WO2023207252A1 - 矢量网络分析系统 - Google Patents

矢量网络分析系统 Download PDF

Info

Publication number
WO2023207252A1
WO2023207252A1 PCT/CN2023/075177 CN2023075177W WO2023207252A1 WO 2023207252 A1 WO2023207252 A1 WO 2023207252A1 CN 2023075177 W CN2023075177 W CN 2023075177W WO 2023207252 A1 WO2023207252 A1 WO 2023207252A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
radio frequency
mixer
local oscillator
Prior art date
Application number
PCT/CN2023/075177
Other languages
English (en)
French (fr)
Inventor
黄磊
李成远
Original Assignee
苏州华兴源创科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州华兴源创科技股份有限公司 filed Critical 苏州华兴源创科技股份有限公司
Publication of WO2023207252A1 publication Critical patent/WO2023207252A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Definitions

  • the invention relates to the technical field of measurement development, and in particular to a vector network analysis system.
  • the vector network analysis system is a measuring instrument that integrates a signal source and a receiver. It is itself an excitation/response test system and can be used to measure the S parameters of radio frequency devices.
  • the system architecture of the traditional vector network analysis system is shown in Figure 1 (taking a dual-port vector network analyzer as an example).
  • PORT1 and PORT2 are connected to the two test ports of the device under test respectively.
  • the directional coupler connected to PORT1 separates two signals from PORT1, namely A1 and B1
  • the directional coupler connected to PORT2 separates two signals, namely A2 and B2, from PORT1.
  • A1, B1, A2, and B2 are mixed with the local oscillator signals to form 4 sets of IF signals.
  • the ADC Analog-to-Digital Converter, analog-to-digital converter
  • the DSP Digital Signal Processing, digital signal processing
  • the circuit part within the dotted box is the receiver path.
  • the receiver path usually includes down-conversion circuit, amplification circuit and signal processing circuit.
  • the network analyzer architecture under the traditional link needs to include two signal source devices, one is a radio frequency signal source and the other is a local oscillator signal source.
  • the vector network analyzer needs to work in a very broadband and high-frequency frequency range, the two ultra-wideband signal sources greatly increase the design difficulty and production cost of the vector network analyzer.
  • a vector network analysis system including a radio frequency source circuit for providing an excitation signal; a power distribution module connected to the radio frequency source circuit for dividing the excitation signal into a first excitation signal and a second excitation signal, The first output end of the power distribution module is connected to the test port of the device under test, and the first excitation signal is the input excitation signal of the device under test; the frequency synthesis circuit is connected to the second end of the power distribution module. The output end is connected and used to process the second excitation signal to obtain the local oscillator signal; the receiver circuit is connected to the frequency synthesis circuit and the test port of the device under test respectively, and is used to analyze the The signal at the test port is separated and mixed with the local oscillator signal to obtain an intermediate frequency signal. It is also used to perform data analysis on the intermediate frequency signal to obtain test information of the device under test.
  • the power distribution module includes a first power divider, and the first power divider divides the excitation signal equally into the first excitation signal and the second excitation signal.
  • the power distribution module further includes a first radio frequency signal amplification unit, connected to the first output end of the first power divider, for amplifying the first excitation signal; a second radio frequency signal amplification unit, with the The second output end of a power divider is connected to amplify the second excitation signal; the switch unit is respectively connected to the first radio frequency signal amplification unit, the first test port of the device under test and the device under test.
  • the second test port of the device under test is connected to connect the connection path between the first radio frequency signal amplification unit and the first test port of the device under test, or to conduct the first radio frequency signal amplification unit. A connection path to the second test port of the device under test.
  • the frequency synthesis circuit includes a modulation unit, the first end of the modulation unit is grounded for providing a modulation signal; a first mixer is connected to the second output end of the power distribution module respectively. Connected to the second end of the modulation unit, used to mix the second excitation signal and the modulation signal to obtain a local oscillator signal; a second power divider, connected to the first mixer connected to the first local oscillator signal and used to divide the local oscillator signal into a first local oscillator signal and a second local oscillator signal; a first filtering unit connected to the first end of the second power divider, used to divide the The first local oscillator signal is filtered; a third radio frequency signal amplification unit is connected to the first filter unit and used to amplify the first local oscillator signal; a third power divider is used to amplify the third radio frequency signal The second filter unit is connected to the second end of the second power divider and is used to divide the first local oscillator signal into two paths.
  • a fourth radio frequency signal amplification unit connected to the second filtering unit, for amplifying the second local oscillator signal
  • a fourth power divider connected to the fourth radio frequency signal amplification unit, for The second local oscillator signal is divided into two paths.
  • the modulation unit includes a crystal oscillator.
  • the receiver circuit includes a signal separation unit, connected to the test port of the device under test, for separating the signal at the test port into a transmission signal and a reflected signal; the first mixer a frequency unit, respectively connected to the first output end of the signal separation unit and the frequency synthesis circuit, for mixing the transmission signal and the local oscillator signal to obtain a first intermediate frequency signal; a second A mixing unit, respectively connected to the second output end of the signal separation unit and the frequency synthesis circuit, is used to mix the reflected signal and the local oscillator signal to obtain a second intermediate frequency signal; signal A processing unit, respectively connected to the first mixing unit and the second mixing unit, for performing data analysis on the first intermediate frequency signal and the second intermediate frequency signal to obtain test results of the device under test information.
  • the signal separation unit includes a first directional coupler and a second directional coupler
  • the first mixing unit includes a second mixer and a third mixer
  • the second The mixing unit includes a fourth mixer and a fifth mixer
  • the signal processing unit includes an analog-to-digital converter and a digital signal processor
  • the first excitation signal is transmitted to the first directional coupler through the first directional coupler.
  • the first port of the device under test, the first output terminal of the first directional coupler is connected to the first input terminal of the second mixer, and the second input terminal of the second mixer is connected to the first output end of the third power divider, the output end of the second mixer is connected to the analog-to-digital converter, and the second output end of the first directional coupler is connected to the
  • the first input end of the fourth mixer is connected, the second input end of the fourth mixer is connected to the second output end of the third power divider, and the output of the fourth mixer terminal is connected to the analog-to-digital converter, and the first excitation signal It is transmitted to the second port of the device under test through the second directional coupler, and the first output end of the second directional coupler is connected to the first input end of the third mixer.
  • the second input terminal of the third mixer is connected to the first output terminal of the fourth power divider, the output terminal of the third mixer is connected to the analog-to-digital converter, and the second directional coupling
  • the second output end of the mixer is connected to the first input end of the fifth mixer, and the second input end of the fifth mixer is connected to the second output end of the fourth power divider,
  • the output end of the fifth mixer is connected to the analog-to-digital converter, and the analog-to-digital converter is connected to the digital signal processor.
  • the radio frequency source circuit includes a radio frequency signal source.
  • the radio frequency signal source outputs a frequency range of 75MHz to 6GHz and a power range of -60dbm to -10dbm.
  • the radio frequency source circuit further includes an output matching unit connected to the radio frequency signal source for achieving impedance matching between the excitation signal and an external load resistor; a third filtering unit, The output matching unit is connected and used to filter the excitation signal.
  • the vector network analysis system further includes a display module connected to the receiver circuit for displaying test information of the device under test.
  • the above vector network analysis system uses a radio frequency source circuit to provide an excitation signal, and uses a power distribution module to divide the excitation signal into two channels.
  • One channel is transmitted to the device under test as the input excitation signal of the device under test; the other channel is transmitted to the frequency synthesis circuit.
  • the local oscillator signal is formed through the processing of the frequency synthesis circuit.
  • the receiver circuit separates and couples the signal at the test port of the device under test, and mixes it with the local oscillator signal to obtain the intermediate frequency signal.
  • the receiver circuit can obtain the test information of the device under test by performing data analysis on the intermediate frequency signal.
  • the vector network analysis system divides the power of a single radio frequency signal source by optimizing the radio frequency source circuit of the vector network analysis system, that is, dividing the excitation signal emitted by the radio frequency source circuit into two channels. Using one of the excitation signals to provide the local oscillator signal replaces the local oscillator signal source in the traditional link structure, which can effectively simplify the circuit design of the vector network analysis system and reduce the production cost of the hardware architecture.
  • Figure 1 is a schematic structural diagram of a traditional two-port vector network analysis system
  • Figure 2 is a schematic structural diagram of a vector network analysis system according to one embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a power distribution module in one embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a frequency synthesis circuit in one embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of a receiver circuit in one embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of a receiver circuit in another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a radio frequency source circuit in one embodiment of the present disclosure.
  • Vector network analyzer is a common radio frequency measuring instrument, mainly used to measure the performance parameters of high-frequency devices, circuits and systems, such as linear parameters, nonlinear parameters, frequency conversion parameters, etc.
  • the traditional network analyzer architecture requires two signal sources, one is an RF signal source and the other is a local oscillator signal source.
  • the vector network analyzer needs to work in a very broadband and high-frequency frequency range. It can be seen that two ultra-wideband signal sources will greatly increase the design difficulty and cost of the vector network analyzer.
  • FIG. 2 is a schematic structural diagram of a vector network analysis system according to one embodiment of the present invention.
  • the vector network analysis system may include a radio frequency source circuit 100, a power distribution module 200, a frequency synthesis circuit 300 and a receiver circuit 400. .
  • the radio frequency source circuit 100 can be used to provide an excitation signal.
  • the power distribution module 200 is connected to the radio frequency source circuit 100.
  • the power distribution module 200 can divide the excitation signal output by the radio frequency source circuit 100 into two channels, namely a first excitation signal and a second excitation signal.
  • the first output end of the power distribution module 200 is connected to the test port of the device under test, that is, the first excitation signal is transmitted to the device under test through the first output end of the power distribution module 200 device.
  • the first excitation signal can be used as an input excitation signal for the device under test, and the device under test can respond to the excitation signal through transmission and reflection.
  • the receiver circuit 400 Since the network analyzer needs to test the relationship between the transmission and reflection characteristics of the device under test and the operating frequency and power, the receiver circuit 400 is connected to the test port of the device under test, and the receiver circuit 400 can be used to receive signals at the test port of the device under test. signal of. After the excitation signal is input to the device under test, reflection will occur. The reflected signal at the port of the device under test propagates on the same physical path as the input excitation signal. Therefore, the receiver circuit 400 can also be used to detect signals propagating in opposite directions on the same physical path. Separation and extraction.
  • the transmission signal and the reflection signal of the device under test can be obtained, where the transmission signal can be the first excitation signal, that is, the signal under test. Input stimulus signal to the device.
  • the frequency synthesis circuit 300 is connected to the second output terminal of the power distribution module 200 , that is, the second excitation signal is transmitted to the frequency synthesis circuit 300 through the second output terminal of the power distribution module 200 .
  • the frequency synthesis circuit 300 can process the second excitation signal to obtain the local oscillator signal.
  • the receiver circuit 400 After the receiver circuit 400 completes the separation of the signal at the port of the device under test, it mixes the separated signal with the local oscillator signal to obtain a relatively low-frequency intermediate frequency signal. After the IF signal is band-pass filtered, the receiver bandwidth can be narrowed and the sensitivity and dynamic range can be significantly improved. Then, the receiver circuit 400 processes the intermediate frequency signal to obtain test information such as amplitude and phase. In some embodiments of the present disclosure, the test information may also be S-parameters (Scatter parameters) of the device under test.
  • the test information may also be S-parameters (Scatter parameters) of the device under test.
  • the above-mentioned vector network analysis system optimizes the circuit design of the signal source part and divides the power of a single radio frequency signal source, that is, the excitation signal emitted by the radio frequency source circuit 100 is divided into two channels.
  • One excitation signal is used as the input excitation signal of the device under test, and the other excitation signal can be used to provide a local oscillator signal after processing, replacing the local oscillator signal source in the traditional link structure.
  • the vector network analysis system provided by the present disclosure can use one signal source to realize the functions of two signal sources, effectively simplifying the circuit design of the vector network analysis system, and also reducing the production cost of the hardware architecture.
  • FIG. 3 is a schematic structural diagram of a power distribution module in one embodiment of the present disclosure.
  • the power distribution module 200 may include a first power divider 210 .
  • the input end of the first power divider 210 is connected to the output end of the radio frequency source circuit 100.
  • the first power divider 210 can evenly divide the excitation signal output by the radio frequency source circuit 100 into two paths, namely the first excitation signal and the second
  • the excitation signals are two identical radio frequency signals.
  • the radio frequency source circuit 100 outputs an excitation signal of 200 MHz
  • the first power divider 210 can divide it into two equal channels, and the first excitation signal and the second excitation signal are both 100 MHz radio frequency signals.
  • the above-mentioned vector network analysis system uses the first power divider 210 to divide the excitation signal emitted by the radio frequency source circuit 100 into two paths.
  • One excitation signal can be used as the input excitation signal of the device under test, and the other excitation signal can be used to provide the local oscillator signal after processing.
  • One signal source to realize the functions of two signal sources, compared with traditional network analyzers, One signal source is saved, and the cost of a single board is greatly reduced. It can be seen that the vector network analysis system provided by the present disclosure solves the problem of high design difficulty and high production cost caused by the need for two ultra-wideband signal sources in the network analyzer architecture under traditional links.
  • the power distribution module 200 may further include a first radio frequency signal amplification unit 220, a second radio frequency signal amplification unit 230 and a switch unit 240.
  • the first radio frequency signal amplification unit 220 is connected to the first output end of the first power divider 210 and is used to amplify the first excitation signal.
  • the second radio frequency signal amplification unit 230 is connected to the second output end of the first power divider 210 and is used to amplify the second excitation signal. Since the excitation signal output by the radio frequency source circuit 100 is divided into two channels by the first power divider 210, the frequencies of the first excitation signal and the second excitation signal will have a certain degree of deviation compared with the excitation signal before power division. attenuation.
  • the first RF signal amplification unit 220 and the second RF signal amplification unit 230 are used to amplify the first excitation signal and the second excitation signal respectively, which can ensure that the first excitation signal and the second excitation signal meet the testing requirements of the device under test.
  • the switch unit 240 may be a single-pole double-throw radio frequency switch.
  • the use of the single-pole double-throw radio frequency switch can enable the above-mentioned vector network analysis system to achieve the purpose of dual-port testing.
  • the input end of the switch unit 240 is connected to the first RF signal amplification unit 220, the first output end of the switch unit 240 is connected to the first test port of the device under test, and the second output end of the switch unit 240 is connected to the first test port of the device under test. Connect the second test port.
  • the switch unit 240 can be controlled to connect the connection path between the first radio frequency signal amplification unit 220 and the first test port of the device under test, so as to amplify the first test port of the device under test.
  • An excitation signal is transmitted to the first test port of the device under test. Since the switch unit 240 is a single-pole double-throw radio frequency switch, when the connection between the first radio frequency signal amplification unit 220 and the first test port of the device under test is turned on, the first radio frequency signal amplification unit 220 and the device under test are connected. The connection between the second test port will be lost.
  • the switch unit 240 can be controlled to turn on the connection path between the first RF signal amplification unit 220 and the second test port of the device under test, so as to amplify the signal.
  • the final first excitation signal is transmitted to the second test port of the device under test.
  • the number of test ports of the vector network analysis system can also be increased to 3 ports, 4 ports, or 6 ports by increasing the number of radio frequency switches or using single-pole multi-throw radio frequency switches.
  • the input terminals of two single-pole double-throw radio frequency switches are connected to the output terminals of the first radio frequency signal amplification unit 220, and the two output terminals of one single-pole double-throw radio frequency switch are respectively connected to the first test terminal of the device under test.
  • port is connected to the second test port, another single-pole
  • the two output terminals of the double-throw radio frequency switch are connected to the third test port and the fourth test port of the device under test, thereby achieving the purpose of having four test ports in the vector network analysis system.
  • one or more sets of radio frequency signal amplification units may be disposed between the first output end of the switch unit 240 and the first test port of the device under test to further amplify the third signal transmitted to the first test port.
  • An excitation signal to ensure that the first excitation signal is an excitation signal that meets the test frequency and power requirements.
  • one or more sets of radio frequency signal amplification units can also be provided between the second output end of the switch unit 240 and the second test port of the device under test to further amplify the first excitation signal transmitted to the second test port. To ensure that the first excitation signal is an excitation signal that meets the test frequency and power requirements.
  • Figure 4 is a schematic structural diagram of a frequency synthesis circuit in one embodiment of the present disclosure.
  • the frequency synthesis circuit 300 may include a modulation unit 310, a first mixer 320, a second power divider 330, a first Filter unit 340, third radio frequency signal amplification unit 350, third power divider 360, second filter unit 370, fourth radio frequency signal amplification unit 380, and fourth power divider 390.
  • the first terminal of the modulation unit 310 is grounded, and the modulation unit 310 may be used to provide a modulated signal.
  • the first mixer 320 is respectively connected to the second output end of the power distribution module 200 and the second end of the modulation unit 310, and is used to mix the second excitation signal and the modulation signal to obtain the local oscillator signal. By mixing the modulation signal provided by the modulation unit 310 with the second excitation signal, the size of the local oscillator signal can be adjusted according to actual test requirements.
  • the modulation unit 310 can be made to provide a 10MHz modulation signal, and the first mixer 320 is used to combine the modulation signal with The second excitation signal is down-converted and mixed to obtain a 90MHz local oscillator signal.
  • the modulation unit 310 may include a crystal oscillator. Since crystal oscillators have the advantages of accurate timing, low power consumption, durability, low device cost, and high output frequency accuracy, crystal oscillators can be selected to provide stable modulation signals. Among them, preferably, a 10 MHz crystal oscillator is selected as the modulation unit 310 .
  • the RF source circuit 100 of the above-mentioned vector network analysis system divides the power of a single RF signal source, and at the same time optimizes the frequency synthesis circuit 300, using an ordinary 10MHz crystal filter and a branched excitation signal to perform down-conversion mixing instead.
  • the local oscillator signal source in the traditional structure the mixed signal is filtered and the link power is divided. At the same time, after signal amplification, power distribution is performed.
  • the vector analyzer architecture provided by the present disclosure, there is no need to add additional local oscillator signal sources, which can simplify the design of complex vector network analysis systems, reduce hardware architecture costs, and simplify the output chain of ultra-wideband radio frequency signal sources. road.
  • one or more sets of attenuators can be added to the link of the vector network analysis system, and the attenuators can be used to adjust the size of the signal in the circuit and/or improve the impedance matching. .
  • the receiver circuit 400 part needs to be designed globally symmetrically during the circuit layout process.
  • the phase and amplitude symmetry of the local oscillator signal link must also be ensured.
  • the signal at a test port will separate two different signals: the reflection signal and the transmission signal. Both signals need to be mixed with the local oscillator signal to obtain the low-frequency intermediate frequency signal, and then further data analysis of the intermediate frequency signal is performed. Therefore, the frequency synthesis circuit 300 in the dual-port vector network analysis system needs to output a total of four local oscillator signals that are transmitted to the receiver circuit 400 in order to test the transmission/reflection characteristics of the dual-port device under test.
  • the second power divider 330 in the frequency synthesis circuit 300 is connected to the first mixer 320, and can divide the local oscillator signal output by the first mixer 320 into two channels, namely the first local oscillator signal and the third local oscillator signal. Two local oscillator signals.
  • the first output terminal of the second power divider 330 is connected to the first filter unit 340
  • the second output terminal of the second power divider 330 is connected to the second filter unit 370 .
  • the first filtering unit 340 can filter the first local oscillator signal to remove noise in the first local oscillator signal, improve the accuracy and stability of the first local oscillator signal, and thereby ensure the accuracy of the test results of the vector network analysis system. sex.
  • the second filtering unit 370 can filter the second local oscillator signal to remove noise in the second local oscillator signal and improve the accuracy and stability of the second local oscillator signal.
  • the output end of the first filter unit 340 is connected to the input end of the third radio frequency signal amplification unit 350 , and the filtered first local oscillator signal is transmitted to the third radio frequency signal amplification unit 350 .
  • the output end of the second filter unit 370 is connected to the input end of the fourth radio frequency signal amplification unit 380 , and the filtered second local oscillator signal is transmitted to the fourth radio frequency signal amplification unit 380 .
  • the third radio frequency signal amplification unit 350 and the fourth radio frequency signal amplification unit 380 to respectively amplify the first local oscillator signal and the second local oscillator signal, it can be ensured that the first local oscillator signal and the second local oscillator signal satisfy the requirement. test requirements of the test device.
  • the output end of the third radio frequency signal amplification unit 350 is connected to the input end of the third power divider 360 , and the filtered and amplified first local oscillator signal is transmitted to the third power divider 360 .
  • the output end of the fourth radio frequency signal amplification unit 380 is connected to the input end of the fourth power divider 390 , and the filtered and amplified second local oscillator signal is transmitted to the fourth power divider 390 .
  • the third power divider 360 can evenly divide the first local oscillator signal into two channels
  • the fourth power divider 390 can evenly divide the second local oscillator signal into two channels.
  • the two first local oscillator signals and the two second local oscillator signals can be mixed with the signals received from each channel in the receiver circuit 400, so as to down-convert the received signals into intermediate frequency signals, thereby improving the performance of the device under test.
  • the clutter distortion component in the output signal has a good suppression effect.
  • one or more sets of radio frequency signal amplification units may be provided at both output ends of the third power divider 360 to further amplify the two first local oscillator signals to ensure that the two first local oscillator signals are The local oscillator signal can meet the test frequency and power requirements.
  • one or more sets of radio frequency signal amplification units can be provided at both output ends of the fourth power divider 390 to further amplify the two second local oscillator signals to ensure that the two second local oscillator signals can Meet test frequency and power requirements.
  • FIG. 5 is a schematic structural diagram of a receiver circuit in one embodiment of the present disclosure.
  • the receiver circuit 400 may include a signal separation unit 410, a first mixing unit 420, a second mixing unit 430 and a signal Processing unit 440.
  • the vector network analysis system uses the signal separation unit 410 to separate and extract signals propagating in opposite directions on the same physical path.
  • the signal separation unit 410 can separate the signal at the test port into a transmission signal and a reflection signal. When the reflection characteristics/transmission characteristics of a certain port of the device under test are to be tested, the signal separation unit 410 can be directly connected to the test port.
  • the first mixing unit 420 is connected to the first output end of the signal separation unit 410 and the frequency synthesis circuit 300 respectively.
  • the first frequency mixing unit 420 mixes the transmission signal separated by the signal separation unit 410 and the local oscillator signal output by the frequency synthesis circuit 300 to modulate the higher frequency transmission signal into a first intermediate frequency signal.
  • the clutter distortion component in the transmission signal at the test port of the device under test is effectively suppressed.
  • the first mixing unit 420 is used to mix the local oscillator signal and the transmission signal to obtain a 10MHz intermediate frequency signal.
  • the second mixing unit 430 is connected to the second output end of the signal separation unit 410 and the frequency synthesis circuit 300 respectively. Similarly, the second mixing unit 430 can modulate the higher frequency reflection signal into a second intermediate frequency signal by mixing the reflection signal separated by the signal separation unit 410 and the local oscillator signal output by the frequency synthesis circuit 300 . By down-converting the reflected signal to the second intermediate frequency signal, the clutter distortion component in the reflected signal at the test port of the device under test is also effectively suppressed.
  • the signal processing unit 440 is connected to the first mixing unit 420 and the second mixing unit 430 respectively, and may be used to perform data analysis on the first intermediate frequency signal and the second intermediate frequency signal to obtain test information of the device under test.
  • the signal processing unit 440 can perform analog-to-digital conversion, band-pass filtering, and other processing on the first intermediate frequency signal and the second intermediate frequency signal, which can narrow the receiver bandwidth and significantly improve the sensitivity and dynamic range.
  • the signal processing unit 440 can also perform Fourier transform on the first intermediate frequency signal and the second intermediate frequency signal in the digital signal state to obtain test information such as amplitude and phase.
  • the test information may also be S-parameters (Scatter parameters) of the device under test.
  • Figure 6 is a schematic structural diagram of a receiver circuit in another embodiment of the present disclosure.
  • the signal separation unit 410 may include a first directional coupler 411 and a second directional coupler 412.
  • the first mixing unit 420 may include a second mixer 421 and a third mixer 422, and the second mixing unit 430 may include a fourth mixer 431 and a fifth mixer.
  • the signal processing unit 440 may include an analog-to-digital converter 441 and a digital signal processor 442.
  • PORT1 may be a port through which the vector network analysis system is connected to the first test port of the device under test
  • PORT2 may be a port through which the vector network analysis system is connected to the second test port of the device under test.
  • the first directional coupler 411 is connected at the PORT1 port.
  • the switch unit 240 turns on the connection path between the power distribution module 200 and the first test port, the first excitation signal can be transmitted to First test port.
  • the reflected signal emitted by the first test port in response to the first excitation signal is also transmitted at the PORT1 port. That is, the first directional coupler 411 can obtain coupled transmission signals and reflected signals at the PORT1 port.
  • the first directional coupler 411 can be used to separate the transmitted signal and the reflected signal at the PORT1 port.
  • the second directional coupler 412 is connected at the PORT2 port.
  • the switch unit 240 turns on the connection path between the power distribution module 200 and the second test port, the first excitation signal is transmitted to the second test through the second directional coupler 412 port.
  • the reflected signal emitted by the second test port in response to the first excitation signal is also transmitted at the PORT2 port. That is, the second directional coupler 412 can obtain coupled transmission signals and reflected signals at the PORT2 port.
  • the second directional coupler 412 can be used to separate the transmitted signal and the reflected signal at the PORT2 port.
  • the two output terminals of the third power divider 360 are respectively defined as A1 and B1, that is, the third power divider 360 outputs two first local oscillator signals through the two output terminals A1 and B1 respectively.
  • the two output terminals of the fourth power divider 390 are respectively defined as A2 and B2, that is, the fourth power divider 390 outputs two second local oscillator signals through the two output terminals A2 and B2 respectively.
  • the first output terminal of the first directional coupler 411 is connected to the first input terminal of the second mixer 421.
  • the transmission signal separated by the first directional coupler 411 is transmitted to the second mixer 421.
  • the second input terminal of the mixer 421 may be connected to the A1 output terminal of the third power divider 360 .
  • the second mixer 421 down-converts and mixes the transmission signal with the first local oscillator signal output from the A1 terminal of the third power divider 360, and can modulate the higher-frequency reflected signal into the intermediate frequency signal IFA1, which is suitable for the device under test.
  • the clutter distortion component in the transmission signal at the first test port has a good suppression effect.
  • the second output end of the first directional coupler 411 is connected to the first input end of the fourth mixer 431.
  • the reflected signal separated by the first directional coupler 411 is transmitted to the fourth mixer 431.
  • the second input terminal of the mixer 431 may be connected to the B1 output terminal of the third power divider 360 .
  • the fourth mixer 431 performs down-conversion mixing of the transmission signal and the first local oscillator signal output from the B1 terminal of the third power divider 360, and can modulate the higher frequency reflection signal into the intermediate frequency signal IFB1 to suppress the reflection signal. clutter distortion components in .
  • the first output terminal of the second directional coupler 412 is connected to the first input terminal of the third mixer 422.
  • the transmission signal separated by the second directional coupler 412 is transmitted to the third mixer 422.
  • the third mixer 422 The second input terminal of the converter 422 may be connected to the A2 output terminal of the fourth power divider 390.
  • the third mixer 422 performs down-conversion mixing of the transmission signal and the second local oscillator signal output from the A2 terminal of the fourth power divider 390, and can modulate the higher frequency transmission signal into the intermediate frequency signal IFA2 to suppress Control the clutter distortion components in the transmitted signal.
  • the second output terminal of the second directional coupler 412 is connected to the first input terminal of the fifth mixer 432.
  • the reflected signal separated by the second directional coupler 412 is transmitted to the fifth mixer 432.
  • the fifth mixer 432 The second output terminal of the converter 432 may be connected to the B2 output terminal of the fourth power divider 390.
  • the fifth mixer 432 performs down-conversion mixing of the transmission signal and the second local oscillator signal output from the B2 terminal of the fourth power divider 390, and can modulate the higher frequency reflection signal into the intermediate frequency signal IFB2 to suppress the reflection signal. clutter distortion components in .
  • the design of the above receiver circuit 400 can perform link mixing with the signals of two directional couplers under the same phase and amplitude, thereby obtaining four intermediate frequency signals.
  • the output terminals of the second mixer 421 , the third mixer 422 , the fourth mixer 431 and the fifth mixer 432 are all connected to the analog-to-digital converter 441 .
  • Analog-to-digital converter 441 is connected to digital signal processor 442.
  • the analog-to-digital converter 441 can be used to collect four sets of intermediate frequency signals IFA1, IFB1, IFA2, and IFB2 output by the second mixer 421, the third mixer 422, the fourth mixer 431, and the fifth mixer 432. and sent to the digital signal processor 442 for data analysis.
  • the analog-to-digital converter 441 can also perform analog-to-digital conversion processing on the four sets of intermediate frequency signals to facilitate the subsequent analysis of the signals by the digital signal processor 442.
  • the digital signal processor 442 can perform Fourier transform on the four sets of intermediate frequency signals in the digital signal state to obtain test information such as amplitude and phase.
  • the digital signal processor 442 may be a DSP chip or an FPGA chip (Field Programmable Gate Array). Use DSP chips or FPGA chips to implement data analysis of intermediate frequency signals.
  • the intermediate frequency signals can be filtered, amplified, Fourier transformed and other processes to extract corresponding amplitude and phase information and other data from the intermediate frequency signals.
  • the vector network analysis system compared with the traditional two-port network analyzer, has consistent test data and saves an ultra-wideband signal source, thus significantly reducing the cost of a single board card.
  • FIG. 7 is a schematic structural diagram of a radio frequency source circuit in one embodiment of the present disclosure.
  • the radio frequency source circuit 100 may include a radio frequency signal source 110 .
  • a radio frequency signal source 110 with a frequency range of 75MHz to 6GHz and a power range of -60dbm to -10dbm can be selected to provide the excitation signal.
  • the vector network analysis system optimizes the circuit design of the radio frequency source circuit and can generate radio frequency signals with a frequency range of 75MHz to 6GHz and a power range of -60dbm to -10dbm.
  • the excitation signal generated by the radio frequency signal source 110 is processed. Power is evenly distributed and divided into two symmetrical links.
  • the 10MHz crystal oscillator cooperates with an excitation signal distributed by the radio frequency source circuit 100 for down-conversion mixing. After passing through the power divider, the down-converted signal can be filtered, amplified and other signal processing to obtain a 65MHz-5990MHz signal.
  • This Part of the signal can be considered as a new type of local oscillator signal, and the amplitude of the local oscillator signal can be controlled to be 0dbm in the entire frequency band.
  • the connection link between the frequency synthesis circuit 300 and the receiver circuit 400 it is necessary to ensure that the phase and amplitude of the local oscillator signal link are symmetrical.
  • the radio frequency source circuit 100 may further include an output matching unit 120 and a third filtering unit 130.
  • the output matching unit 120 is connected to the radio frequency signal source 110 and can be used to achieve impedance matching between the excitation signal and the external load resistor.
  • the output matching unit 120 can convert the external load resistance into the optimal load resistance required by the amplifier to ensure maximum output power.
  • the output matching unit 120 can be used to achieve high-efficiency energy transmission, filter out high-order harmonic components to ensure that only high-frequency fundamental wave power is output on the external load, and achieve impedance matching between the excitation signal and the external load resistor.
  • the third filtering unit 130 is connected to the output matching unit 120 and may be used to filter the excitation signal.
  • the third filtering unit 130 can filter the excitation signal to remove noise in the excitation signal and improve the accuracy and stability of the excitation signal.
  • the vector network analysis system may further include a display module.
  • the display module is connected to the receiver circuit 400 and can be used to display test information of the device under test. By displaying the test information of the device under test on the display module, the user can intuitively understand the test results of the device under test and optimize the user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本公开涉及测量开发技术领域,特别涉及了一种矢量网络分析系统,包括射频源电路;功率分配模块,与射频源电路相连接,用于将激励信号分为第一激励信号和第二激励信号,功率分配模块的第一输出端与被测器件的测试端口相连接;频率合成电路,与功率分配模块的第二输出端相连接,用于对第二激励信号进行处理,以获取本振信号;接收机电路,分别与频率合成电路和被测器件的测试端口相连接,用于对测试端口处的信号进行分离,与本振信号进行混频,以获取中频信号,还用于对中频信号进行数据分析,获取被测器件的测试信息。通过对射频信号源进行功分,并利用其中一路的激励信号提供本振信号,有效地简化了矢量网络分析系统的电路设计、减小了硬件成本。

Description

矢量网络分析系统 技术领域
本发明涉及测量开发技术领域,特别是涉及一种矢量网络分析系统。
背景技术
矢量网络分析系统是一种信号源与接收机一体的测量仪器,它本身就是一个激励/响应测试系统,可以用于测量射频器件的S参数。传统的矢量网络分析系统的系统架构如图1所示(以双端口矢量网络分析仪为例),图1中PORT1和PORT2分别与被测器件的两个测试端口相连接。与PORT1连接的定向耦合器从PORT1处分离出两路信号分别为A1和B1,与PORT2连接的定向耦合器从PORT1处分离出两路信号分别为A2和B2。A1、B1、A2、B2分别与本振信号混频后形成了4组中频信号IF,ADC(Analog-to-Digital Converter,模数转换器)芯片对4组中频信号IF进行采集并传送至DSP(Digital Signal Processing,数字信号处理)中进行数据分析。虚线框内的电路部分是接收机通路。接收机通路通常包括下变频电路、放大电路以及信号处理电路等部分。
从图1中可以看出,传统链路下的网络分析仪架构需要包括两个信号源器件,一个是射频信号源,一个是本振信号源。然而,由于矢量网络分析仪需要工作在非常宽带且高频的频率范围,因此,两个超宽带信号源大大增加了矢量网络分析仪的设计难度和生产成本。
发明内容
基于此,有必要针对传统链路下的网络分析仪架构中需要两个超宽带信号源,大大增加了矢量网络分析仪的设计难度和生产成本的问题,提供一种矢量网络分析系统。
一种矢量网络分析系统,包括射频源电路,用于提供激励信号;功率分配模块,与所述射频源电路相连接,用于将所述激励信号分为第一激励信号和第二激励信号,所述功率分配模块的第一输出端与被测器件的测试端口相连接,所述第一激励信号为所述被测器件的输入激励信号;频率合成电路,与所述功率分配模块的第二输出端相连接,用于对所述第二激励信号进行处理,以获取本振信号;接收机电路,分别与所述频率合成电路和所述被测器件的测试端口相连接,用于对所述测试端口处的信号进行分离,并与所述本振信号进行混频,以获取中频信号,还用于对所述中频信号进行数据分析,以获取所述被测器件的测试信息。
在其中一个实施例中,所述功率分配模块包括第一功分器,所述第一功分器将所述激励信号平均分配分成所述第一激励信号和所述第二激励信号。
在其中一个实施例中,所述功率分配模块还包括第一射频信号放大单元,与所述第一功分器的第一输出端相连接,用于放大所述第一激励信号;第二射频信号放大单元,与所述第 一功分器的第二输出端相连接,用于放大所述第二激励信号;开关单元,分别与所述第一射频信号放大单元、所述被测器件的第一测试端口和所述被测器件的第二测试端口相连接,用于导通所述第一射频信号放大单元与所述被测器件的第一测试端口之间的连接通路,或导通所述第一射频信号放大单元与所述被测器件的第二测试端口之间的连接通路。
在其中一个实施例中,所述频率合成电路包括调制单元,所述调制单元的第一端接地,用于提供调制信号;第一混频器,分别与所述功率分配模块的第二输出端和所述调制单元的第二端相连接,用于将所述第二激励信号与所述调制信号进行混频,以获取本振信号;第二功分器,与所述第一混频器相连接,用于将所述本振信号分为第一本振信号和第二本振信号;第一滤波单元,与所述第二功分器的第一端相连接,用于对所述第一本振信号进行滤波;第三射频信号放大单元,与所述第一滤波单元相连接,用于放大所述第一本振信号;第三功分器,与所述第三射频信号放大单元相连接,用于将所述第一本振信号分为两路;第二滤波单元,与所述第二功分器的第二端相连接,用于对所述第二本振信号进行滤波;第四射频信号放大单元,与所述第二滤波单元相连接,用于放大所述第二本振信号;第四功分器,与所述第四射频信号放大单元相连接,用于将所述第二本振信号分为两路。
在其中一个实施例中,所述调制单元包括晶体振荡器。
在其中一个实施例中,所述接收机电路包括信号分离单元,与所述被测器件的测试端口相连接,用于对所述测试端口处的信号分离为传输信号和反射信号;第一混频单元,分别与所述信号分离单元的第一输出端和所述频率合成电路相连接,用于对所述传输信号和所述本振信号进行混频,以获取第一中频信号;第二混频单元,分别与所述信号分离单元的第二输出端和所述频率合成电路相连接,用于对所述反射信号和所述本振信号进行混频,以获取第二中频信号;信号处理单元,分别与所述第一混频单元和所述第二混频单元相连接,用于对所述第一中频信号和第二中频信号进行数据分析,以获取所述被测器件的测试信息。
在其中一个实施例中,所述信号分离单元包括第一定向耦合器和第二定向耦合器,所述第一混频单元包括第二混频器和第三混频器,所述第二混频单元包括第四混频器和第五混频器,所述信号处理单元包括模数转换器和数字信号处理器,所述第一激励信号通过所述第一定向耦合器传输至所述被测器件的第一端口,所述第一定向耦合器的第一输出端与所述第二混频器的第一输入端相连接,所述第二混频器的第二输入端与第三功分器的第一输出端相连接,所述第二混频器的输出端与所述模数转换器相连接,所述第一定向耦合器的第二输出端与所述第四混频器的第一输入端相连接,所述第四混频器的第二输入端与所述第三功分器的第二输出端相连接,所述第四混频器的输出端与所述模数转换器相连接,所述第一激励信号 通过所述第二定向耦合器传输至所述被测器件的第二端口,所述第二定向耦合器的第一输出端与所述第三混频器的第一输入端相连接,所述第三混频器的第二输入端与第四功分器的第一输出端相连接,所述第三混频器的输出端与所述模数转换器相连接,所述第二定向耦合器的第二输出端与所述第五混频器的第一输入端相连接,所述第五混频器的第二输入端与所述第四功分器的第二输出端相连接,所述第五混频器的输出端与所述模数转换器相连接,所述模数转换器与所述数字信号处理器相连接。
在其中一个实施例中,所述射频源电路包括射频信号源,所述射频信号源输出的频率范围为75MHz~6GHz,功率范围为-60dbm~-10dbm。
在其中一个实施例中,所述射频源电路还包括输出匹配单元,与所述射频信号源相连接,用于实现所述激励信号与外接负载电阻之间的阻抗匹配;第三滤波单元,与所述输出匹配单元相连接,用于对所述激励信号进行滤波。
在其中一个实施例中,所述矢量网络分析系统还包括显示模块,与所述接收机电路相连接,用于对所述被测器件的测试信息进行显示。
上述矢量网络分析系统,利用射频源电路提供激励信号,利用功率分配模块将激励信号分为两路,一路传输至被测器件,作为被测器件的输入激励信号;另一路传输至频率合成电路,通过频率合成电路的处理形成本振信号。接收机电路对被测器件的测试端口处信号进行分离、耦合,并与本振信号进行混频以获取中频信号。接收机电路通过对中频信号进行数据分析,可以获取被测器件的测试信息。本公开提供的矢量网络分析系统,通过优化矢量网络分析系统的射频源电路,将单一的射频信号源进行功分,即,将射频源电路发出的激励信号分为两路。利用其中一路的激励信号来提供本振信号,代替了传统链路结构中的本振信号源,可以有效地简化矢量网络分析系统的电路设计,且减小硬件架构的生产成本。
附图说明
为了更清楚地说明本说明书实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种传统的双端口矢量网络分析系统的结构示意图;
图2为本发明其中一实施例的矢量网络分析系统的结构示意图;
图3为本公开其中一个实施例中功率分配模块的结构示意图;
图4为本公开其中一个实施例中频率合成电路的结构示意图;
图5为本公开其中一个实施例中接收机电路的结构示意图;
图6为本公开另一个实施例中接收机电路的结构示意图;
图7为本公开其中一个实施例中射频源电路的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的优选实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本发明的公开内容理解得更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“前”、“后”、“周向”以及类似的表述是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
矢量网络分析仪是一种常见的射频测量仪器,主要用来测量高频器件、电路及系统的性能参数,如线性参数、非线性参数、变频参数等。传统的网络分析仪架构需要两个信号源,一个是射频信号源,一个是本振信号源。然而,矢量网络分析仪需要工作在非常宽带且高频的频率范围,可见,两个超宽带信号源会大大增加矢量网络分析仪的设计难度和成本。
本公开提供了一种将简单化设计的矢量网络分析系统,可以节约一个本振信号源。图2为本发明其中一实施例的矢量网络分析系统的结构示意图,在其中一个实施例中,矢量网络分析系统可以包括射频源电路100、功率分配模块200、频率合成电路300和接收机电路400。
在对被测器件进行测试时,网络分析仪内部需要产生满足测试频率和功率要求的激励信号。在本公开提供的矢量网络分析系统中可以利用射频源电路100提供激励信号。功率分配模块200,与射频源电路100相连接,功率分配模块200可以将射频源电路100输出的激励信号分为两路,分别为第一激励信号和第二激励信号。功率分配模块200的第一输出端与被测器件的测试端口相连接,即第一激励信号通过功率分配模块200的第一输出端传输至被测 器件。第一激励信号可以作为被测器件的输入激励信号,被测器件可以通过传输和反射对激励信号作出响应。
由于网络分析仪要测试被测器件传输、反射特性与工作频率和功率的关系,因此令接收机电路400与被测器件的测试端口相连接,可以利用接收机电路400接收被测器件测试端口处的信号。激励信号输入到被测器件后会发生反射,被测器件端口处反射信号与输入激励信号在相同的物理路径上传播,因此还可以利用接收机电路400将相同物理路径上相反方向传播的信号进行分离、提取。在本公开的一些实施例中,接收机电路400对被测器件端口处信号进行分离后,可以获得传输信号和被测器件的反射信号,其中,传输信号可以为第一激励信号,即被测器件的输入激励信号。
频率合成电路300与功率分配模块200的第二输出端相连接,即第二激励信号通过功率分配模块200的第二输出端传输至频率合成电路300。频率合成电路300可以对第二激励信号进行处理,以获取本振信号。接收机电路400完成对被测器件端口处信号的分离后,将分离得到的信号与本振信号进行混频,可以得到一个较为低频的中频信号。中频信号被带通滤波后,可以使接收机带宽变窄且能显著提高灵敏度及动态范围。接着,接收机电路400对中频信号进行处理,可以获取如幅度、相位等测试信息。在本公开的一些实施例中,测试信息还可以为被测器件的S参数(Scatter参数,即散射参数)。
上述矢量网络分析系统,对信号源部分的电路设计进行了优化,对单一的射频信号源进行功分,即,将射频源电路100发出的激励信号分为两路。一路用于作为被测器件的输入激励信号,另一路激励信号经过处理后可以用于提供本振信号,代替了传统链路结构中的本振信号源。本公开提供的矢量网络分析系统,可以利用一个信号源实现两种信号源的功能,有效地简化了矢量网络分析系统的电路设计,并且还可以减小硬件架构的生产成本。
图3为本公开其中一个实施例中功率分配模块的结构示意图,在其中一个实施例中,功率分配模块200可以包括第一功分器210。第一功分器210的输入端与射频源电路100的输出端相连接,第一功分器210可以将射频源电路100输出的激励信号平均分配分成两路,即第一激励信号与第二激励信号是两路相同的射频信号。例如,当射频源电路100输出200MHz的激励信号,则第一功分器210可以将其平均分为两路,第一激励信号与第二激励信号均为100MHz的射频信号。
上述矢量网络分析系统,利用第一功分器210将射频源电路100发出的激励信号平均分为两路。一路激励信号可以用于作为被测器件的输入激励信号,另一路激励信号经过处理后可以用于提供本振信号。利用一个信号源实现两种信号源的功能,与传统的网络分析仪相比, 节约了一个信号源,单个板卡的成本大幅降低。可见,本公开提供的矢量网络分析系统解决了传统链路下的网络分析仪架构中需要两个超宽带信号源而导致设计难度大和生产成本高的问题。
在其中一个实施例中,功率分配模块200还可以包括第一射频信号放大单元220、第二射频信号放大单元230和开关单元240。
第一射频信号放大单元220与第一功分器210的第一输出端相连接,用于放大第一激励信号。第二射频信号放大单元230与第一功分器210的第二输出端相连接,用于放大第二激励信号。由于射频源电路100输出的激励信号被第一功分器210分为了两路,因此,第一激励信号和第二激励信号的频率与功分前的激励信号相比,均会有一定程度的衰减。利用第一射频信号放大单元220和第二射频信号放大单元230分别对第一激励信号和第二激励信号进行放大处理,可以保证第一激励信号和第二激励信号满足被测器件的测试需求。
矢量网络分析系统根据测试端口的数量可分为双端口、3端口、4端口、6端口。在本公开的一些实施例中,开关单元240可以为单刀双掷的射频开关,利用单刀双掷的射频开关可以令上述矢量网络分析系统实现双端口测试的目的。开关单元240的输入端与第一射频信号放大单元220相连接,开关单元240的第一输出端与被测器件的第一测试端口相连接,开关单元240的第二输出端与被测器件的第二测试端口相连接。
当对被测器件的第一测试端口进行测试时,可以通过控制开关单元240导通第一射频信号放大单元220与被测器件的第一测试端口之间的连接通路,以将放大后的第一激励信号传输至被测器件的第一测试端口。由于开关单元240为单刀双掷的射频开关,因此当第一射频信号放大单元220与被测器件的第一测试端口之间的连接导通时,第一射频信号放大单元220与被测器件的第二测试端口之间的连接将会断开。
同样地,当对被测器件的第二测试端口进行测试时,可以通过控制开关单元240导通第一射频信号放大单元220与被测器件的第二测试端口之间的连接通路,以将放大后的第一激励信号传输至被测器件的第二测试端口。当第一射频信号放大单元220与被测器件的第二测试端口之间的连接导通时,第一射频信号放大单元220与被测器件的第一测试端口之间的连接将会断开。
在一些其他的实施例中,也可以通过增加射频开关的数量或使用单刀多掷的射频开关等方式来实现矢量网络分析系统的测试端口数量为3端口、4端口、6端口。例如,将两个单刀双掷的射频开关的输入端均与第一射频信号放大单元220的输出端相连接,一个单刀双掷的射频开关的两个输出端分别与被测器件的第一测试端口和第二测试端口相连接,另一个单刀 双掷的射频开关的两个输出端分与被测器件的第三测试端口和第四测试端口相连接,从而实现了矢量网络分析系统的测试端口数量为4端口的目的。
在其中一个实施例中,开关单元240的第一输出端与被测器件的第一测试端口之间可以设置一组或多组射频信号放大单元,当来进一步放大传输至第一测试端口的第一激励信号,以保证第一激励信号为满足测试频率和功率要求的激励信号。
同样地,开关单元240的第二输出端与被测器件的第二测试端口之间也可以设置一组或多组射频信号放大单元,来进一步放大传输至第二测试端口的第一激励信号,以保证第一激励信号为满足测试频率和功率要求的激励信号。
图4为本公开其中一个实施例中频率合成电路的结构示意图,在其中一个实施例中,频率合成电路300可以包括调制单元310、第一混频器320、第二功分器330、第一滤波单元340、第三射频信号放大单元350、第三功分器360、第二滤波单元370、第四射频信号放大单元380、第四功分器390。
调制单元310的第一端接地,调制单元310可以用于提供调制信号。第一混频器320,分别与功率分配模块200的第二输出端和调制单元310的第二端相连接,用于将第二激励信号与调制信号进行混频,以获取本振信号。通过利用调制单元310提供的调制信号与第二激励信号进行混频,可以根据实际测试需求调节本振信号的大小。例如,当第二激励信号为100MHz的射频信号,而实际测试中所需的本振信号为90MHz,则可以令调制单元310提供一个10MHz的调制信号,利用第一混频器320将调制信号与第二激励信号进行下变频混频,即可获取90MHz的本振信号。
在其中一个实施例中,调制单元310可以包括晶体振荡器。由于晶体振荡器具有走时准、耗电省、经久耐用、器件成本低、输出频率精度高等优点,因此,可以选用晶体振荡器来提供稳定的调制信号。其中,优选的,选用10MHz的晶体振荡器作为调制单元310。
上述矢量网络分析系统的射频源电路100,对单一的射频信号源进行功分,同时优化了频率合成电路300,利用普通的10MHz晶体滤波器与分出的一路激励信号进行下变频混频来代替传统结构中的本振信号源,混频后的信号进行滤波以及链路的功分。同时经过信号放大后,再进行功率分配。在本公开提供的矢量分析仪架构中,不需要额外增加本振信号源,可以将复杂的矢量网络分析系统设计简单化,还减少了硬件架构成本,以及简化了超宽带射频信号源的输出链路。
在其中一个实施例中,在某些应用场景下还可以在矢量网络分析系统的链路中再增加一组或多组衰减器,利用衰减器来调整电路中信号的大小和/或改善阻抗匹配。
为了保证相位的准确性,接收机电路400部分在电路布局过程中需要进行全局对称设计。同时,频率合成电路300与接收机电路400的连接链路中,也要保证本振信号链路的相位和幅度对称。一个测试端口处信号将分离出反射信号和传输信号这两种不同的信号,两种信号均需要与本振信号进行混频以获取低频段的中频信号,进而对中频信号进行进一步的数据分析。因此,双端口的矢量网络分析系统中频率合成电路300共需输出4路传输至接收机电路400的本振信号,以实现对被测器件双端口的传输/反射特性测试。
频率合成电路300中的第二功分器330与第一混频器320相连接,可以将第一混频器320输出的本振信号均分为两路,分别为第一本振信号和第二本振信号。第二功分器330的第一输出端与第一滤波单元340相连接,第二功分器330的第二输出端与第二滤波单元370相连接。第一滤波单元340可以对第一本振信号进行滤波处理,以去除第一本振信号中的噪声,提高第一本振信号的精确度和稳定性,进而保证矢量网络分析系统测试结果的准确性。同样地,第二滤波单元370可以对第二本振信号进行滤波处理,以去除第二本振信号中的噪声,提高第二本振信号的精确度和稳定性。
第一滤波单元340的输出端与第三射频信号放大单元350的输入端相连接,经过滤波处理后的第一本振信号传输至第三射频信号放大单元350。第二滤波单元370的输出端与第四射频信号放大单元380的输入端相连接,经过滤波处理后的第二本振信号传输至第四射频信号放大单元380。考虑到经过功分器的划分后,第一本振信号和第二本振信号的频率与功分前的本振信号相比,均会有一定程度的衰减。因此,利用第三射频信号放大单元350和第四射频信号放大单元380分别对第一本振信号和第二本振信号进行放大处理,可以保证第一本振信号和第二本振信号满足被测器件的测试需求。
第三射频信号放大单元350的输出端与第三功分器360的输入端相连接,经过滤波放大处理后的第一本振信号传输至第三功分器360。第四射频信号放大单元380的输出端与第四功分器390的输入端相连接,经过滤波放大处理后的第二本振信号传输至第四功分器390。第三功分器360可以将第一本振信号平均分为两路,第四功分器390可以将第二本振信号平均分为两路。两路第一本振信号和两路第二本振信号可以分别与接收机电路400中各路接收到的信号进行混频,以实现将接收到的信号下变频为中频信号,对被测器件输出信号中杂波失真成分有很好抑制作用。
在其中一个实施例中,在第三功分器360的两路输出端可以均设置一组或多组射频信号放大单元,当来进一步放大两路第一本振信号,以保证两路第一本振信号可以满足测试频率和功率要求。
同样地,在第四功分器390的两路输出端可以均设置一组或多组射频信号放大单元,当来进一步放大两路第二本振信号,以保证两路第二本振信号可以满足测试频率和功率要求。
图5为本公开其中一个实施例中接收机电路的结构示意图,在其中一个实施例中,接收机电路400可以包括信号分离单元410、第一混频单元420、第二混频单元430和信号处理单元440。
由于第一激励信号输入到被测器件后会发生反射,因此被测器件测试端口处的反射信号与输入激励信号在相同的物理路径上传播。矢量网络分析系统利用信号分离单元410对相同物理路径上相反方向传播的信号进行分离、提取,信号分离单元410可以将测试端口处的信号分离为传输信号和反射信号。其中,当要测试被测器件某个端口反射特性/传输特性时,可以将信号分离单元410直接连接在该测试端口上。
第一混频单元420分别与信号分离单元410的第一输出端和频率合成电路300相连接。第一混频单元420通过将信号分离单元410分离出来的传输信号与频率合成电路300输出的本振信号进行混频,可以将较高频率的传输信号调制为第一中频信号。通过将传输信号下变频为第一中频信号,对被测器件测试端口处的传输信号中杂波失真成分有很好抑制作用。例如,当传输信号为100MHz的射频信号,本振信号为90MHz,利用第一混频单元420将本振信号与传输信号进行混频,即可获取10MHz的中频信号。
第二混频单元430分别与信号分离单元410的第二输出端和频率合成电路300相连接。同样的,第二混频单元430通过将信号分离单元410分离出来的反射信号与频率合成电路300输出的本振信号进行混频,可以将较高频率的反射信号调制为第二中频信号。通过将反射信号下变频为第二中频信号,对被测器件测试端口处的反射信号中杂波失真成分也有很好抑制作用。
信号处理单元440,分别与第一混频单元420和第二混频单元430相连接,可以用于对第一中频信号和第二中频信号进行数据分析,以获取被测器件的测试信息。信号处理单元440可以对第一中频信号和第二中频信号进行模数转换、带通滤波等处理,可以使接收机带宽变窄且能显著提高灵敏度及动态范围。同时,信号处理单元440还可以对数字信号状态的第一中频信号和第二中频信号进行傅里叶变换,以获取如幅度、相位等测试信息。在本公开的一些实施例中,测试信息还可以为被测器件的S参数(Scatter参数,即散射参数)。
图6为本公开另一个实施例中接收机电路的结构示意图,在其中一个实施例中,信号分离单元410可以包括第一定向耦合器411和第二定向耦合器412,第一混频单元420可以包括第二混频器421和第三混频器422,第二混频单元430可以包括第四混频器431和第五混 频器432,信号处理单元440可以包括模数转换器441和数字信号处理器442。
如图6所示,PORT1可以为矢量网络分析系统与被测器件的第一测试端口相连接的端口,PORT2可以为矢量网络分析系统与被测器件的第二测试端口相连接的端口。
第一定向耦合器411连接在PORT1端口处,当开关单元240导通功率分配模块200与第一测试端口之间的连接通路时,第一激励信号可以通过第一定向耦合器411传输至第一测试端口。同时,第一测试端口响应于第一激励信号发出的反射信号也在PORT1端口处传输。即,第一定向耦合器411在PORT1端口处可以得到耦合的传输信号和反射信号。利用第一定向耦合器411可以将PORT1端口处的传输信号和反射信号分离开来。
第二定向耦合器412连接在PORT2端口处,当开关单元240导通功率分配模块200与第二测试端口之间的连接通路时,第一激励信号通过第二定向耦合器412传输至第二测试端口。同时,第二测试端口响应于第一激励信号发出的反射信号也在PORT2端口处传输。即,第二定向耦合器412在PORT2端口处可以得到耦合的传输信号和反射信号。利用第二定向耦合器412可以将PORT2端口处的传输信号和反射信号分离开来。
将第三功分器360的两个输出端分别定义为A1和B1,即第三功分器360通过A1和B1两个输出端分别输出两路第一本振信号。将第四功分器390的两个输出端分别定义为A2和B2,即第四功分器390通过A2和B2两个输出端分别输出两路第二本振信号。
第一定向耦合器411的第一输出端与第二混频器421的第一输入端相连接,第一定向耦合器411分离出的传输信号传输至第二混频器421,第二混频器421的第二输入端可以与第三功分器360的A1输出端相连接。第二混频器421将传输信号与第三功分器360的A1端输出的第一本振信号进行下变频混频,可以将较高频率的反射信号调制为中频信号IFA1,对被测器件第一测试端口处的传输信号中杂波失真成分有很好抑制作用。
第一定向耦合器411的第二输出端与第四混频器431的第一输入端相连接,第一定向耦合器411分离出的反射信号传输至第四混频器431,第四混频器431的第二输入端可以与第三功分器360的B1输出端相连接。第四混频器431将传输信号与第三功分器360的B1端输出的第一本振信号进行下变频混频,可以将较高频率的反射信号调制为中频信号IFB1,以抑制反射信号中的杂波失真成分。
第二定向耦合器412的第一输出端与第三混频器422的第一输入端相连接,第二定向耦合器412分离出的传输信号传输至第三混频器422,第三混频器422的第二输入端可以与第四功分器390的A2输出端相连接。第三混频器422将传输信号与第四功分器390的A2端输出的第二本振信号进行下变频混频,可以将较高频率的传输信号调制为中频信号IFA2,以抑 制传输信号中的杂波失真成分。
第二定向耦合器412的第二输出端与第五混频器432的第一输入端相连接,第二定向耦合器412分离出的反射信号传输至第五混频器432,第五混频器432的第二输出端可以与第四功分器390的B2输出端相连接。第五混频器432将传输信号与第四功分器390的B2端输出的第二本振信号进行下变频混频,可以将较高频率的反射信号调制为中频信号IFB2,以抑制反射信号中的杂波失真成分。
上述接收机电路400的设计可以在相同相位和幅值情况下与两个定向耦合器的信号进行链路混频,从而得到四路中频信号。第二混频器421、第三混频器422、第四混频器431和第五混频器432的输出端均与模数转换器441相连接。模数转换器441与数字信号处理器442相连接。利用模数转换器441可以对第二混频器421、第三混频器422、第四混频器431和第五混频器432输出的4组中频信号IFA1、IFB1、IFA2、IFB2进行采集并传送到数字信号处理器442中进行数据分析。模数转换器441还可以对4组中频信号进行模数转换处理,以便于数字信号处理器442后续对信号的分析。数字信号处理器442可以对数字信号状态的4组中频信号进行傅里叶变换,以获取如幅度、相位等测试信息。
在其中一个实施例中,数字信号处理器442可为DSP芯片或FPGA芯片(Field Programmable Gate Array,现场可编程逻辑门阵列)。利用DSP芯片或FPGA芯片实现对中频信号的数据分析,可以中频信号进行滤波放大、傅里叶变换等处理,以从中频信号中提取相应的幅度与相位信息等数据。
基于上述架构,本公开提供的矢量网络分析系统,与传统的双端口网络分析仪相比,测试数据一致的同时,节约了一个超宽带信号源,从而大幅降低了单个板卡的成本。
图7为本公开其中一个实施例中射频源电路的结构示意图,在其中一个实施例中,射频源电路100可以包括射频信号源110。可以选用频率范围为75MHz~6GHz且功率范围为-60dbm~-10dbm的射频信号源110来提供激励信号。
本公开提供的矢量网络分析系统优化了射频源电路的电路设计,可以产生出频率范围为75MHz~6GHz、功率范围为-60dbm~-10dbm的射频信号,同时对射频信号源110产生的激励信号进行功率平均分配,分成两条对称的链路。10MHz的晶体振荡器配合射频源电路100分配出来的一路激励信号进行下变频混频,经过功率分配器后下变频后的信号再经过滤波、放大等信号处理后可以得到65MHz-5990MHz的信号,这部分信号可以认为是一种新型的本振信号,该本振信号的幅度可以控制在全频段内是0dbm。同时,频率合成电路300与接收机电路400的连接链路中,需要保证本振信号链路的相位和幅度对称。
在其中一个实施例中,射频源电路100还可以包括输出匹配单元120和第三滤波单元130。
输出匹配单元120,与射频信号源110相连接,可以用于实现激励信号与外接负载电阻之间的阻抗匹配。输出匹配单元120可以将外接负载电阻变换为放大器所需的最佳负载电阻,以保证输出功率最大。利用输出匹配单元120可以实现高效率的能量传输、滤除高次谐波分量以保证外接负载上仅输出高频基波功率以及实现激励信号与外接负载电阻之间的阻抗匹配。
第三滤波单元130,与输出匹配单元120相连接,可以用于对激励信号进行滤波。第三滤波单元130可以对激励信号进行滤波处理,以去除激励信号中的噪声,提高激励信号的精确度和稳定性。
在其中一个实施例中,矢量网络分析系统还可以包括显示模块。显示模块与接收机电路400相连接,可以用于对被测器件的测试信息进行显示。通过在显示模块上显示被测器件的测试信息,可以便于用户直观地了解到对被测器件的测试结果,优化用户的使用体验。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以作出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种矢量网络分析系统,其特征在于,包括:
    射频源电路,用于提供激励信号;
    功率分配模块,与所述射频源电路相连接,用于将所述激励信号分为第一激励信号和第二激励信号,所述功率分配模块的第一输出端与被测器件的测试端口相连接,所述第一激励信号为所述被测器件的输入激励信号;
    频率合成电路,与所述功率分配模块的第二输出端相连接,用于对所述第二激励信号进行处理,以获取本振信号;
    接收机电路,分别与所述频率合成电路和所述被测器件的测试端口相连接,用于对所述测试端口处的信号进行分离,并与所述本振信号进行混频,以获取中频信号,还用于对所述中频信号进行数据分析,以获取所述被测器件的测试信息。
  2. 根据权利要求1所述的矢量网络分析系统,其特征在于,所述功率分配模块包括第一功分器,所述第一功分器将所述激励信号平均分配分成所述第一激励信号和所述第二激励信号。
  3. 根据权利要求2所述的矢量网络分析系统,其特征在于,所述功率分配模块还包括:
    第一射频信号放大单元,与所述第一功分器的第一输出端相连接,用于放大所述第一激励信号;
    第二射频信号放大单元,与所述第一功分器的第二输出端相连接,用于放大所述第二激励信号;
    开关单元,分别与所述第一射频信号放大单元、所述被测器件的第一测试端口和所述被测器件的第二测试端口相连接,用于导通所述第一射频信号放大单元与所述被测器件的第一测试端口之间的连接通路,或导通所述第一射频信号放大单元与所述被测器件的第二测试端口之间的连接通路。
  4. 根据权利要求1或2所述的矢量网络分析系统,其特征在于,所述频率合成电路包括:
    调制单元,所述调制单元的第一端接地,用于提供调制信号;
    第一混频器,分别与所述功率分配模块的第二输出端和所述调制单元的第二端相连接,用于将所述第二激励信号与所述调制信号进行混频,以获取本振信号;
    第二功分器,与所述第一混频器相连接,用于将所述本振信号分为第一本振信号和第二本振信号;
    第一滤波单元,与所述第二功分器的第一端相连接,用于对所述第一本振信号进行滤波;
    第三射频信号放大单元,与所述第一滤波单元相连接,用于放大所述第一本振信号;
    第三功分器,与所述第三射频信号放大单元相连接,用于将所述第一本振信号分为两路;
    第二滤波单元,与所述第二功分器的第二端相连接,用于对所述第二本振信号进行滤波;
    第四射频信号放大单元,与所述第二滤波单元相连接,用于放大所述第二本振信号;
    第四功分器,与所述第四射频信号放大单元相连接,用于将所述第二本振信号分为两路。
  5. 根据权利要求4所述的矢量网络分析系统,其特征在于,所述调制单元包括晶体振荡器。
  6. 根据权利要求1所述的矢量网络分析系统,其特征在于,所述接收机电路包括:
    信号分离单元,与所述被测器件的测试端口相连接,用于对所述测试端口处的信号分离为传输信号和反射信号;
    第一混频单元,分别与所述信号分离单元的第一输出端和所述频率合成电路相连接,用于对所述传输信号和所述本振信号进行混频,以获取第一中频信号;
    第二混频单元,分别与所述信号分离单元的第二输出端和所述频率合成电路相连接,用于对所述反射信号和所述本振信号进行混频,以获取第二中频信号;
    信号处理单元,分别与所述第一混频单元和所述第二混频单元相连接,用于对所述第一中频信号和第二中频信号进行数据分析,以获取所述被测器件的测试信息。
  7. 根据权利要求6所述的矢量网络分析系统,其特征在于,所述信号分离单元包括第一定向耦合器和第二定向耦合器,所述第一混频单元包括第二混频器和第三混频器,所述第二混频单元包括第四混频器和第五混频器,所述信号处理单元包括模数转换器和数字信号处理器,
    所述第一激励信号通过所述第一定向耦合器传输至所述被测器件的第一端口,所述第一定向耦合器的第一输出端与所述第二混频器的第一输入端相连接,所述第二混频器的第二输入端与第三功分器的第一输出端相连接,所述第二混频器的输出端与所述模数转换器相连接,
    所述第一定向耦合器的第二输出端与所述第四混频器的第一输入端相连接,所述第四混频器的第二输入端与所述第三功分器的第二输出端相连接,所述第四混频器的输出端与所述模数转换器相连接,
    所述第一激励信号通过所述第二定向耦合器传输至所述被测器件的第二端口,所述第二定向耦合器的第一输出端与所述第三混频器的第一输入端相连接,所述第三混频器的第二输入端与第四功分器的第一输出端相连接,所述第三混频器的输出端与所述模数转换器相连接,
    所述第二定向耦合器的第二输出端与所述第五混频器的第一输入端相连接,所述第五混频器的第二输入端与所述第四功分器的第二输出端相连接,所述第五混频器的输出端与所述 模数转换器相连接,
    所述模数转换器与所述数字信号处理器相连接。
  8. 根据权利要求1所述的矢量网络分析系统,其特征在于,所述射频源电路包括射频信号源,所述射频信号源输出的频率范围为75MHz~6GHz,功率范围为-60dbm~-10dbm。
  9. 根据权利要求8所述的矢量网络分析系统,其特征在于,所述射频源电路还包括:
    输出匹配单元,与所述射频信号源相连接,用于实现所述激励信号与外接负载电阻之间的阻抗匹配;
    第三滤波单元,与所述输出匹配单元相连接,用于对所述激励信号进行滤波。
  10. 根据权利要求1所述的矢量网络分析系统,其特征在于,所述矢量网络分析系统还包括:
    显示模块,与所述接收机电路相连接,用于对所述被测器件的测试信息进行显示。
PCT/CN2023/075177 2022-04-26 2023-02-09 矢量网络分析系统 WO2023207252A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210442119.9 2022-04-26
CN202210442119.9A CN114553329B (zh) 2022-04-26 2022-04-26 矢量网络分析系统

Publications (1)

Publication Number Publication Date
WO2023207252A1 true WO2023207252A1 (zh) 2023-11-02

Family

ID=81667229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075177 WO2023207252A1 (zh) 2022-04-26 2023-02-09 矢量网络分析系统

Country Status (3)

Country Link
CN (1) CN114553329B (zh)
TW (1) TW202343006A (zh)
WO (1) WO2023207252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687101A (zh) * 2024-02-04 2024-03-12 中国石油大学(华东) 一种多通道无线电探测与定位装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114553329B (zh) * 2022-04-26 2022-07-15 苏州华兴源创科技股份有限公司 矢量网络分析系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714114A (zh) * 2013-12-11 2015-06-17 北海海狮信息技术有限公司 一种矢量网络分析仪
CN111665404A (zh) * 2020-05-27 2020-09-15 中国计量科学研究院 精确相位同步的非线性矢量网络分析仪测量方法及装置
JP2021067539A (ja) * 2019-10-23 2021-04-30 日置電機株式会社 ベクトルネットワークアナライザ
CN114553329A (zh) * 2022-04-26 2022-05-27 苏州华兴源创科技股份有限公司 矢量网络分析系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840899B (zh) * 2014-03-12 2015-09-02 荆州市南湖机械总厂 一种收发组件自动测试设备
CN108614207A (zh) * 2018-05-23 2018-10-02 中国电子科技集团公司第四十研究所 一种矢量网络分析仪的信号源切换装置及方法
CN109361479A (zh) * 2018-12-05 2019-02-19 航天南湖电子信息技术股份有限公司 一种自动化t/r组件测试系统
CN212845878U (zh) * 2020-05-12 2021-03-30 杭州矢志信息科技有限公司 一种便携式矢量网络分析仪
CN111766463A (zh) * 2020-06-01 2020-10-13 中山香山微波科技有限公司 矢量网络分析仪及其扩频模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714114A (zh) * 2013-12-11 2015-06-17 北海海狮信息技术有限公司 一种矢量网络分析仪
JP2021067539A (ja) * 2019-10-23 2021-04-30 日置電機株式会社 ベクトルネットワークアナライザ
CN111665404A (zh) * 2020-05-27 2020-09-15 中国计量科学研究院 精确相位同步的非线性矢量网络分析仪测量方法及装置
CN114553329A (zh) * 2022-04-26 2022-05-27 苏州华兴源创科技股份有限公司 矢量网络分析系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YAN: "Research and Implementation of Vector Network Analyzer Based on Impedance and Transmission Characteristics", CHINA MASTER’S THESES FULL-TEXT DATABASE, 2022-03-15 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687101A (zh) * 2024-02-04 2024-03-12 中国石油大学(华东) 一种多通道无线电探测与定位装置

Also Published As

Publication number Publication date
CN114553329B (zh) 2022-07-15
CN114553329A (zh) 2022-05-27
TW202343006A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2023207252A1 (zh) 矢量网络分析系统
US7019510B1 (en) Portable ultra wide band handheld VNA
CN103138845B (zh) 超宽带sar接收机下变频接收通道幅相特性测试方法
CN111226402B (zh) 用于识别在射频设备或系统中的故障的系统和装置
CN107124233B (zh) 一种采用电桥结合滤波器实现宽带无源互调测量的装置及方法
CN109462414A (zh) 一种18-30GHz前端接收组件
WO2017041686A1 (zh) 一种双频非线性矢量网络参数测试装置及方法
CN111766463A (zh) 矢量网络分析仪及其扩频模块
CN108092626A (zh) 一种宽频带大动态下变频模块
CN110113060A (zh) 一种频谱接收组件
CN104880621A (zh) 自校准无源互调测试仪
CN111273276A (zh) 基于自激振荡微波源的多道微波多普勒反射计
Ballo Network analyzer basics
CN111880013A (zh) 消除射频源影响的太赫兹混频器变频损耗测试方法及系统
CN109150332B (zh) 一种利用矢量谐波预测量无源互调的装置和方法
Ku et al. A 70–110 GHz single-chip SiGe reflectometer with integrated local oscillator quadrupler
CN108627696B (zh) 一种矢量网络的测量装置及其测量方法
CN208836123U (zh) 一种18-30GHz前端接收组件
CN212463221U (zh) 矢量网络分析仪及其扩频模块
CN103575986A (zh) 一种频谱分析仪射频前端低波段电路微波集成装置
JP4976583B2 (ja) 歪測定装置
CN210893160U (zh) 一种用于便携式通信与导航测试仪的中频信号产生电路
CN207782758U (zh) 一种宽频带大动态下变频模块
CN102545933A (zh) 两级变频宽带接收机
CN219087140U (zh) 一种可重构的测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794688

Country of ref document: EP

Kind code of ref document: A1