CN112628050A - Method for determining withstand voltage value of boost capacitor of aircraft engine ignition circuit - Google Patents

Method for determining withstand voltage value of boost capacitor of aircraft engine ignition circuit Download PDF

Info

Publication number
CN112628050A
CN112628050A CN202011511081.3A CN202011511081A CN112628050A CN 112628050 A CN112628050 A CN 112628050A CN 202011511081 A CN202011511081 A CN 202011511081A CN 112628050 A CN112628050 A CN 112628050A
Authority
CN
China
Prior art keywords
capacitor
determining
withstand voltage
voltage value
discharge tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011511081.3A
Other languages
Chinese (zh)
Other versions
CN112628050B (en
Inventor
郝继红
谭俊
焦文娟
陈凤
梁杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Aero Electric Co Ltd
Original Assignee
Shaanxi Aero Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Aero Electric Co Ltd filed Critical Shaanxi Aero Electric Co Ltd
Priority to CN202011511081.3A priority Critical patent/CN112628050B/en
Publication of CN112628050A publication Critical patent/CN112628050A/en
Application granted granted Critical
Publication of CN112628050B publication Critical patent/CN112628050B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/264Ignition
    • F02C7/266Electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/121Testing characteristics of the spark, ignition voltage or current by measuring spark voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

The application belongs to the technical field of starting and igniting of aero-engines, and relates to a method for determining a withstand voltage value of a boost capacitor of an aero-engine ignition circuit, which comprises the steps of S1, obtaining an inductance L of a primary winding N1 in a first discharging loop, a resistance value R of a current limiting resistor R1 and a capacitance value C of a capacitor C2; step S2, the first discharging loop is equivalent to a zero input RLC damping oscillation loop, the differential equation is determined, and the voltage U of the capacitor C2 before the discharge tube V breaks down and is conducted is determinedC0(ii) a Step S3, solving a differential equation, and determining the voltage Uc on the capacitor C; and step S4, determining the withstand voltage value of the capacitor C2 according to the derating coefficient. According to the boost capacitor parameter determined by the withstand voltage value determining method provided by the application, the corresponding circuit can reliably work, the function and the performance meet the requirements, and the working state is safe and stable.

Description

Method for determining withstand voltage value of boost capacitor of aircraft engine ignition circuit
Technical Field
The application belongs to the technical field of starting and igniting of aero-engines, and particularly relates to a method for determining a withstand voltage value of a boost capacitor of an aero-engine ignition circuit.
Background
The starting ignition system of the aircraft engine consists of an ignition device, an ignition cable and an ignition electric nozzle, and is shown in figure 1. The working principle of the starting ignition system of the aircraft engine is as follows: the ignition device converts low-voltage electric energy provided by an engine power supply into high-voltage pulse electric energy, transmits the high-voltage pulse electric energy to the ignition electric nozzle through the ignition cable, instantly releases the high-voltage pulse electric energy at the discharge end of the ignition electric nozzle to generate high-power discharge sparks which are used for igniting fuel oil and air mixed gas in a combustion chamber of the engine so as to start the engine.
The high-voltage discharge circuit with secondary boosting shown in fig. 2 is one of the current circuit forms of the ignition device of the starting ignition system of the domestic aircraft engine, and the circuit structure adopts secondary boosting according to the ignition circuit of a certain foreign aircraft engine to drive a high-voltage surface electric nozzle to generate spark discharge.
The working principle of the circuit is as follows: dc power supplied from an ignition power source is charged into the energy storage capacitor C1 through the diode VD, and at the same time, the capacitor C1 is used as a power source to charge the energy storage capacitor C2 through the current limiting resistors R1 and R2. The capacitor C1 is used for storing the energy required by the operation of the ignition nozzle DZ, the capacitor C2 is used for storing the energy required by the boosting of the secondary booster transformer T, and the discharge tube V functions as a discharge switch. As the charging process proceeds, the discharge tube V breaks down into conduction when the voltage across the capacitors C1, C2 reaches the conduction voltage upnp of the discharge tube V1.
At this time, in the discharge circuit i composed of the capacitor C2, the discharge tube V, the primary winding N1 of the transformer T, and the current limiting resistor R1, the capacitor C2 discharges the primary winding N1 of the transformer T through the discharge tube V and the current limiting resistor R1, and the high voltage Un2 required for the ignition nozzle is induced in the secondary winding N2 of the transformer T due to electromagnetic induction.
In the main discharge circuit ii consisting of the capacitor C1, the discharge tube V, the secondary winding N2 of the transformer T and the ignition nozzle DZ, the voltage of the capacitor C1 and the voltage induced by the secondary winding N2 of the transformer T are superimposed to provide a high voltage to the ignition nozzle DZ, which high voltage causes the ignition nozzle to discharge by breakdown, releasing the electric energy stored in the energy storage capacitor C1 at the discharge end of the ignition nozzle to form a discharge spark.
The breakdown voltage of the ignition torch DZ is usually higher than the conduction voltage of the discharge tube, the breakdown voltage at the later stage of the service life reaches 2-3 times of the initial value, and the breakdown voltage is multiplied under the high-pressure condition, so that the voltage is usually increased to 10-25 kV.
From the above working principle, the design of the secondary booster circuit is an important link for determining whether the whole ignition circuit can realize the expected function and reliably work in the life cycle. The existing ignition device products using the circuit are developed by referring to the parameters of foreign circuits to determine the parameters by a test method, namely the parameters of the part of the device are tested, and the special parts in the foreign models are usually only numbered and have no parameters. As shown in fig. 2, the rated working voltage (hereinafter referred to as withstand voltage) of the capacitor C2 is not labeled, and is selected by tests or comparison methods instead of theoretical calculation, and is often selected to be higher, usually 8kV, and the requirement of aviation products on weight and volume is continuously increased, which is not favorable for accurate design of products.
At present, a method for calculating the withstand voltage of the capacitor of the secondary booster circuit is not available.
Disclosure of Invention
In order to solve the above problem, the present application provides a method for determining a withstand voltage value of a boost capacitor of an aircraft engine ignition circuit, the aircraft engine ignition circuit comprising a first discharge circuit and a second discharge circuit, the first discharge circuit comprising a capacitor C2, a discharge tube V, a primary winding N1 of a transformer T, and a current limiting resistor R1, the second discharge circuit comprising a capacitor C1, a discharge tube V, a secondary winding N2 of a transformer T, and an ignition tip DZ, wherein a dc power supply provided by the ignition power supply first charges an energy storage capacitor C1, and at the same time charges an energy storage capacitor C2 with a capacitor C1 as a power supply via current limiting resistors R1, R2, and when a voltage across the capacitors C1, C2 reaches a conduction voltage upnp of the discharge tube V, the discharge tube V breaks down and conducts, the ignition tip DZ forms a breakdown voltage, the capacitor C2 acts as a boost capacitor, the step of determining the withstand voltage value comprises the following steps:
step S1, obtaining the inductance L of the primary winding N1, the resistance R of the current limiting resistor R1 and the capacitance C of the capacitor C2 in the first discharging loop;
step S2, the first discharging loop is equivalent to a zero input RLC damping oscillation loop, the differential equation is determined, and the voltage U of the capacitor C2 before the discharge tube V breaks down and is conducted is determinedC0
Step S3, solving a differential equation, and determining the voltage Uc on the capacitor C;
and step S4, determining the withstand voltage value of the capacitor C2 according to the derating coefficient.
Preferably, in step S2, the differential equation is:
Figure BDA0002846428440000021
preferably, the differential equation is solved as:
Figure BDA0002846428440000022
wherein the content of the first and second substances,
Figure BDA0002846428440000031
α=R/(2L);
Figure BDA0002846428440000032
UC0is the voltage at which the discharge tube V breaks down the pre-capacitor C2.
Preferably, in step S4, the derating coefficient is determined according to the lowest derating level of the aviation mica fixed capacitor.
Preferably, in step S4, the derating factor is 0.7, and the withstand voltage value of the capacitor C2 is determined as follows according to the derating factor:
Uce=uc/0.7=1.43uc (V)。
according to the boost capacitor parameter determined by the withstand voltage value determining method provided by the application, the corresponding circuit can reliably work, the function and the performance meet the requirements, and the working state is safe and stable.
Drawings
Fig. 1 is a block diagram of an ignition system.
Fig. 2 is a working principle diagram of a secondary boosting high-voltage discharge circuit.
Fig. 3 is a flowchart of a method for determining a withstand voltage value of a boost capacitor of an aircraft engine ignition circuit according to the present application.
Fig. 4 is a schematic diagram of the connection of the discharge circuit i of the present application.
For the purpose of better illustrating the embodiments, certain features of the drawings may be omitted, enlarged or reduced, and do not represent the size of an actual product; further, the drawings are for illustrative purposes, and terms describing positional relationships are limited to illustrative illustrations only and are not to be construed as limiting the patent.
Detailed Description
In order to make the implementation objects, technical solutions and advantages of the present application clearer, the technical solutions in the embodiments of the present application will be described in more detail below with reference to the accompanying drawings in the embodiments of the present application. In the drawings, the same or similar reference numerals denote the same or similar elements or elements having the same or similar functions throughout. The described embodiments are some, but not all embodiments of the present application. The embodiments described below with reference to the drawings are exemplary and intended to be used for explaining the present application, and should not be construed as limiting the present application.
Further, it is noted that, unless expressly stated or limited otherwise, the terms "mounted," "connected," and the like are used in the description of the invention in a generic sense, e.g., connected as either a fixed connection or a removable connection or integrally connected; can be mechanically or electrically connected; they may be directly connected or indirectly connected through an intermediate medium, or they may be connected through the inside of two elements, and those skilled in the art can understand their specific meaning in this application according to the specific situation.
Referring to fig. 2, the aeroengine ignition circuit comprises a first discharge loop and a second discharge loop, wherein the first discharge loop comprises a capacitor C2, a discharge tube V, a primary winding N1 of a transformer T and a current-limiting resistor R1, the second discharge loop comprises a capacitor C1, a discharge tube V, a secondary winding N2 of the transformer T and an ignition nozzle DZ, wherein a direct-current power supply provided by the ignition power supply firstly charges an energy storage capacitor C1, and meanwhile, the capacitor C1 is used as a power supply to charge an energy storage capacitor C2 through the current-limiting resistors R1 and R2, and when the voltage at two ends of the capacitors C1 and C2 reaches the conducting voltage Unp of the discharge tube V, the discharge tube V is broken down and conducted, and the ignition nozzle DZ forms a breakdown voltage.
The method for determining the withstand voltage value of the boosting capacitor of the aircraft engine ignition circuit aims to determine the withstand voltage value of the capacitor in the secondary boosting circuit. As shown in fig. 3, the method mainly includes:
step S1, obtaining the inductance L of the primary winding N1, the resistance R of the current limiting resistor R1 and the capacitance C of the capacitor C2 in the first discharging loop;
step S2, the first discharging loop is equivalent to a zero input RLC damping oscillation loop, the differential equation is determined, and the voltage U of the capacitor C2 before the discharge tube V breaks down and is conducted is determinedC0
Step S3, solving a differential equation, and determining the voltage Uc on the capacitor C;
and step S4, determining the withstand voltage value of the capacitor C2 according to the derating coefficient.
In order to achieve the object of the invention, the circuit parameter relationship of the discharge loop I must be cleared. As can be seen from the circuit principle of fig. 2, after the discharge tube V is broken down and turned on, the discharge loop i is first put into a conducting operating state, and only the discharge loop i is discussed here to determine the withstand voltage of the capacitor C2.
For ease of calculation, a schematic diagram of the conditioning discharge circuit I is shown in FIG. 4. The discharge loop is composed of a capacitor C, a current-limiting resistor R, a discharge tube V and a primary winding N1 of a transformer T, the inductance of the primary winding N1 is L, and the conduction voltage drop of the discharge tube V is small relative to the voltage on the capacitor C and can be ignored, so that the discharge loop is a zero-input RLC damping oscillation loop.
The voltage Uc across the capacitor C2 can be determined from the differential equation of the zero-input RLC damped tank:
Figure BDA0002846428440000041
the current-limiting resistor R1 in the loop has small value, so that the current-limiting resistor R1 can meet the requirement
Figure BDA0002846428440000042
Thus:
Figure BDA0002846428440000043
wherein the content of the first and second substances,
Figure BDA0002846428440000051
α=R/(2L);
Figure BDA0002846428440000052
UC0is the voltage at which the discharge tube V breaks down the pre-capacitor C2.
According to the lowest derating grade III of the mica fixed capacitor of the aviation product, the derating coefficient is given to be 0.7, so that the withstand voltage Uce of the capacitor C is selected according to the following formula:
Uce=uc/0.7=1.43uc (V)
in order to verify the effect of the invention, an ignition circuit with a secondary boosting high-voltage discharge circuit is designed by utilizing the method of the invention, wherein UC0And (5) selecting 2500V to obtain a Uce of 3575V, and selecting a 4kV capacitor according to standard specifications, wherein the volume of the capacitor is smaller than that of an 8kV capacitor. The circuit diagram is shown in fig. 2, and a principle prototype is made according to the diagram for function verification. The principle prototype is matched with an ignition cable and an ignition electric nozzle to form ignitionThe system has normal power-on test function, the maximum working voltage peak value of the actually measured capacitor C2 is 2800V, the working state is safe and stable, and the verification result proves that the invention achieves the purpose.
Having thus described the present application in connection with the preferred embodiments illustrated in the accompanying drawings, it will be understood by those skilled in the art that the scope of the present application is not limited to those specific embodiments, and that equivalent modifications or substitutions of related technical features may be made by those skilled in the art without departing from the principle of the present application, and those modifications or substitutions will fall within the scope of the present application.

Claims (5)

1. A method for determining the withstand voltage value of a boost capacitor of an aeroengine ignition circuit comprises a first discharge circuit and a second discharge circuit, the first discharge circuit comprises a capacitor C2, a discharge tube V, a primary winding N1 of a transformer T and a current limiting resistor R1, the second discharge circuit comprises a capacitor C1, a discharge tube V, a secondary winding N2 of a transformer T and an ignition nozzle DZ, wherein, the DC power supply provided by the ignition power supply firstly charges the energy storage capacitor C1, and simultaneously charges the energy storage capacitor C2 by taking the capacitor C1 as the power supply through the current limiting resistors R1 and R2, when the voltage across the capacitors C1, C2 reaches the breakover voltage Unp of the discharge tube V, the discharge tube V breaks down and conducts, the ignition nozzle DZ forms the breakdown voltage, the method is characterized in that the capacitor C2 is used as a boosting capacitor, and the withstand voltage value determining step comprises the following steps:
step S1, obtaining the inductance L of the primary winding N1, the resistance R of the current limiting resistor R1 and the capacitance C of the capacitor C2 in the first discharging loop;
step S2, the first discharging loop is equivalent to a zero input RLC damping oscillation loop, the differential equation is determined, and the voltage U of the capacitor C2 before the discharge tube V breaks down and is conducted is determinedC0
Step S3, solving a differential equation, and determining the voltage Uc on the capacitor C;
and step S4, determining the withstand voltage value of the capacitor C2 according to the derating coefficient.
2. The method for determining the withstand voltage value of the boost capacitor of the aircraft engine ignition circuit according to claim 1, wherein:
in step S2, the differential equation is:
Figure FDA0002846428430000011
3. the method for determining the withstand voltage value of the boost capacitor of the aircraft engine ignition circuit according to claim 2, wherein:
the differential equation is solved as:
Figure FDA0002846428430000012
wherein the content of the first and second substances,
Figure FDA0002846428430000013
α=R/(2L);
Figure FDA0002846428430000014
UC0is the voltage at which the discharge tube V breaks down the pre-capacitor C2.
4. The method for determining the withstand voltage value of the boost capacitor of the aircraft engine ignition circuit according to claim 1, wherein:
in step S4, the derating coefficient is determined according to the lowest derating level of the aviation mica fixed capacitor.
5. The method for determining the withstand voltage value of the boost capacitor of the aircraft engine ignition circuit according to claim 1, wherein:
in step S4, the derating factor is 0.7, and the withstand voltage value of the capacitor C2 is determined as follows:
Uce=uc/0.7=1.43uc(V)。
CN202011511081.3A 2020-12-18 2020-12-18 Withstand voltage value determination method for boost capacitor of aircraft engine ignition circuit Active CN112628050B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011511081.3A CN112628050B (en) 2020-12-18 2020-12-18 Withstand voltage value determination method for boost capacitor of aircraft engine ignition circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011511081.3A CN112628050B (en) 2020-12-18 2020-12-18 Withstand voltage value determination method for boost capacitor of aircraft engine ignition circuit

Publications (2)

Publication Number Publication Date
CN112628050A true CN112628050A (en) 2021-04-09
CN112628050B CN112628050B (en) 2022-08-19

Family

ID=75317671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011511081.3A Active CN112628050B (en) 2020-12-18 2020-12-18 Withstand voltage value determination method for boost capacitor of aircraft engine ignition circuit

Country Status (1)

Country Link
CN (1) CN112628050B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233479A (en) * 2021-12-13 2022-03-25 陕西航空电气有限责任公司 Control method of voltage-controlled oscillator of aviation ignition circuit

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133320A (en) * 1974-12-05 1979-01-09 Robert Bosch Gmbh Apparatus for determining the injected fuel quantity in mixture compressing internal combustion engines
US4403591A (en) * 1981-04-13 1983-09-13 Motorola, Inc. Ignition system having variable percentage current limiting
JPH01249963A (en) * 1988-03-31 1989-10-05 Kokusan Denki Co Ltd Ignition system for internal combustion engine
US4947821A (en) * 1988-02-18 1990-08-14 Nippondenso Co., Ltd. Ignition system
CN2240055Y (en) * 1995-05-30 1996-11-13 张洛曼 High-energy igniter for spark-ignition engine
JPH11210607A (en) * 1998-01-27 1999-08-03 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine and internal combustion engine
CN1230871A (en) * 1998-04-01 1999-10-06 松下电器产业株式会社 Ballast for discharge lamp
DE102008041085A1 (en) * 2007-08-08 2009-02-12 Denso Corp., Kariya-shi Plasma ignition system for an internal combustion engine
JP2012219707A (en) * 2011-04-08 2012-11-12 Ngk Spark Plug Co Ltd Ignition device and ignition system
CN102889161A (en) * 2012-09-11 2013-01-23 中国航天科工集团第六研究院二一〇所 Impulse engine ignition control device
CN203056585U (en) * 2012-05-08 2013-07-10 沈阳汇丰电力自动化有限公司 Inrush current-free electronic switch
JP2014037778A (en) * 2012-08-10 2014-02-27 Denso Corp Ignition device for internal combustion engine
CN104481773A (en) * 2014-12-08 2015-04-01 武汉理工大学 Variable-energy ignition measuring and controlling system and method
CN105161527A (en) * 2015-06-26 2015-12-16 成都成电知力微电子设计有限公司 Insulated gate bipolar device utilizing surface voltage-sustaining layer structure
DE102015114578A1 (en) * 2015-09-01 2017-03-02 Harms + Wende Gmbh & Co. Kg Apparatus and method for capacitor discharge welding
CN108019284A (en) * 2017-11-08 2018-05-11 陕西航空电气有限责任公司 Aircraft engine igniter electrion trigger circuit
CN108051217A (en) * 2017-11-30 2018-05-18 四川泛华航空仪表电器有限公司 The online fault detection method of aero-engine ignition driver
CN110821681A (en) * 2019-11-11 2020-02-21 陕西航空电气有限责任公司 Method for setting current-limiting resistor of ignition circuit of double discharge tubes of aircraft engine

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133320A (en) * 1974-12-05 1979-01-09 Robert Bosch Gmbh Apparatus for determining the injected fuel quantity in mixture compressing internal combustion engines
US4403591A (en) * 1981-04-13 1983-09-13 Motorola, Inc. Ignition system having variable percentage current limiting
US4947821A (en) * 1988-02-18 1990-08-14 Nippondenso Co., Ltd. Ignition system
JPH01249963A (en) * 1988-03-31 1989-10-05 Kokusan Denki Co Ltd Ignition system for internal combustion engine
CN2240055Y (en) * 1995-05-30 1996-11-13 张洛曼 High-energy igniter for spark-ignition engine
JPH11210607A (en) * 1998-01-27 1999-08-03 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine and internal combustion engine
CN1230871A (en) * 1998-04-01 1999-10-06 松下电器产业株式会社 Ballast for discharge lamp
DE102008041085A1 (en) * 2007-08-08 2009-02-12 Denso Corp., Kariya-shi Plasma ignition system for an internal combustion engine
JP2012219707A (en) * 2011-04-08 2012-11-12 Ngk Spark Plug Co Ltd Ignition device and ignition system
CN203056585U (en) * 2012-05-08 2013-07-10 沈阳汇丰电力自动化有限公司 Inrush current-free electronic switch
JP2014037778A (en) * 2012-08-10 2014-02-27 Denso Corp Ignition device for internal combustion engine
CN102889161A (en) * 2012-09-11 2013-01-23 中国航天科工集团第六研究院二一〇所 Impulse engine ignition control device
CN104481773A (en) * 2014-12-08 2015-04-01 武汉理工大学 Variable-energy ignition measuring and controlling system and method
CN105161527A (en) * 2015-06-26 2015-12-16 成都成电知力微电子设计有限公司 Insulated gate bipolar device utilizing surface voltage-sustaining layer structure
DE102015114578A1 (en) * 2015-09-01 2017-03-02 Harms + Wende Gmbh & Co. Kg Apparatus and method for capacitor discharge welding
CN108019284A (en) * 2017-11-08 2018-05-11 陕西航空电气有限责任公司 Aircraft engine igniter electrion trigger circuit
CN108051217A (en) * 2017-11-30 2018-05-18 四川泛华航空仪表电器有限公司 The online fault detection method of aero-engine ignition driver
CN110821681A (en) * 2019-11-11 2020-02-21 陕西航空电气有限责任公司 Method for setting current-limiting resistor of ignition circuit of double discharge tubes of aircraft engine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张汀等: "一种模拟控制的汽车头灯电子镇流器", 《电力电子技术》 *
邹开凤: "电容放电点火装置参数的选择研究", 《汽车工程》 *
郑健超等: "用于串联电容器组快速保护的可控多级火花间隙", 《高电压技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233479A (en) * 2021-12-13 2022-03-25 陕西航空电气有限责任公司 Control method of voltage-controlled oscillator of aviation ignition circuit

Also Published As

Publication number Publication date
CN112628050B (en) 2022-08-19

Similar Documents

Publication Publication Date Title
CA2584628C (en) Triggered pulsed ignition system and method
EP2836699B1 (en) Ignition system including a measurement device for providing measurement signals to a combustion engine's control system
CN112628050B (en) Withstand voltage value determination method for boost capacitor of aircraft engine ignition circuit
CN106988892A (en) Solid-state spark device and the divider chain using the device
CN105579701A (en) Method and device for igniting gas-fuel mixture
CN110821681B (en) Method for setting current-limiting resistor of ignition circuit of double discharge tubes of aircraft engine
JP5253144B2 (en) Ignition device for internal combustion engine
CN112627988B (en) Alternating-current high-voltage power supply ignition circuit of aero-engine ignition system
EP0628719B1 (en) Ignition apparatus employing a lower voltage capacitor discharge self-triggering circuit
CN112963249A (en) High-energy igniter for aviation
RU219302U1 (en) CAPACITIVE IGNITION SYSTEM WITH PARALLEL DISCHARGE CIRCUITS
CN203604054U (en) Ignition device for turboprop engine
RU2106518C1 (en) Capacitor-type ignition system of gas-turbine engine
CN112627987A (en) Main and boost integrated ignition device circuit with discharge frequency feedback
CN110912439B (en) High-voltage pulse booster circuit based on pulse transformer and adjusting method
Mahajan et al. Novel exciter circuit for ignition of gas turbine engines in aerospace applications
Xudong et al. Modeling and simulation of aviation engine ignition spark frequency disorder
RU211567U1 (en) TWO-CHANNEL CAPACITIVE IGNITION DEVICE
CN104214797A (en) High-energy electronic igniter circuit
EP1887217A2 (en) Ignition system for an internal combustion engine
RU209725U1 (en) COMBINED IGNITOR
CN112922728B (en) Frequency stabilization aircraft engine ignition device using two-stage power supply
CN105472854B (en) A kind of igniter of the rechargeable hyperbar gas-discharge lamp of capacitor resonance
CN215408889U (en) Aeroengine ignition device of steady frequency in full voltage range
RU219301U1 (en) COMBINED IGNITOR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant