使仅具有选定质荷比的离子或仅具有选定质荷比值范围的离子从其穿过到达所述ELIT或轨道阱。
14.根据权利要求1至13中任一项所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括当由所述至少一个处理器执行时通过将所述离子测量信息存储在所述至少一个存储器中的文件中来使所述至少一个处理器记录所述离子测量信息的指令。
15.根据权利要求14所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括当由所述至少一个处理器执行时使所述至少一个处理器计算存储在所述文件中的离子测量信息的傅立叶变换以产生其频域谱的指令。
16.根据权利要求15所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括当由所述至少一个处理器执行时使所述至少一个处理器在计算所记录的离子测量信息的傅立叶变换之前通过高通滤波器算法传递包含在所存储的文件中的离子测量信息以去除所记录的离子测量信息中的低频噪声的指令。
17.根据权利要求15或16所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括当由所述至少一个处理器执行时使所述至少一个处理器扫描所记录的离子测量信息的频域谱以定位和识别所述频域谱中的峰的指令。
18.根据权利要求17所述的电荷检测质谱仪,其中,所记录的离子测量信息的频域质谱限定噪声基底,
并且其中,存储在所述至少一个存储器中的指令包括当由所述至少一个处理器执行时使所述至少一个处理器将大于所述噪声基底的预定倍数的任何大小识别为频域谱中的峰的指令。
19.根据权利要求17或权利要求18所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器在没有峰位于所记录的离子测量信息的扫描频谱的情况下确定对ELIT或轨道阱的控制导致其中无离子被俘获,并且然后初步将所述离子俘获事件识别为空俘获事件。
20.根据权利要求17至19中任一项所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令:所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器在峰位于所记录的离子测量信息的扫描频域谱中的情况下,将所定位的峰中具有最大大小的一个识别为频域谱的基频,确定所定位的峰中其余的峰是否位于相对于基频的谐波频率处。
21.根据权利要求20所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器在所定位的峰的其余峰不位于相对于基频的谐波频率处的情况下确定对所述ELIT或轨道阱的控制导致在其中俘获多个离子,并且然后将所述离子俘获事件识别为多个离子俘获事件。
22.根据权利要求20或权利要求21所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器在所定位的峰中的其余峰位于相对于基频的谐波频率处的情况下确定对所述ELIT或轨道阱的控制导致在其中俘获单个离子,并且然后将所述离子俘获事件识别为单个离子俘获事件。
23.根据权利要求19或权利要求22所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,在所述离子俘获事件被初步识别为空离子俘获事件或单个离子俘获事件的情况下,使所述至少一个处理器:(a)在文件的开始处计算记录的离子测量信息的窗口的傅立叶变换,以产生其对应的频域谱,其中所述窗口具有被定义为预定数量的记录的离子测量信息数据点的窗口大小,(b)扫描记录的离子测量信息的窗口的频域谱,以定位和识别其中的峰, (c)如果没有峰位于记录的离子测量信息的窗口的扫描频域频谱中,则增加窗口大小并重新执行(a)和(b),以及(d),重复(a)至(c)直到定位到峰,或者直到窗口大小已经增加到包括存储在文件中的所有记录的离子测量信息。
24.根据权利要求23所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时使所述至少一个处理器在所述离子俘获事件被初步识别为空离子俘获事件的情况下确认对所述ELIT或轨道阱的控制导致其中无离子被俘获,并且在没有峰位于记录的离子测量信息的窗口的扫描频域谱中且窗口大小已经增加到包括存储在文件中的所有记录的离子测量信息的情况下,最终将所述离子俘获事件识别为空俘获事件。
25.根据权利要求23所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器在所述峰位于所记录的离子测量信息的窗口的扫描频域谱中的情况下存储窗口大小。
26.根据权利要求25所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器在俘获事件被初步识别为空俘获事件的情况下将所述俘获事件重新识别为单个离子俘获事件。
27.根据权利要求25或权利要求26所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时使所述至少一个处理器:(e)在存储在所述文件中的所记录的离子测量信息上递增地扫描具有所存储的窗口大小的窗口,并且在所述窗口的每个增量处,(i)计算记录的离子测量信息的窗口的傅立叶变换,以产生其对应的频域谱,以及(ii)确定记录的离子测量信息的窗口的扫描频域谱的频域数据的振荡频率和大小,以及(f)基于所述振荡频率和大小确定,计算平均离子质荷比、平均离子电荷和平均离子质量。
28.一种操作电荷检测质谱仪的方法,所述质谱仪包括静电线性离子阱(ELIT)或轨道阱、被配置成向所述ELIT或轨道阱供应离子的离子源、以及至少一个放大器,所述放大器具有可操作地耦合到所述ELIT或轨道阱的输入端,所述方法包括:
利用处理器,控制所述ELIT或轨道阱作为离子俘获事件的一部分,以试图在其中俘获由所述离子源供应的单个离子,
在所述离子俘获事件的持续时间内,利用所述处理器基于由所述至少一个放大器产生的输出信号记录离子测量信息,
基于所记录的离子测量信息,利用所述处理器确定对所述ELIT或轨道阱的控制是否导致在其中俘获单个离子、无离子或多个离子,以及
仅在俘获事件期间单个离子被俘获在ELIT或轨道阱中的情况下,基于记录的离子测量信息计算离子质量和离子质荷比中的至少一者。
29.一种电荷检测质谱仪,包括:
静电线性离子阱(ELIT)或轨道阱,
被配置成向所述ELIT或轨道阱供应离子的离子源,
用于控制所述ELIT或轨道阱的操作的装置,
至少一个处理器,其可操作地耦合到所述ELIT或轨道阱以及用于控制所述ELIT或轨道阱的装置,
耦合到所述至少一个处理器的显示监视器,以及
至少一个存储器,其中存储有指令,所述指令在由所述至少一个处理器执行时,使所述至少一个处理器:(i)执行控制图形用户界面(GUI)应用,(ii)在所述显示监视器上产生所述控制GUI应用的控制GUI,所述控制GUI包括用于所述ELIT或轨道阱的至少一个对应操作参数的至少一个可选GUI元素,(iii)经由与控制GUI的用户交互接收对应于所述至少一个可选GUI元素的选择的第一用户命令,以及(iv)响应于第一用户命令的接收,控制用于控制所述ELIT或轨道阱的操作的装置,以控制所述ELIT或轨道阱的至少一个对应的操作参数。
30.根据权利要求29所述的电荷检测质谱仪,其中,所述ELIT可操作地耦合到所述离子源和所述至少一个处理器,并且还包括可操作地耦合在所述ELIT和所述至少一个处理器之间的电荷前置放大器,
其中,ELIT是可控的,作为俘获事件的一部分,根据连续俘获模式,以随机地关闭ELIT,试图在其中俘获来自所述离子源的离子,或者根据触发俘获模式,在所述电荷前置放大器检测到包含在所述ELIT内的离子之后关闭所述ELIT,试图在其中俘获离子,
并且其中,所述至少一个可选GUI元素包括连续俘获GUI元素和触发俘获GUI元素,
并且其中,存储在所述至少一个存储器中的指令还包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器控制用于控制ELIT操作的装置,以在第一用户命令对应于选择所述连续俘获GUI元素的情况下控制所述ELIT以连续俘获模式操作,并且在所述第一用户命令对应于所述触发俘获GUI元素的选择的情况下以触发俘获模式操作。
31.根据权利要求29或权利要求30所述的电荷检测质谱仪,其中,所述至少一个可选GUI元素包括俘获时间GUI元素,
并且其中,存储在所述至少一个存储器中的指令还包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器经由所述俘获时间GUI元素接收所选择的俘获时间作为第一用户命令,并且控制用于控制所述ELIT的操作的装置以控制所述ELIT在所选择的俘获时间内保持关闭。
32.根据权利要求30或31所述的电荷检测质谱仪,其中,当所述第一用户命令对应于所述连续俘获GUI元素的选择时,所述至少一个可选GUI元素还包括延迟时间GUI元素,
并且其中,作为连续俘获模式的一部分,所述处理器可操作以关闭所述ELIT的一端,
并且其中,存储在所述至少一个存储器中的指令还包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器经由所述延迟时间GUI元素接收作为另一用户命令的选定延迟时间,并且当在关闭所述ELIT的一端之后经过所述选定延迟时间时控制用于控制所述ELIT的操作的装置以控制所述ELIT关闭所述ELIT的相对端。
33.根据权利要求29所述的电荷检测质谱仪,其中,所述至少一个可选GUI元素包括开始GUI元素和停止GUI元素,
并且其中,存储在所述至少一个存储器中的指令还包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器控制用于控制所述ELIT的操作的装置,以在第一用户命令对应于开始GUI元素的选择的情况下控制所述ELIT测量由离子源供应给它的离子,并且在所述第一用户命令对应于停止GUI元素的选择的情况下停止测量由所述离子源供应给它的离子。
34.根据权利要求29至34中任一项所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器:(v)在所述显示监视器上产生所述控制GUI应用的显示GUI,所述显示GUI包括由所述ELIT或轨道阱产生的离子测量信息的直方图的实时构造,以及用于修改或选择所述显示GUI的至少一个呈现参数的至少一个可选GUI元素,(vi)经由与控制GUI的用户交互,接收第二用户命令,所述第二用户命令对应于用于修改或选择所述显示GUI的至少一个呈现参数的所述至少一个可选GUI元素的选择,以及(vii)响应于第二用户命令的接收,控制所述显示GUI来修改或选择所述显示GUI的至少一个对应的呈现参数。
35.根据权利要求34所述的电荷检测质谱仪,其中,用于修改或选择所述显示GUI的至少一个呈现参数的所述至少一个可选GUI元素包括质荷GUI元素和质量GUI元素,
并且其中,存储在所述至少一个存储器中的指令还包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器在所述第二用户命令对应于所述质荷GUI元素的选择的情况下控制所述显示GUI显示由所述ELIT或轨道阱产生的离子测量信息的质荷比直方图,并且在所述第二用户命令对应于所述质量GUI元素的选择的情况下控制所述显示GUI显示由所述ELIT或轨道阱产生的离子测量信息的质量直方图。
36.根据权利要求34或35所述的电荷检测质谱仪,其中,用于修改或选择所述显示GUI的至少一个呈现参数的所述至少一个可选GUI元素包括低电荷GUI元素和标准电荷GUI元素,
并且其中,存储在所述至少一个存储器中的指令还包括这样的指令,所述这样的指令在由至少一个处理器执行时,使所述至少一个处理器在所述第二用户命令对应于所述低电荷GUI元素的选择的情况下控制所述显示GUI在所述直方图中显示由所述ELIT或轨道阱为具有低电荷态的离子产生的离子测量信息,并且在所述第二用户命令对应于所述标准电荷GUI元素的选择的情况下控制所述显示GUI在所述直方图中显示由所述ELIT或轨道阱为具有标准电荷态的离子产生的离子测量信息。
37.根据权利要求34至36中任一项所述的电荷检测质谱仪,其中,用于修改或选择所述显示GUI的至少一个呈现参数的所述至少一个可选GUI元素包括电荷下限GUI元素和电荷上限GUI元素,
并且其中,存储在所述至少一个存储器中的指令还包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器控制所述显示GUI在所述直方图中仅显示具有在由所述第二用户命令分别针对所述电荷下限GUI元素和电荷上限GUI元素选择的值之间的电荷态的离子的离子测量信息。
38.根据权利要求34至37中任一项所述的电荷检测质谱仪,其中,用于修改或选择所述显示GUI的至少一个呈现参数的所述至少一个可选GUI元素包括质量或质荷比下限GUI元素和质量或质荷比上限GUI元素,
并且其中,存储在所述至少一个存储器中的指令还包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器控制所述显示GUI在所述直方图中仅显示具有在由所述第二用户命令分别针对所述质量或质荷比下限和质量或质荷比上限GUI元素选择的值之间的质量或质荷比的离子的离子测量信息。
39.根据权利要求34至38中任一项所述的电荷检测质谱仪,其中,存储在所述至少一个存储器中的指令包括这样的指令,所述这样的指令在由所述至少一个处理器执行时,使所述至少一个处理器(viii)针对多个离子俘获事件中的每一个记录由所述ELIT或轨道阱产生的离子测量信息,(ix)针对所述多个离子俘获事件中的每一个,基于相应记录的离子测量信息,确定所述离子俘获事件是单个离子俘获事件、无离子俘获事件还是多个离子俘获事件,以及(x)在所述控制GUI应用的所述显示GUI中包括所述单个离子俘获事件、无离子俘获事件和多个离子俘获事件的实时运行总数。
40.一种电荷检测质谱仪,包括:
静电线性离子阱(ELIT)或轨道阱,
被配置成向所述ELIT或轨道阱供应离子的离子源,
设置在所述离子源和所述ELIT或轨道阱之间的离子强度或流量控制设备,
至少一个处理器,其可操作地耦合到所述ELIT或轨道阱和所述离子强度或流量控制设备,以及
至少一个存储器,其中存储有指令,所述这样的指令在被所述至少一个处理器执行时,使所述至少一个处理器:(i)控制所述ELIT或轨道阱作为多个连续俘获事件中的每一个的一部分,以试图在其中俘获来自所述离子源的单个离子,(ii)对于所述多个连续俘获事件中的每一个,确定所述俘获事件是否在所述ELIT或轨道阱中俘获单个离子、无离子或多个离子,以及(iii)选择性地控制所述离子强度或流量控制设备,以控制从所述离子源进入所述ELIT或轨道阱中的离子的强度或流量,其方式是,在所述多个连续俘获事件的过程中,相对于单个离子俘获事件的发生,最小化无离子和多个离子俘获事件的发生,以便最大化单个离子俘获事件的发生。
41.一种电荷检测质谱仪,包括:
静电线性离子阱(ELIT)或轨道阱,
被配置成向所述ELIT或轨道阱供应离子的离子源,
可操作地耦合到所述ELIT或轨道阱的至少一个放大器,
设置在所述离子源和所述ELIT或轨道阱之间的质荷过滤器,
至少一个处理器,其可操作地耦合到所述ELIT或轨道阱和所述至少一个放大器,以及
至少一个存储器,其中存储有指令,所述指令在由所述至少一个处理器执行时,使所述至少一个处理器(i)控制所述质荷过滤器,以仅使选定质荷比或质荷比范围内的离子从所述离子源流入所述ELIT或轨道阱中,(ii)控制所述ELIT或轨道阱作为所述多个连续俘获事件中每一个的一部分,以试图在其中俘获由所述质荷过滤器供应的单个离子,(iii)对于所述多个连续俘获事件中的每一个,从在所述俘获事件持续时间内由所述至少一个放大器产生的离子测量信息确定所述俘获事件是单个离子俘获事件、无离子俘获事件还是多个离子俘获事件,以及(iv)针对所述多个连续俘获事件中的每一个,仅在所述离子俘获事件被确定为单个离子俘获事件的情况下,才根据所述离子测量信息计算呈离子质量和离子质荷比中的至少一者形式的离子分布信息,由此计算的所述离子分布信息仅包括具有选定质荷比或在选定质荷比范围内的离子的信息。
42.根据权利要求1至27和29至41中任一项所述的电荷检测质谱仪,其中,所述ELIT可操作地耦合到所述离子源和所述至少一个处理器,并且其中,所述ELIT包括设置在第一和第二离子镜之间的电荷检测圆筒,并且其中,所述ELIT被配置和控制成使得俘获在其中的离子以约为50%的占空比在所述第一和第二离子镜之间通过电荷检测圆筒来回振荡,所述占空比对应于所述离子移动通过所述电荷检测圆筒所花费的时间与所述离子在一个完整振荡周期期间穿过所述第一和第二离子镜以及所述电荷检测圆筒的组合所花费的总时间之比。
43.根据权利要求1至27和29至41中任一项所述的电荷检测质谱仪,其中,所述ELIT可操作地耦合到所述离子源和所述至少一个处理器,并且其中,所述ELIT包括多个轴向对准的电荷检测圆筒,每个电荷检测圆筒设置在相应的离子镜之间,以形成对应的多个ELIT区域中的一个,并且其中,存储在所述存储器中的指令包括在由所述至少一个处理器执行时使所述至少一个处理器控制所述ELIT在所述多个ELIT区域的每一个中连续俘获单个离子的指令。
44.根据权利要求1至27和29至41中任一项所述的电荷检测质谱仪,其中,所述ELIT包括多个ELIT,每个ELIT可操作地耦合到所述至少一个处理器,
并且还包括用于将来自所述离子源的离子引导到所述多个ELIT中的每一个的装置,
并且其中,存储在所述存储器中的指令包括在由所述至少一个处理器执行时使所述至少一个处理器控制所述ELIT和用于将离子从所述离子源引导到所述多个ELIT中的每一个以在所述多个ELIT中的每一个中连续俘获单个离子的装置的指令。
45.根据权利要求1至27和29至41中任一项所述的电荷检测质谱仪,其中,所述离子源包括被配置成从样品生成离子的离子源,以及被配置成根据至少一个分子特性来分离所生成的离子的至少一个离子分离仪器,并且其中,离开所述至少一个离子分离仪器的离子被供应给所述ELIT或轨道阱。
46.根据权利要求45所述的电荷检测质谱仪,其中,所述至少一个离子分离仪器包括用于根据质荷比来分离离子的至少一个仪器、用于根据离子迁移率来适时分离离子的至少一个仪器、用于根据离子保留时间来分离离子的至少一个仪器和用于根据分子大小来分离离子的至少一个仪器中的一者或任何组合。
47.根据权利要求45所述的电荷检测质谱仪,其中,所述至少一个离子分离仪器包括质谱仪和离子迁移率谱仪中的一者或其组合。
48.根据权利要求45至47中任一项所述的电荷检测质谱仪,还包括定位在所述离子源和所述至少一个离子分离仪器之间的至少一个离子处理仪器,所述至少一个离子处理仪器定位在所述离子源和所述至少一个离子分离仪器之间,包括用于收集或存储离子的至少一个仪器、用于根据分子特性过滤离子的至少一个仪器、用于解离离子的至少一个仪器和用于标准化或转换离子电荷态的至少一个仪器中的一者或任何组合。
49.根据权利要求45至48中任一项所述的电荷检测质谱仪,还包括定位在所述至少一个离子分离仪器和所述ELIT或轨道阱之间的至少一个离子处理仪器,定位在所述至少一个离子分离仪器和所述ELIT或轨道阱之间的所述至少一个离子处理仪器包括用于收集或存储离子的至少一个仪器、根据分子特性过滤离子的至少一个仪器、用于解离离子的至少一个仪器和用于标准化或转换离子电荷态中的至少一个仪器中的一者或任何组合。
50.根据权利要求45至49中任一项所述的电荷检测质谱仪,其中,所述ELIT或轨道阱被配置成允许离子从其离开,
并且还包括至少一个离子分离仪器,所述离子分离仪器定位成接收离开所述ELIT或轨道阱的离子,并且根据至少一个分子特性来分离接收的离子。
51.根据权利要求50所述的电荷检测质谱仪,还包括定位在所述ELIT或轨道阱和所述至少一个离子分离仪器之间的至少一个离子处理仪器,定位在所述ELIT或轨道阱和所述至少一个离子分离仪器之间的所述至少一个离子处理仪器包括用于收集或存储离子的至少一个仪器、用于根据分子特性过滤离子的至少一个仪器、用于解离离子的至少一个仪器和用于标准化或转换离子电荷态的至少一个仪器中的一者或任何组合。
52.根据权利要求50所述的电荷检测质谱仪,还包括至少一个离子处理仪器,其被定位成接收离开所述至少一个离子分离仪器的离子,所述离子分离仪器自身被定位成接收离开所述ELIT或轨道阱的离子,被定位成接收离开被定位成接收离开所述ELIT或轨道阱的离子的所述至少一个离子分离仪器的离子的所述离子处理仪器包括用于收集或存储离子的至少一个仪器、用于根据分子特性过滤离子的至少一个仪器、用于解离离子的至少一个仪器和用于标准化或转换离子电荷态的至少一个仪器中的一者或任何组合。
53.根据权利要求45至49中任一项所述的电荷检测质谱仪,其中,所述ELIT或轨道阱被配置成允许离子从其离开,
并且还包括被定位成接收离开所述ELIT或轨道阱的离子的至少一个离子处理仪器,被定位成接收离开所述ELIT或轨道阱的离子的所述至少一个离子处理仪器包括用于收集或存储离子的至少一个仪器、用于根据分子特性过滤离子的至少一个仪器、用于解离离子的至少一个仪器和用于标准化或转换离子电荷态的至少一个仪器中的一者或任何组合。
54.一种用于分离离子的系统,包括:
被配置成从样品生成离子的离子源,
第一质谱仪,其被配置成根据质荷比来分离生成的离子,
离子解离级,其被定位成接收离开所述第一质谱仪的离子,并被配置成解离离开所述第一质谱仪的离子,
第二质谱仪,其被配置成根据质荷比来分离离开所述离子解离级的解离离子,以及
根据权利要求1至27和29至41中任一项所述的电荷检测质谱仪(CDMS),其与所述离子解离级并联耦合并耦合到所述离子解离级,使得所述CDMS能够接收离开所述第一质谱仪和所述离子解离级中任一者的离子,
其中,使用所述CDMS测量离开所述第一质谱仪的前体离子的质量,使用所述第二质谱仪测量质量值低于阈值质量的前体离子的解离离子的质荷比,并且使用所述CDMS测量质量值等于或高于所述阈值质量的前体离子的解离离子的质荷比和电荷值。
CN201980051680.0A 2018-06-04 2019-01-11 具有实时分析和信号优化的电荷检测质谱分析 Pending CN112673451A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862680245P 2018-06-04 2018-06-04
US62/680245 2018-06-04
PCT/US2019/013277 WO2019236140A1 (en) 2018-06-04 2019-01-11 Charge detection mass spectrometry with real time analysis and signal optimization

Publications (1)

Publication Number Publication Date
CN112673451A true CN112673451A (zh) 2021-04-16

Family

ID=65269103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980051680.0A Pending CN112673451A (zh) 2018-06-04 2019-01-11 具有实时分析和信号优化的电荷检测质谱分析

Country Status (8)

Country Link
US (2) US11315780B2 (zh)
EP (1) EP3803951A1 (zh)
JP (1) JP7306727B2 (zh)
KR (1) KR20210035103A (zh)
CN (1) CN112673451A (zh)
AU (1) AU2019281714A1 (zh)
CA (1) CA3100838A1 (zh)
WO (1) WO2019236140A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201802917D0 (en) 2018-02-22 2018-04-11 Micromass Ltd Charge detection mass spectrometry
US11842891B2 (en) 2020-04-09 2023-12-12 Waters Technologies Corporation Ion detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869983A (zh) * 2015-02-05 2016-08-17 布鲁克道尔顿有限公司 采用并行积聚的俘获离子迁移谱仪
US20170221694A1 (en) * 2016-02-03 2017-08-03 Fasmatech Science & Technology Ltd. Segmented linear ion trap for enhanced ion activation and storage

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019168A (en) 1956-02-20 1962-01-30 Parke Davis & Co Heat and ultra-violet light attenuation of polio virus
WO1988002026A1 (en) 1986-09-08 1988-03-24 Applied Biotechnology, Inc. Empty viral capsid vaccines
US5916563A (en) 1988-11-14 1999-06-29 United States Of America Parvovirus protein presenting capsids
ES2026826A6 (es) 1991-03-26 1992-05-01 Ercros Sa Procedimiento para la produccion de una vacuna subunidad contra el parvovirus canino y otros virus relacionados.
GB2267385B (en) 1992-05-29 1995-12-13 Finnigan Corp Method of detecting the ions in an ion trap mass spectrometer
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
US5869248A (en) 1994-03-07 1999-02-09 Yale University Targeted cleavage of RNA using ribonuclease P targeting and cleavage sequences
US6204059B1 (en) 1994-06-30 2001-03-20 University Of Pittsburgh AAV capsid vehicles for molecular transfer
US5599706A (en) 1994-09-23 1997-02-04 Stinchcomb; Dan T. Ribozymes targeted to apo(a) mRNA
GB9506695D0 (en) 1995-03-31 1995-05-24 Hd Technologies Limited Improvements in or relating to a mass spectrometer
US5572025A (en) 1995-05-25 1996-11-05 The Johns Hopkins University, School Of Medicine Method and apparatus for scanning an ion trap mass spectrometer in the resonance ejection mode
US5770857A (en) 1995-11-17 1998-06-23 The Regents, University Of California Apparatus and method of determining molecular weight of large molecules
US6083702A (en) 1995-12-15 2000-07-04 Intronn Holdings Llc Methods and compositions for use in spliceosome mediated RNA trans-splicing
ES2279531T3 (es) 1995-12-15 2007-08-16 Intronn, Inc. Moleculas terapeuticas generadas por corte y empalme en trans.
EP0932694A2 (en) 1996-09-11 1999-08-04 THE UNITED STATES GOVERNMENT as represented by THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Aav4 vector and uses thereof
US5880466A (en) 1997-06-02 1999-03-09 The Regents Of The University Of California Gated charged-particle trap
US6156303A (en) 1997-06-11 2000-12-05 University Of Washington Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom
US6753523B1 (en) 1998-01-23 2004-06-22 Analytica Of Branford, Inc. Mass spectrometry with multipole ion guides
AU762220B2 (en) 1998-05-28 2003-06-19 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The AAV5 vector and uses thereof
US6183950B1 (en) 1998-07-31 2001-02-06 Colorado School Of Mines Method and apparatus for detecting viruses using primary and secondary biomarkers
US5965358A (en) 1998-08-26 1999-10-12 Genvec, Inc. Method for assessing the relative purity of viral gene transfer vector stocks
DK1127150T3 (da) 1998-11-05 2007-09-24 Univ Pennsylvania Nucleinsyresekvenser fra det adeno-associerede virus af serotype 1 samt vektorer og værtsceller, der indeholder disse
ES2340230T3 (es) 1998-11-10 2010-05-31 University Of North Carolina At Chapel Hill Vectores viricos y sus procedimientos de preparacion y administracion.
US7314912B1 (en) 1999-06-21 2008-01-01 Medigene Aktiengesellschaft AAv scleroprotein, production and use thereof
DE60117550T2 (de) 2000-06-01 2006-12-07 University Of North Carolina At Chapel Hill Doppelsträngige parvovirus-vektoren
US6583408B2 (en) 2001-05-18 2003-06-24 Battelle Memorial Institute Ionization source utilizing a jet disturber in combination with an ion funnel and method of operation
US6744042B2 (en) 2001-06-18 2004-06-01 Yeda Research And Development Co., Ltd. Ion trapping
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
EP1444526B1 (en) 2001-11-13 2011-09-21 The Regents of The University of California Ion mobility analysis of biological particles
US6674067B2 (en) 2002-02-21 2004-01-06 Hitachi High Technologies America, Inc. Methods and apparatus to control charge neutralization reactions in ion traps
US6888130B1 (en) 2002-05-30 2005-05-03 Marc Gonin Electrostatic ion trap mass spectrometers
US7078679B2 (en) 2002-11-27 2006-07-18 Wisconsin Alumni Research Foundation Inductive detection for mass spectrometry
US7057130B2 (en) 2004-04-08 2006-06-06 Ion Systems, Inc. Ion generation method and apparatus
GB0408751D0 (en) 2004-04-20 2004-05-26 Micromass Ltd Mass spectrometer
US7429729B2 (en) 2005-05-27 2008-09-30 Ionwerks, Inc. Multi-beam ion mobility time-of-flight mass spectrometer with bipolar ion extraction and zwitterion detection
GB0513047D0 (en) 2005-06-27 2005-08-03 Thermo Finnigan Llc Electronic ion trap
GB0607542D0 (en) 2006-04-13 2006-05-24 Thermo Finnigan Llc Mass spectrometer
US7851196B2 (en) 2006-05-01 2010-12-14 The Regents Of The University Of California Methods for purifying adeno-associated virus particles
US8722419B2 (en) 2006-06-22 2014-05-13 Massachusetts Institute Of Technology Flow cytometry methods and immunodiagnostics with mass sensitive readout
US8395112B1 (en) 2006-09-20 2013-03-12 Mark E. Bier Mass spectrometer and method for using same
TWI484529B (zh) 2006-11-13 2015-05-11 Mks Instr Inc 離子阱質譜儀、利用其得到質譜之方法、離子阱、捕捉離子阱內之離子之方法和設備
GB2445169B (en) 2006-12-29 2012-03-14 Thermo Fisher Scient Bremen Parallel mass analysis
US7608817B2 (en) 2007-07-20 2009-10-27 Agilent Technologies, Inc. Adiabatically-tuned linear ion trap with fourier transform mass spectrometry with reduced packet coalescence
US7755040B2 (en) 2007-09-24 2010-07-13 Agilent Technologies, Inc. Mass spectrometer and electric field source for mass spectrometer
WO2009105080A1 (en) 2007-11-09 2009-08-27 The Johns Hopkins University Low voltage, high mass range ion trap spectrometer and analyzing methods using such a device
EP2060919A1 (en) 2007-11-13 2009-05-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO MALDI matrix and MALDI method
DE102008051695B4 (de) 2008-09-04 2019-06-06 Bruker Daltonik Gmbh Ionenmobilitätsmessung an Potentialbarriere
JP5083160B2 (ja) 2008-10-06 2012-11-28 株式会社島津製作所 四重極型質量分析装置
CN101752179A (zh) 2008-12-22 2010-06-23 岛津分析技术研发(上海)有限公司 质谱分析器
US9414887B2 (en) 2009-03-13 2016-08-16 Robert R. Alfano Method and apparatus for producing supercontinuum light for medical and biological applications
KR101724389B1 (ko) 2009-05-06 2017-04-07 엠케이에스 인스트루먼츠, 인코포레이티드 정전 이온 트랩
US8115165B2 (en) 2009-05-27 2012-02-14 Dh Technologies Development Pte. Ltd. Mass selector
WO2011082376A1 (en) 2009-12-31 2011-07-07 Indiana University Research And Technology Corporation Method of identifying peptides
GB2476964A (en) 2010-01-15 2011-07-20 Anatoly Verenchikov Electrostatic trap mass spectrometer
WO2012017548A1 (ja) 2010-08-06 2012-02-09 株式会社島津製作所 四重極型質量分析装置
GB2488745B (en) 2010-12-14 2016-12-07 Thermo Fisher Scient (Bremen) Gmbh Ion Detection
WO2012083031A1 (en) 2010-12-16 2012-06-21 Indiana University Research And Technology Corporation Charge detection mass spectrometer with multiple detection stages
US20140193846A1 (en) 2011-04-19 2014-07-10 Scott & White Healthcare Novel apoc-i isoforms and their use as biomarkers and risk factors of atherosclerotic disease
GB2497948A (en) 2011-12-22 2013-07-03 Thermo Fisher Scient Bremen Collision cell for tandem mass spectrometry
US9653278B2 (en) 2011-12-28 2017-05-16 DH Technologies Development Ptd. Ltd. Dynamic multipole Kingdon ion trap
US8859961B2 (en) 2012-01-06 2014-10-14 Agilent Technologies, Inc. Radio frequency (RF) ion guide for improved performance in mass spectrometers
GB201201405D0 (en) 2012-01-27 2012-03-14 Thermo Fisher Scient Bremen Multi-reflection mass spectrometer
WO2013123436A1 (en) 2012-02-17 2013-08-22 California Institute Of Technology Radial opposed migration aerosol classifier with grounded aerosol entrance and exit
US8766179B2 (en) 2012-03-09 2014-07-01 The University Of Massachusetts Temperature-controlled electrospray ionization source and methods of use thereof
US9916969B2 (en) 2013-01-14 2018-03-13 Perkinelmer Health Sciences Canada, Inc. Mass analyser interface
WO2014183105A1 (en) 2013-05-10 2014-11-13 Academia Sinica Nanoparticle measurement virus mass spectrometry
US10234423B2 (en) 2013-09-26 2019-03-19 Indiana University Research And Technology Corporation Hybrid ion mobility spectrometer
WO2015104573A1 (en) 2014-01-07 2015-07-16 Dh Technologies Development Pte. Ltd. Multiplexed electrostatic linear ion trap
US9490115B2 (en) 2014-12-18 2016-11-08 Thermo Finnigan Llc Varying frequency during a quadrupole scan for improved resolution and mass range
US10151764B2 (en) 2014-05-15 2018-12-11 The Cleveland HeartLab Compositions and methods for purification and detection of HDL and ApoA1
US9564305B2 (en) 2014-07-29 2017-02-07 Smiths Detection Inc. Ion funnel for efficient transmission of low mass-to-charge ratio ions with reduced gas flow at the exit
US10211040B2 (en) 2014-11-07 2019-02-19 The Trustees Of Indiana University Frequency and amplitude scanned quadrupole mass filter and methods
JP2017026349A (ja) 2015-07-16 2017-02-02 日本電子株式会社 スペクトル表示装置及びスペクトル表示方法
EP3433874B1 (en) 2016-03-24 2020-02-12 Shimadzu Corporation A method of processing an image charge/current signal
EP3449250B1 (en) 2016-04-28 2020-11-04 Indiana University Research & Technology Corporation Methods and compositions for resolving components of a virus preparation
US10056244B1 (en) 2017-07-28 2018-08-21 Thermo Finnigan Llc Tuning multipole RF amplitude for ions not present in calibrant
EP3474311A1 (en) 2017-10-20 2019-04-24 Tofwerk AG Ion molecule reactor
EP3724663A1 (en) 2017-12-15 2020-10-21 Indiana University Research and Technology Corporation Instrument and method for energizing molecules in charged droplets
US11232941B2 (en) 2018-01-12 2022-01-25 The Trustees Of Indiana University Electrostatic linear ion trap design for charge detection mass spectrometry
EP3803945A1 (en) 2018-06-01 2021-04-14 Thermo Finnigan LLC Apparatus and method for performing charge detection mass spectrometry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869983A (zh) * 2015-02-05 2016-08-17 布鲁克道尔顿有限公司 采用并行积聚的俘获离子迁移谱仪
US20170221694A1 (en) * 2016-02-03 2017-08-03 Fasmatech Science & Technology Ltd. Segmented linear ion trap for enhanced ion activation and storage

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREW G.ELLIOTT 等: "Simultaneous Measurements of mass and collisional cross-section of single ions with charge detection mass spectrometry", 《ANALYTICAL CHEMISTRY》, vol. 89, pages 7701 - 7708, XP055573252, DOI: 10.1021/acs.analchem.7b01675 *
DAVID Z. KEIFER 等: "Charge detection mass spectrometry: weighing heavier things", 《THE ANALYST》, vol. 142, pages 1654 - 1671, XP055546909, DOI: 10.1039/C7AN00277G *
TRISTAN DOUSSINEAU 等: "Infrared multiphoton dissociation tandem charge detection-mass spectrometry of single megadalton electrosprayed ions", 《REVIEW OF SCIENTIFIC INSTRUMENTS》, vol. 82, pages 1 - 9 *

Also Published As

Publication number Publication date
EP3803951A1 (en) 2021-04-14
JP7306727B2 (ja) 2023-07-11
JP2021527301A (ja) 2021-10-11
US20220230866A1 (en) 2022-07-21
WO2019236140A1 (en) 2019-12-12
AU2019281714A1 (en) 2020-12-03
CA3100838A1 (en) 2019-12-12
US11315780B2 (en) 2022-04-26
US11682545B2 (en) 2023-06-20
US20210210332A1 (en) 2021-07-08
KR20210035103A (ko) 2021-03-31

Similar Documents

Publication Publication Date Title
US11646191B2 (en) Instrument, including an electrostatic linear ion trap, for separating ions
US11227759B2 (en) Ion trap array for high throughput charge detection mass spectrometry
JP7195669B2 (ja) 静電線形イオン・トラップによって複数のイオンを同時に分析する装置および方法
US20090057553A1 (en) Method and apparatus for fourier transform ion cyclotron resonance mass spectrometry
JP3653504B2 (ja) イオントラップ型質量分析装置
US11862448B2 (en) Instrument, including an electrostatic linear ion trap with charge detector reset or calibration, for separating ions
US10991567B2 (en) Quadrupole devices
US20140034827A1 (en) Systems and methods for ms-ms-analysis
US11682545B2 (en) Charge detection mass spectrometry with real time analysis and signal optimization
CN114667590A (zh) 用于脉冲模式电荷检测质谱法的设备和方法
US11227758B2 (en) Apparatus and method for capturing ions in an electrostatic linear ion trap
WO2023288179A1 (en) Method of optimizing geometric and electrostatic parameters of an electrostatic linear ion trap (elit)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination