CN112666394B - 一种双通道频谱分析仪 - Google Patents

一种双通道频谱分析仪 Download PDF

Info

Publication number
CN112666394B
CN112666394B CN202110288132.9A CN202110288132A CN112666394B CN 112666394 B CN112666394 B CN 112666394B CN 202110288132 A CN202110288132 A CN 202110288132A CN 112666394 B CN112666394 B CN 112666394B
Authority
CN
China
Prior art keywords
intermediate frequency
channel
local oscillator
frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110288132.9A
Other languages
English (en)
Other versions
CN112666394A (zh
Inventor
刘源
罗森
马兴望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Siglent Technologies Co Ltd
Original Assignee
Shenzhen Siglent Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Siglent Technologies Co Ltd filed Critical Shenzhen Siglent Technologies Co Ltd
Priority to CN202110288132.9A priority Critical patent/CN112666394B/zh
Publication of CN112666394A publication Critical patent/CN112666394A/zh
Application granted granted Critical
Publication of CN112666394B publication Critical patent/CN112666394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)

Abstract

一种双通道频谱分析仪,包括变频通道、与变频通道连接的模数采样装置和处理器,变频通道包括第一变频模块,第一变频模块包括第一中频通道和第二中频通道,处理器在第一切换开关的第二端切换到第一中频通道的输入端时,配置第一本振以使第一中频通道输出具有第一中频频率的信号,处理器在第一切换开关的第二端切换到第二中频通道的输入端时,配置第一本振以使第一中频通道输出具有第二中频频率的信号,以使频谱分析仪具有两个中频通道,通过对两个中频通道不同的配置,两个中频通道输出不同中频频率的信号,使得频谱分析仪可通过其内部的两个中频通道来相互验证频谱分析仪自身杂散,无需借助其他频谱分析仪。

Description

一种双通道频谱分析仪
技术领域
本发明涉及电子测量技术领域,具体涉及一种双通道频谱分析仪。
背景技术
频谱分析仪是一种在频域中显示所输入电信号的频谱特性的仪器,主要用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量。
频谱分析仪自身的杂散可以分为两大类,分别为剩余杂散和输入相关杂散。剩余杂散是频谱分析仪固有的杂散,剩余杂散的频点和幅度是确定的,与输入到频谱分析仪的待测信号无关,其产生原因为频谱分析仪内部的各个本振之间相互混频,当混频的产物刚好落到中频频率上时,就会形成剩余杂散。输入相关杂散是输入到频谱分析仪的待测信号和频谱分析仪内部的各个本振相互混频,当混频的产物刚好落到中频频率上时,就会形成输入相关杂散,因此输入相关杂散与输入到频谱分析仪的待测信号相关,其频点和幅度也随着输入的待测信号进行变化。
对于频谱分析仪来说,剩余杂散和输入相关杂散的存在是不可避免的,即使是目前性能最好的频谱分析仪也只能在一定程度上降低上述杂散的幅度,而无法完全消除杂散。因此,在频谱分析仪的实际使用过程中,为了保证测量结果的准确性和可靠性,通常需要使用两个不同厂家的频谱分析仪相互验证显示出的杂散是否为频谱分析仪自身的杂散,增加了测量的成本。
发明内容
本发明主要解决的技术问题是提供一种双通道频谱分析仪,以随时可对频谱分析仪进行杂散验证,降低了测量成本。
一种实施例中提供一种双通道频谱分析仪,包括:变频通道、与变频通道连接的模数采样装置和处理器;
所述变频通道包括第一变频模块,所述第一变频模块包括第一本振、第一混频器、第一切换开关、第一中频通道和第二中频通道;
所述第一混频器的第一输入端与第一本振的输出端连接,所述第一混频器用于接收输入到变频通道的信号和第一本振输出的本振信号,并对输入到变频通道的信号和第一本振输出的本振信号进行混频处理;
所述第一切换开关的第一端与第一混频器的输出端连接,第一切换开关的第二端在第一中频通道的输入端和第二中频通道的输入端之间进行切换;
所述第一中频通道和第二中频通道分别用于对第一混频器输出的信号进行放大、滤波;
所述处理器用于在第一切换开关的第二端切换到第一中频通道的输入端时,配置第一本振以使第一中频通道输出具有第一中频频率的信号;所述处理器还用于在第一切换开关的第二端切换到第二中频通道的输入端时,配置第一本振以使第二中频通道输出具有第二中频频率的信号。
一实施例中,所述第一变频模块还包括第二切换开关,所述第二切换开关的第一端为第一变频模块的输出端,第二切换开关的第二端在第一中频通道的输出端和第二中频通道的输出端之间进行切换。
一实施例中,所述变频通道还包括第二变频模块,所述第二变频模块包括第二本振、第二混频器、第三切换开关、第三中频通道和第四中频通道;
所述第二混频器的第一输入端与第二本振的输出端连接,所述第二混频器用于接收第一变频模块输出的信号和第二本振输出的本振信号,并对第一变频模块输出的信号和第二本振输出的本振信号进行混频处理;
所述第三切换开关的第一端与第二混频器的输出端连接,第三切换开关的第二端在第三中频通道的输入端和第四中频通道的输入端之间进行切换;
所述第三中频通道和第四中频通道分别用于对第二混频器输出的信号进行放大、滤波;
所述处理器还用于在第三切换开关的第二端切换到第三中频通道的输入端时,配置第二本振以使第三中频通道输出具有第三中频频率的信号;所述处理器还用于在第三切换开关的第二端切换到第四中频通道的输入端时,配置第二本振以使第四中频通道输出具有第四中频频率的信号;其中,所述第一中频频率、第二中频频率、第三中频频率和第四中频频率满足预设关系。
一实施例中,所述第二变频模块还包括第四切换开关,所述第四切换开关的第一端为第二变频模块的输出端,第四切换开关的第二端在第三中频通道的输出端和第四中频通道的输出端之间进行切换。
一实施例中,所述变频通道还包括第三变频模块,所述第三变频模块包括第三本振、第三混频器和第五中频通道;
所述第三混频器的第一输入端与第三本振的输出端连接,所述第三混频器用于接收第二变频模块输出的信号和第三本振输出的本振信号,并对第二变频模块输出的信号和第三本振输出的本振信号进行混频处理;
所述第五中频通道用于对第三混频器输出的信号进行放大、滤波。
一实施例中,所述第三变频模块还包括第五切换开关和第六中频通道;
所述第六中频通道用于对第三混频器输出的信号进行放大、滤波;
所述第五切换开关的第一端与第三混频器的输出端连接,第五切换开关的第二端在第五中频通道的输入端和第六中频通道的输入端之间进行切换;
处理器还用于在第五切换开关的第二端切换到第五中频通道的输入端时,配置第三本振以使第五中频通道输出具有第五中频频率的信号;处理器还用于在第五切换开关的第二端切换到第六中频通道的输入端时,配置第三本振以使第六中频通道输出具有第六中频频率的信号。
一实施例中,所述第三变频模块还包括第六切换开关;
所述第六切换开关的第一端为第三变频模块的输出端,第六切换开关的第二端在第五中频通道的输出端和第六中频通道的输出端之间进行切换。
一实施例中,所述第一中频通道包括第一放大器和第一带通滤波器,所述第一放大器的输入端与第一中频通道的输入端连接,第一放大器的输出端与第一带通滤波器的输入端连接,第一带通滤波器的输出端与第一中频通道的输出端连接。
一实施例中,所述第一中频频率、第二中频频率、第三中频频率、第四中频频率和第五中频频率满足预设关系,包括:
所述第一中频频率、第二中频频率、第三中频频率、第四中频频率和第五中频频率满足以下公式:
(IF3-h*Finput - k*Flo3-m*Flo2)/n-IF1≠(IF3-r*Finput - o*Flo3’-p*Flo2’)/q-IF1’;
且:IF2=Flo3+IF3或IF2=|Flo3-IF3|;
且:IF2’=Flo3’+IF3或IF2’=|Flo3’-IF3|;
且:IF1=Flo2+IF2或IF1=|Flo2-IF2|;
且:IF1’=Flo2’+IF2’或IF1’=|Flo2’-IF2’|;
其中,IF1为第一中频频率;IF1’为第二中频频率;IF2为第三中频频率;IF2’为第四中频频率;IF3为第五中频频率;Flo2为在第三切换开关的第二端切换到第三中频通道的输入端时,配置的第二本振输出的本振信号的频率;Flo2’为在第三切换开关的第二端切换到第四中频通道的输入端时,配置的第二本振输出的本振信号的频率,Flo3为在第三切换开关的第二端切换到第三中频通道的输入端时,配置的第三本振输出的本振信号的频率;Flo3’为在第三切换开关的第二端切换到第四中频通道的输入端时,配置的第三本振输出的本振信号的频率,Finput为输入至频谱分析仪的待测信号的频率,h、k、m、n、o、p、q、r为绝对值小于等于6的整数。
一实施例中,所述双通道频谱分析仪还包括显示模块和控制面板,所述显示模块用于显示频谱分析仪所测量信号的频率及幅度;所述控制面板上设置有用于控制中频方案进行切换的按钮。
依据上述实施例的双通道频谱分析仪,由于变频通道包括第一变频模块,第一变频模块包括第一中频通道和第二中频通道,处理器在第一切换开关的第二端切换到第一中频通道的输入端时,配置第一本振以使第一中频通道输出具有第一中频频率的信号,处理器在第一切换开关的第二端切换到第二中频通道的输入端时,配置第一本振以使第一中频通道输出具有第二中频频率的信号,以使频谱分析仪具有两个中频通道,通过对两个中频通道不同的配置,两个中频通道输出不同中频频率的信号,使得频谱分析仪可通过其内部的两个中频通道来相互验证频谱分析仪自身杂散,无需借助其他频谱分析仪。
附图说明
图1为一种实施例的单通道频谱分析仪的结构示意图;
图2为本发明实施例提供的双通道频谱分析仪的结构示意图;
图3为一种实施例的双通道频谱分析仪的结构示意图;
图4为另一种实施例的双通道频谱分析仪的结构示意图;
图5为再一种实施例的双通道频谱分析仪的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
请参考图1,图1为单通道频谱分析仪的结构示意图,单通道频谱分析仪包括可变衰减器10、低通滤波器20、第一变频模块30、第二变频模块40、第三变频模块50和模数采样装置60。其中,可变衰减器10与频谱分析仪的信号输入端连接,可变衰减器10用于对信号输入端接收的待测信号的幅度进行衰减,可变衰减器10的衰减度可以调整;低通滤波器20与可变衰减器10连接,低通滤波器20用于对输入的待测信号进行滤波;第一变频模块30、第二变频模块40和第三变频模块50依次连接,并且第一变频模块30、第二变频模块40和第三变频模块50的结构相同,以第一变频模块30为例说明,第一变频模块30包括第一本振31、第一混频器32、第一放大器33和第一带通滤波器34,第一本振31用于输出具有第一本振频率的本振信号,第一混频器32接收低通滤波器20输出的待测信号和第一本振输出的本振信号,并将待测信号和第一本振输出的本振信号进行混频后输出,因此,第一混频器32输出的信号的频率与待测信号的频率和第一本振输出的本振信号的频率相关,可通过配置第一本振31对待测信号的特定频点信号进行扫描,第一混频器32输出的信号经第一放大器33进行幅度放大后,再经过第一带通滤波器34进行滤波。依此类推,第二变频模块40将第一变频模块30输出的信号与第二本振输出的本振信号进行混频后输出,第三变频模块50将第二中频信号与第三本振输出的本振信号进行混频后输出;模数采样装置60用于对第三变频模块50输出的信号进行模数采样,显示模块对模数采样装置60输出的信号进行处理后显示。信号在显示时是以频率-幅度作为横纵坐标进行显示的,若在显示的信号中存在杂散,则通过显示区域中所显示的杂散可得到杂散所在的频率点,但用户无法确定显示区域中所显示的杂散是频谱分析仪自身的杂散还是待测信号携带的杂散,此时需要对两台中频方案完全不同的频谱分析仪分别输入相同的待测信号,若此时两台频谱分析仪的显示区域中所显示的杂散是相同的,则表明该杂散为待测信号携带的杂散,否则为频谱分析仪自身的杂散(包括剩余杂散和输入相关杂散)。
在本发明实施例中,在频谱分析仪的第一变频模块中设置第一中频通道和第二中频通道,两个中频通道通过第一切换开关切换工作,在第一切换开关的第二端切换到第一中频通道的输入端时,配置第一本振,以使第一中频通道输出具有第一中频频率的信号,处理器在第一切换开关的第二端切换到第二中频通道的输入端时,再次配置第一本振,以使第一中频通道输出具有第二中频频率的信号,使得频谱分析仪具有两个中频通道,通过对两个中频通道不同的配置,两个中频通道输出不同中频频率的信号,使得频谱分析仪可通过其内部的两个中频通道来相互验证频谱分析仪自身杂散,无需借助其他频谱分析仪。
请参考图2,图2为本发明实施例提供的双通道频谱分析仪的结构示意图,所述的双通道频谱分析仪包括可变衰减器100、低通滤波器200、变频通道300、模数采样装置400和处理器500。
可变衰减器100与频谱分析仪的信号输入端连接,可变衰减器100用于对信号输入端接收的待测信号的幅度进行衰减,可变衰减器100的衰减度可以调整;低通滤波器200与可变衰减器100连接,低通滤波器200用于对输入的待测信号进行滤波。
请参考图3,图3为一种实施例的双通道频谱分析仪的结构示意图,其中
变频通道300包括第一变频模块301、第二变频模块302和第三变频模块303,第一变频模块301包括第一本振3011、第一混频器3012、第一切换开关3013、第一中频通道3014、第二中频通道3015和第二切换开关3016。
第一混频器3012的第一输入端与第一本振3011的输出端连接,第一混频器3012用于接收输入到变频通道300的信号和第一本振输出的本振信号,并对输入到变频通道的信号和第一本振输出的本振信号进行混频处理。
第一切换开关3013的第一端与第一混频器3012的输出端连接,第一切换开关3013的第二端在第一中频通道3014的输入端和第二中频通道3015的输入端之间进行切换。
第一中频通道3014和第二中频通道3015分别用于对第一混频器输出的信号进行放大、滤波。
第二切换开关3016的第一端为第一变频模块301的输出端,第二切换开关3016的第二端在第一中频通道3014的输出端和第二中频通道3015的输出端之间进行切换。
处理器500用于在第一切换开关3013的第二端切换到第一中频通道3014的输入端且第二切换开关3016的第二端切换至第一中频通道3014的输出端时,配置第一本振,以使第一中频通道3014输出具有第一中频频率的信号;处理器500还用于在第一切换开关3013的第二端切换到第二中频通道3015的输入端且第二切换开关3016的第二端切换到第二中频通道3015的输出端时,再次配置第一本振,以使第二中频通道3015输出具有第二中频频率的信号。
在一实施例中,当第一切换开关的第二端切换至第一中频通道的输入端且第二切换开关的第二端切换至第一中频通道的输出端时,开发者通过处理器配置第一本振输出的本振信号的频率,例如此时配置的第一本振输出的本振信号的频率为Flo1,输入的待测信号的频率为Finput,那么经过第一混频器对输入的待测信号和第一本振输出的本振信号进行混频后,第一中频通道输出具有第一中频频率IF1的信号。
在另一实施例中,当第一切换开关的第二端切换至第二中频通道的输入端且第二切换开关的第二端切换到第二中频通道的输出端时,开发者通过处理器配置第一本振输出的本振信号的频率,例如此时配置的第一本振输出本振信号的频率为Flo1’,输入的待测信号的频率为Finput,那么经过第一混频器对输入的待测信号和第一本振输出的本振信号进行混频后,第二中频通道输出具有第二中频频率IF1’的信号。
在一种具体实施方式下,若本实施例中变频通道300中的第二变频模块302和第三变频模块303均与单通道频谱分析仪中的第二变频模块40和第三变频模块50具有相同的结构,此时假设第二变频模块302输出信号的频率为第三中频频率IF2,第三变频模块303输出信号的频率为第五中频频率IF3,则第一中频频率IF1、第二中频频率IF1’、第三中频频率IF2、第五中频频率IF3满足以下关系:
对于剩余杂散,第一中频频率IF1、第二中频频率IF1’、第三中频频率IF2、第五中频频率IF3满足以下关系:
(IF3- k*Flo3-m*Flo2)/n-IF1≠(IF3- o*Flo3-p*Flo2’)/q-IF1’;
且IF2=|Flo3±IF3|(根据具体方案,正负号只取正号或只取负号);
且IF1=|Flo2±IF2|(根据具体方案,正负号只取正号或只取负号);
且IF1’=|Flo2’±IF2’|(根据具体方案,正负号只取正号或只取负号)。
对于输入相关杂散,第一中频频率IF1、第二中频频率IF1’、第三中频频率IF2、第五中频频率IF3满足以下关系:
(IF3-h*Finput - k*Flo3-m*Flo2)/n-IF1≠(IF3-r*Finput - o*Flo3-p*Flo2’)/q-IF1’;
且IF2=|Flo3±IF3|(根据具体方案,正负号只取正号或只取负号);
且IF1=|Flo2±IF2|(根据具体方案,正负号只取正号或只取负号);
且IF1’=|Flo2’±IF2’|(根据具体方案,正负号只取正号或只取负号)。
其中,h、k、m、n、o、p、q、r为绝对值小于等于6的整数(绝对值大于6的整数的混频产物幅度很小,可忽略);Finput为输入的待测信号的频率。
请参考图4,在另一种具体实施方式下,在上述第一变频模块301的基础上,第二变频模块302包括第二本振3021、第二混频器3022、第三切换开关3023、第三中频通道3024、第四中频通道3025和第四切换开关3026。并且,第三变频模块303与单通道频谱分析仪中的第三变频模块50的结构相同。
第二混频器3022的第一输入端与第二本振3021的输出端连接,第二混频器3022用于接收第一变频模块301输出的信号和第二本振输出的本振信号,并对第一变频模块输出的信号和第二本振输出的本振信号进行混频处理。
第三切换开关3023的第一端与第二混频器3022的输出端连接,第三切换开关3023的第二端在第三中频通道3024的输入端和第四中频通道3025的输入端之间进行切换。
第三中频通道3024和第四中频通道3025分别用于对第二混频器输出的信号进行放大、滤波。
第四切换开关3026的第一端为第二变频模块的输出端,第四切换开关的第二端在第三中频通道3024的输出端和第四中频通道3025的输出端之间进行切换。
在本实施例中,处理器500还用于在第三切换开关3023的第二端切换到第三中频通道3024的输入端且第四切换开关3026的第二端切换到第三中频通道3024的输出端时,配置第二本振,即配置第二本振输出的本振信号的频率Flo2,以使第三中频通道输出具有第三中频频率IF2的信号;处理器500还用于在第三切换开关3023的第二端切换到第四中频通道3025的输入端且第四切换开关3026的第二端切换到第四中频通道3025的输出端时,配置第二本振,即配置第二本振输出的本振信号的频率Flo2’,以使第四中频通道输出具有第四中频频率IF2’的信号。
本实施例中第三变频模块303与单通道频谱分析仪中第三变频模块50的结构相同,其均包括第三本振、第三混频器和第五中频通道。第三混频器的第一输入端与第三本振的输出端连接,第三混频器用于接收第二变频模块输出的信号和第三本振输出的本振信号,并对第二变频模块输出的信号和第三本振输出的本振信号进行混频处理。第五中频通道用于对第三混频器输出的信号进行放大、滤波。其中,第五中频通道输出信号的频率为第五中频频率IF3。
本实施例中,上述第一中频通道、第二中频通道、第三中频通道和第四中频通道可以构成至少两套中频方案的频谱分析仪。
例如,当第一切换开关、第二切换开关的第二端切换到第一中频通道,第三切换开关、第四切换开关的第二端切换到第三中频通道,此时第一中频通道和第三中频通道相连通,组成第一套中频方案的频谱分析仪;当第一切换开关、第二切换开关的第二端切换到第二中频通道,第三切换开关、第四切换开关的第二端切换到第四中频通道,此时第二中频通道和第四中频通道相连通,组成第二套中频方案的频谱分析仪。
剩余杂散产生机理为:第一本振、第二本振、第三本振因为电路或空间隔离不足,泄露到第一变频模块、第二变频模块、第三变频模块,泄露到第一变频模块、第二变频模块、第三变频模块的本振信号与第一本振、第二本振、第三本振输出的本振信号混频产生频率为第一中频频率、第三中频频率、第五中频频率的混频产物, 此时杂散混频关系式为n*Flo1+m*Flo2+k*Flo3=IF1或n*Flo1+m*Flo2+k*Flo3=IF2或n*Flo1+m*Flo2+k*Flo3=IF3,其中n、m、k为整数,该混频产物经过模数采样装置进行模数采样后,在显示区域中的某个频率点上显示出上述混频产物的信号幅度,该混频产物与输入到频谱分析仪的待测信号无关。根据上述杂散混频关系式,可以得到第一套中频方案的一个杂散频率点为 (IF3- k*Flo3-m*Flo2)/n-IF1,第二套中频方案的一个杂散频率点为 (IF3’- o*Flo3’- p*Flo2’)/q-IF1’,本实施例需合理地选择上述参数,使(IF3- k*Flo3- m*Flo2)/n-IF1≠(IF3’- o*Flo3’- p*Flo2’)/q-IF1’。其中,k、m、n、o、p、q为绝对值小于等于6的整数(绝对值大于6的整数的混频产物幅度很小,可忽略)。
因此,在本实施例中,对于剩余杂散,第一中频频率IF1、第二中频频率IF1’、第三中频频率IF2、第四中频频率IF2’和第五中频频率IF3满足以下预设关系:
(IF3- k*Flo3-m*Flo2)/n-IF1≠(IF3- o*Flo3’-p*Flo2’)/q-IF1’;
且IF2=|Flo3±IF3|(根据具体方案,正负号只取正号或只取负号);
且IF2’=|Flo3’±IF3|(根据具体方案,正负号只取正号或只取负号);
且IF1=|Flo2±IF2|(根据具体方案,正负号只取正号或只取负号);
且IF1’=|Flo2’±IF2’|(根据具体方案,正负号只取正号或只取负号)。
对于输入相关杂散,第一中频频率IF1、第二中频频率IF1’、第三中频频率IF2、第四中频频率IF2’和第五中频频率IF3满足以下预设关系:
(IF3-h*Finput - k*Flo3-m*Flo2)/n-IF1≠(IF3-r*Finput - o*Flo3’-p*Flo2’)/q-IF1’;
且IF2=|Flo3±IF3|(根据具体方案,正负号只取正号或只取负号);
且IF2’=|Flo3’±IF3|(根据具体方案,正负号只取正号或只取负号);
且IF1=|Flo2±IF2|(根据具体方案,正负号只取正号或只取负号);
且IF1’=|Flo2’±IF2’|(根据具体方案,正负号只取正号或只取负号)。
其中,IF1为第一中频频率;IF1’为第二中频频率;IF2为第三中频频率;IF2’为第四中频频率;IF3为第五中频频率;Flo2为在第三切换开关的第二端切换到第三中频通道的输入端时,配置的第二本振输出的本振信号的频率;Flo2’为在第三切换开关的第二端切换到第四中频通道的输入端时,配置的第二本振输出的本振信号的频率;Flo3为在第三切换开关的第二端切换到第三中频通道的输入端时,配置的第三本振输出的本振信号的频率;Flo3’为在第三切换开关的第二端切换到第四中频通道的输入端时,配置的第三本振输出的本振信号的频率;h、k、m、n、o、p、q、r为绝对值小于等于6的整数。
上述提供的预设关系为其中一种预设关系,由于杂散混频关系式可以有多种,因此第一中频频率IF1、第二中频频率IF1’、第三中频频率IF2、第四中频频率IF2’和第五中频频率IF3可满足多种预设关系。
请参考图5,再一种具体实施方式中,第三变频模块303中也可包括两条中频通道,例如,第三变频模块303包括第三本振3031、第三混频器3032、第五切换开关3033、第五中频通道3034、第六中频通道3035和第六切换开关3036。
其中第三本振3031和第三混频器3032与上述实施例中的具体实施方式相同,此处不再赘述。
第五切换开关3033的第一端与第三混频器3032的输出端连接,第五切换开关3033的第二端在第五中频通道3034的输入端和第六中频通道3035的输入端之间进行切换。
第五中频通道3034和第六中频通道3035分别用于对第三预设频率的信号进行放大、滤波。
第六切换开关3036的第一端为第三变频模块的输出端,第六切换开关3036的第二端在第五中频通道3034的输出端和第六中频通道3035的输出端之间进行切换。
在本实施例中,处理器还用于在第五切换开关的第二端切换到第五中频通道的输入端且第六切换开关的第二端切换到第五中频通道的输出端时,配置第三本振,即配置第三本振输出的本振信号的频率Flo3,以使第五中频通道输出具有第五中频频率IF3的信号;处理器还用于在第五切换开关的第二端切换到第六中频通道的输入端且第六切换开关的第二端切换到第六中频通道的输出端时,配置第三本振,即配置第三本振输出的本振信号的频率Flo3’,以使第六中频通道输出具有第六中频频率IF3’的信号。
本实施例中,上述第一中频通道、第二中频通道、第三中频通道、第四中频通道、第五中频通道和第六中频通道可以构成至少两套中频方案的频谱分析仪。
例如,当第一切换开关、第二切换开关的第二端切换到第一中频通道,第三切换开关、第四切换开关的第二端切换到第三中频通道,第五切换开关、第六切换开关的第二端切换到第五中频通道,此时第一中频通道、第三中频通道和第五中频通道相连通,组成第一套中频方案的频谱分析仪;当第一切换开关、第二切换开关的第二端切换到第二中频通道,第三切换开关、第四切换开关的第二端切换到第四中频通道,第五切换开关、第六切换开关的第二端切换到第六中频通道,此时第二中频通道、第四中频通道和第六中频通道相连通,组成第二套中频方案的频谱分析仪。
依据上述实施例所述的剩余杂散产生机理,可推得一种杂散混频关系式为n*Flo1+m*Flo2+k*Flo3=IF3,其中n、m和k为整数,根据上述杂散混频关系式,可以得到第一套中频方案的一个杂散频率点为(IF3- k*Flo3-m*Flo2)/n-IF1,第二套中频方案的一个杂散频率点为(IF3’- o*Flo3’-p*Flo2’)/q-IF1’,本实施例需合理地选择上述参数,使(IF3- k*Flo3-m*Flo2)/n-IF1≠(IF3’- o*Flo3’-p*Flo2’)/q-IF1’。
因此,在本实施例中,对于剩余杂散,第一中频频率IF1、第二中频频率IF1’、第三中频频率IF2、第四中频频率IF2’、第五中频频率IF3和第六中频频率IF3’满足以下预设关系:
(IF3- k*Flo3-m*Flo2)/n-IF1≠(IF3’- o*Flo3’-p*Flo2’)/q-IF1’;
且IF2=|Flo3±IF3|(根据具体方案,正负号只取正号或只取负号);
且IF2’=|Flo3’±IF3’|(根据具体方案,正负号只取正号或只取负号);
且IF1=|Flo2±IF2|(根据具体方案,正负号只取正号或只取负号);
且IF1’=|Flo2’±IF2’|(根据具体方案,正负号只取正号或只取负号)。
对于输入相关杂散,第一中频频率IF1、第二中频频率IF1’、第三中频频率IF2、第四中频频率IF2’、第五中频频率IF3和第六中频频率IF3’满足以下预设关系:
(IF3-h*Finput - k*Flo3-m*Flo2)/n-IF1≠(IF3’-r*Finput - o*Flo3’-p*Flo2’)/q-IF1’;
且IF2=|Flo3±IF3|(根据具体方案,正负号只取正号或只取负号);
且IF2’=|Flo3’±IF3’|(根据具体方案,正负号只取正号或只取负号);
且IF1=|Flo2±IF2|(根据具体方案,正负号只取正号或只取负号);
且IF1’=|Flo2’±IF2’|(根据具体方案,正负号只取正号或只取负号)。
需要说明的是,上述实施例组成的频谱分析仪的中频方案为本发明提供的双通道频谱分析仪中的部分实现方式,其可以有多种中频方案可以实现,只需满足每个双通道频谱分析仪中至少包含有两套中频方案,且每套中频方案之间通过一个或多个切换开关进行切换。
在本实施例中,用户可通过多种交互方式切换不同套的中频方案,也就是通过多种交互方式控制各个切换开关的进行切换,例如按钮、触摸屏和输入相关命令等交互方式。
在一实施例中,双通道频谱分析仪还包括显示模块和控制面板,显示模块用于显示频谱分析仪所测量信号的频率及幅度,控制面板上设置有用于控制各个切换开关进行切换的按钮,该按钮可控制多套中频方案的切换。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (7)

1.一种双通道频谱分析仪,其特征在于,包括:变频通道、与变频通道连接的模数采样装置和处理器;
所述变频通道包括第一变频模块,所述第一变频模块包括第一本振、第一混频器、第一切换开关、第一中频通道和第二中频通道;
所述第一混频器的第一输入端与第一本振的输出端连接,所述第一混频器用于接收输入到变频通道的信号和第一本振输出的本振信号,并对输入到变频通道的信号和第一本振输出的本振信号进行混频处理;
所述第一切换开关的第一端与第一混频器的输出端连接,第一切换开关的第二端在第一中频通道的输入端和第二中频通道的输入端之间进行切换;
所述第一中频通道和第二中频通道均用于对第一混频器输出的信号进行放大和滤波;
所述处理器用于在第一切换开关的第二端切换到第一中频通道的输入端时,配置第一本振以使第一中频通道输出具有第一中频频率的信号;所述处理器还用于在第一切换开关的第二端切换到第二中频通道的输入端时,配置第一本振以使第二中频通道输出具有第二中频频率的信号;
所述变频通道还包括第二变频模块,所述第二变频模块包括第二本振、第二混频器、第三切换开关、第三中频通道和第四中频通道;
所述第二混频器的第一输入端与第二本振的输出端连接,所述第二混频器用于接收第一变频模块输出的信号和第二本振输出的本振信号,并对第一变频模块输出的信号和第二本振输出的本振信号进行混频处理;
所述第三切换开关的第一端与第二混频器的输出端连接,第三切换开关的第二端在第三中频通道的输入端和第四中频通道的输入端之间进行切换;
所述第三中频通道和第四中频通道均用于对第二混频器输出的信号进行放大和滤波;
所述处理器还用于在第三切换开关的第二端切换到第三中频通道的输入端时,配置第二本振以使第三中频通道输出具有第三中频频率的信号;所述处理器还用于在第三切换开关的第二端切换到第四中频通道的输入端时,配置第二本振以使第四中频通道输出具有第四中频频率的信号;其中,所述第一中频频率、第二中频频率、第三中频频率和第四中频频率满足预设关系;
所述变频通道还包括第三变频模块,所述第三变频模块包括第三本振、第三混频器和第五中频通道;
所述第三混频器的第一输入端与第三本振的输出端连接,所述第三混频器用于接收第二变频模块输出的信号和第三本振输出的本振信号,并对第二变频模块输出的信号和第三本振输出的本振信号进行混频处理;
所述第五中频通道用于对第三混频器输出的信号进行放大和滤波,并输出具有第五中频频率的信号;
所述第一中频频率、第二中频频率、第三中频频率和第四中频频率满足预设关系,包括:
所述第一中频频率、第二中频频率、第三中频频率、第四中频频率和第五中频频率满足以下公式:
(IF3-h*Finput - k*Flo3-m*Flo2)/n-IF1≠(IF3-r*Finput - o*Flo3’-p*Flo2’)/q-IF1’;
且:IF2=Flo3+IF3或IF2=|Flo3-IF3|;
且:IF2’=Flo3’+IF3或IF2’=|Flo3’-IF3|;
且:IF1=Flo2+IF2或IF1=|Flo2-IF2|;
且:IF1’=Flo2’+IF2’或IF1’=|Flo2’-IF2’|;
其中,IF1为第一中频频率;IF1’为第二中频频率;IF2为第三中频频率;IF2’为第四中频频率;IF3为第五中频频率;Flo2为在第三切换开关的第二端切换到第三中频通道的输入端时,配置的第二本振输出的本振信号的频率;Flo2’为在第三切换开关的第二端切换到第四中频通道的输入端时,配置的第二本振输出的本振信号的频率,Flo3为在第三切换开关的第二端切换到第三中频通道的输入端时,配置的第三本振输出的本振信号的频率;Flo3’为在第三切换开关的第二端切换到第四中频通道的输入端时,配置的第三本振输出的本振信号的频率,Finput为输入至频谱分析仪的待测信号的频率,h、k、m、n、o、p、q、r为绝对值小于等于6的整数。
2.如权利要求1所述的双通道频谱分析仪,其特征在于,所述第一变频模块还包括第二切换开关,所述第二切换开关的第一端为第一变频模块的输出端,第二切换开关的第二端在第一中频通道的输出端和第二中频通道的输出端之间进行切换。
3.如权利要求1所述的双通道频谱分析仪,其特征在于,所述第二变频模块还包括第四切换开关,所述第四切换开关的第一端为第二变频模块的输出端,第四切换开关的第二端在第三中频通道的输出端和第四中频通道的输出端之间进行切换。
4.如权利要求1所述的双通道频谱分析仪,其特征在于,所述第三变频模块还包括第五切换开关和第六中频通道;
所述第六中频通道用于对第三混频器输出的信号进行放大和滤波;
所述第五切换开关的第一端与第三混频器的输出端连接,第五切换开关的第二端在第五中频通道的输入端和第六中频通道的输入端之间进行切换;
处理器还用于在第五切换开关的第二端切换到第五中频通道的输入端时,配置第三本振以使第五中频通道输出具有第五中频频率的信号;处理器还用于在第五切换开关的第二端切换到第六中频通道的输入端时,配置第三本振以使第六中频通道输出具有第六中频频率的信号。
5.如权利要求4所述的双通道频谱分析仪,其特征在于,所述第三变频模块还包括第六切换开关;
所述第六切换开关的第一端为第三变频模块的输出端,第六切换开关的第二端在第五中频通道的输出端和第六中频通道的输出端之间进行切换。
6.如权利要求1所述的双通道频谱分析仪,其特征在于,所述第一中频通道包括第一放大器和第一带通滤波器,所述第一放大器的输入端与第一中频通道的输入端连接,第一放大器的输出端与第一带通滤波器的输入端连接,第一带通滤波器的输出端与第一中频通道的输出端连接。
7.如权利要求1至6中任一项所述的双通道频谱分析仪,其特征在于,所述双通道频谱分析仪还包括显示模块和控制面板,所述显示模块用于显示频谱分析仪所测量信号的频率及幅度;所述控制面板上设置有用于控制中频方案进行切换的按钮。
CN202110288132.9A 2021-03-18 2021-03-18 一种双通道频谱分析仪 Active CN112666394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110288132.9A CN112666394B (zh) 2021-03-18 2021-03-18 一种双通道频谱分析仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110288132.9A CN112666394B (zh) 2021-03-18 2021-03-18 一种双通道频谱分析仪

Publications (2)

Publication Number Publication Date
CN112666394A CN112666394A (zh) 2021-04-16
CN112666394B true CN112666394B (zh) 2021-06-01

Family

ID=75399515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110288132.9A Active CN112666394B (zh) 2021-03-18 2021-03-18 一种双通道频谱分析仪

Country Status (1)

Country Link
CN (1) CN112666394B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879643A (zh) * 2012-11-01 2013-01-16 南京国睿安泰信科技股份有限公司 一种新型频谱分析仪及方法
CN103888135A (zh) * 2012-12-20 2014-06-25 北京普源精电科技有限公司 一种具有降低杂散功能的射频信号源
CN104833854A (zh) * 2014-02-12 2015-08-12 苏州普源精电科技有限公司 一种扫频式频谱分析仪及其扫频方法
CN106645949A (zh) * 2016-09-26 2017-05-10 武汉大学 一种基于低频检波的外差扫频式频谱分析仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386061B2 (ja) * 2006-05-17 2014-01-15 株式会社アドバンテスト 周波数成分測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879643A (zh) * 2012-11-01 2013-01-16 南京国睿安泰信科技股份有限公司 一种新型频谱分析仪及方法
CN103888135A (zh) * 2012-12-20 2014-06-25 北京普源精电科技有限公司 一种具有降低杂散功能的射频信号源
CN104833854A (zh) * 2014-02-12 2015-08-12 苏州普源精电科技有限公司 一种扫频式频谱分析仪及其扫频方法
CN106645949A (zh) * 2016-09-26 2017-05-10 武汉大学 一种基于低频检波的外差扫频式频谱分析仪

Also Published As

Publication number Publication date
CN112666394A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
US7395060B2 (en) Signal testing system
US5952834A (en) Low noise signal synthesizer and phase noise measurement system
US20150177296A1 (en) Spectrum analyzer using multiple intermediate frequencies and multiple clock configurations for residual, spurious and image signal reduction
WO2013071810A1 (zh) 一种矢量信号分析仪
CN106886002B (zh) 一种频谱分析仪的校准方法
CN104459317B (zh) 一种可以抑制镜像频率的频谱分析仪
US20220158676A1 (en) Rf downconverter-tuner
US6057690A (en) Automatic testing device for signal evaluation
WO2023207252A1 (zh) 矢量网络分析系统
CN214473606U (zh) 一种双通道频谱分析仪
US5974362A (en) Signal generator for testing radio frequency components
CN112666394B (zh) 一种双通道频谱分析仪
CN109932564B (zh) 一种集成跟踪源的频谱分析仪
CN109541307B (zh) 基于单次变频技术实现超宽带信号分析功能的电路结构
JP4976583B2 (ja) 歪測定装置
CN210893160U (zh) 一种用于便携式通信与导航测试仪的中频信号产生电路
CN114614844A (zh) 一种双音信号的测试方法、电路及射频测试装置
Bale et al. Cross correlation residual phase noise measurements using two HP3048A systems and a PC based dual channel FFT spectrum analyser
US2756390A (en) Precision phase measuring circuit
JP2021089189A (ja) 信号解析装置及び信号解析方法
JP2769844B2 (ja) スペクトラム・アナライザ
CN210604778U (zh) 一种频率特性分析仪
US20090047918A1 (en) Mix and Match Preselector and RF Receiver
CN212008915U (zh) 一种雷达收发机测试仪
EP4336192A1 (en) Measurement device and method for operating a measurement device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant