CN112619703A - 一种绒球状氧化锌-聚苯胺异质结构型的多功能光催化剂制备方法 - Google Patents

一种绒球状氧化锌-聚苯胺异质结构型的多功能光催化剂制备方法 Download PDF

Info

Publication number
CN112619703A
CN112619703A CN202011518459.2A CN202011518459A CN112619703A CN 112619703 A CN112619703 A CN 112619703A CN 202011518459 A CN202011518459 A CN 202011518459A CN 112619703 A CN112619703 A CN 112619703A
Authority
CN
China
Prior art keywords
polyaniline
pompon
zno
zinc oxide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011518459.2A
Other languages
English (en)
Inventor
程杨
彭文情
荣高琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202011518459.2A priority Critical patent/CN112619703A/zh
Publication of CN112619703A publication Critical patent/CN112619703A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种绒球状氧化锌‑聚苯胺异质结构型的多功能光催化剂制备方法,通过水热法和聚合物薄膜表面负载法制备了以聚苯胺作为外层负载物的绒球状氧化锌‑聚苯胺异质结构型材料,实验证明其在可见光条件下可用于处理污染水体中的多种典型污染物。

Description

一种绒球状氧化锌-聚苯胺异质结构型的多功能光催化剂制 备方法
技术领域
本发明属于纳米复合光催化材料制备领域,具体涉及一种吸附性能良好的纳米异质结构型材料的制备方法及其应用。
背景技术
在过去的几十年中,大量未经处理的工业及医疗废水排放已经在世界范围内引起了大范围的疾病传播。废水中存在大量有害物质,例如:重金属离子,致病菌,有机染料等。当前,基于处理成本及处理效率的考虑,迫切需要开发一种可综合处理多种水体污染物的实用材料或技术。在现有的众多污水处理技术及途径中,光催化技术是一种高效、经济且绿色的污水处理途径。大量的研究证明ZnO纳米结构的光化学活性较好。ZnO是直接带隙半导体,其具有与TiO2相似的带隙结构,且其光电转换效率相对更高。然而,在ZnO纳米光催化剂的实际应用仍需面对若干障碍,如光生载流子较易复合,单分散性差和对可见光响应低等实际问题。事实上,ZnO纳米材料的光化学性能受其晶体尺寸,比表面积,形态和结构等多重因素的影响。其中,绒球状ZnO具有比表面积大的纳米形态,研究证明其具有优异的光催化性能。
聚苯胺作为一种有机半导体共轭聚合物,其具有合适的带隙结构、较大的比表面及较高的导带能级等优点。通过聚苯胺纳米材料的有效负载,可能极大改进ZnO的应用障碍,扩大其在异相介质中的界面接触面积、促进其可见光响应及提高其光生电荷的分离及传递效率。因此,申请者使用绒球状ZnO和PANI建立纳米异质结构型材料,期望通过结合PANI和绒球状ZnO的上述应用优势,实现通过一种现实可行的方法制备多功能的复合光催化剂,并借助其满足废水中多种典型污染物综合处理的紧迫社会需求。
发明内容
本发明通过水热法和聚合物薄膜表面负载法制备了以聚苯胺作为外层负载物的绒球状氧化锌-聚苯胺异质结构型材料,其具体技术方案如下:
作为第一方面,一种绒球状氧化锌-聚苯胺异质结构型光催化剂的制备方法,其特征在于上述方法的具体步骤为:
步骤一,在搅拌状态下将0.5~1.0g ZnCl2溶解在60~100ml去离子水中,形成ZnCl2溶液,随后继续搅拌0.5~1h,搅拌期间将2.0~3.0g NaOH和1.0~2.0g CTAB引入上述ZnCl2溶液中;
步骤二,将步骤一的反应混合物转移至内衬100ml的不锈钢高压釜中在160~220℃下反应2~8h,将所得产物过滤,洗涤,干燥后得到ZnO纳米粉体;
步骤三,以四氢呋喃为溶剂,配置聚苯胺溶液,将ZnO纳米粉体加入到上述聚苯胺溶液中;将混合溶液进行超声振荡10~50min,然后在15~85℃条件下搅拌12~48h。洗涤干燥后即得到绒球状ZnO-PANI纳米复合材料。
结合第一方面,在其可能发生的任意一种情况下的第一种情况为:步骤二中所述的将步骤一的反应混合物在160~220℃下反应2~8h后冷却至室温。
结合第一方面及上述第一种情况,在其可能发生的任意一种情况下的第二种情况为:步骤二中所述的洗涤为:用去离子水和乙醇洗涤洗涤。
结合第一方面及上述第一、二种情况,在其可能发生的任意一种情况下的第三种情况为:步骤二中所述的干燥为:在50~85℃的真空中干燥6~12小时。
结合第一方面及上述第一、二、三种情况,在其可能发生的任意一种情况下的第四种情况为:步骤三中所述的聚苯胺溶液浓度为0.3g/L到1.0g/L。
结合第一方面及上述第一、二、三、四种情况,在其可能发生的任意一种情况下的第五种情况为:步骤三中所述的ZnO纳米粉体质量为3~5g。
与单一的ZnO相比,本发明的积极效果是:
单一的ZnO不具备良好的单分散性,对可见光的反应较差,且ZnO的光化学行为受到其晶体尺寸、比表面积、形貌和结构的显著影响。而使用PANI包覆之后的ZnO能很好的解决这些问题,如图1-图6所示。
在吸附光降解甲基蓝的实验中,采用绒球状ZnO-PANI纳米复合材料进行光催化降解甲基蓝,其2h后的残余量可以低至2.2%,而在相同条件下的ZnO的光催化降解MB残余量为45.5%,如图7、图8所示。
使用PANI进行包覆后,比表面积的增大,由于P-N型异质结的协同效应,导致光子产生的电子空穴的分离效率变高,在可见光照射下绒球状ZnO-PANI纳米复合材料对铬和汞的去除率明显提高,分别达到了92.7%和91.8%,如图10、图11所示。
在可见光照射下的光催化抗菌活性实验中,绒球状ZnO-PANI纳米复合材料中的羟基自由基和超氧化物自由基(·OH和O2-·)能够有效的处理相应的细菌微生物,如图9所示。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为绒球状ZnO在2um单位下的SEM分析。
图2为绒球状ZnO-PANI纳米复合材料在5um单位下的SEM分析。
图3为绒球状ZnO在500nm单位下的TEM分析。
图4为绒球状ZnO-PANI纳米复合材料在1μm单位下的TEM分析。
图5为绒球状ZnO和绒球状ZnO-PANI纳米复合材料的XRD图谱。
图6为绒球状ZnO和绒球状ZnO-PANI纳米复合材料的FTIR图谱。
图7为制备样品在紫外光下光降解甲基蓝试验。
图8为制备样品在可见光下光降解甲基蓝试验。
图9为在可见光下,制备样品对大肠杆菌和葡萄球菌的光催化抗菌试验。
图10在柠檬酸存在的条件下,制备样品对铬的光还原试验。
图11在柠檬酸存在的条件下,制备样品对汞的光还原试验。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。显然,所描述的实施例仅仅是本发明的部分实施例。
以下提供本发明绒球状ZnO-PANI异质结构的制备及其在可见光下处理典型水污染物的应用的具体实施方式。
实施例1
取ZnCl2配置成0.03mol/L的水溶液,并进行搅拌,加入NaOH和CTAB后在160℃下反应2小时。
冷却至室温。收集白色沉淀物,并用去离子水和乙醇洗涤几次,在50℃的真空中干燥6小时。得到绒状的ZnO。
以四氢呋喃为溶剂,取绒状的ZnO配置成0.3mol/L的溶液。向溶液中加入0.3gPANI,将混合溶液进行10分钟超声振荡,然后在15℃下搅拌12小时。
将沉淀物用水洗涤3次,并在50℃下干燥12小时。得到的最终产品就是绒球状的ZnO-PANI纳米复合材料。
将制备的绒球状ZnO-PANI纳米复合材料通过SEM、TEM、XRD、XPS以及FTIR证明了该材料的微观形态和化学结构,加入不同含量的PANI,最后附着在ZnO上的厚度为1.8nm-12.5nm左右。
通过对甲基蓝的降解实验,在紫外照射下,绒球状ZnO-PANI纳米复合材料表现出显著的光催化活性。远远高于ZnO的光降解效率。在光诱导下对Hg(II)和Cr(VI)也表现出较强的吸附能力,分别高达91.8%和92.7%。在可见光照射下的光催化抗菌活性试验中,用ZnO-PANI对大肠杆菌和SA的抗菌率分别为88.9%和91.1%。
实施例2
取ZnCl2配置成0.04mol/L的水溶液,并进行搅拌,加入NaOH和CTAB后在180℃下反应4小时。
冷却至室温。收集白色沉淀物,并用去离子水和乙醇洗涤几次,在60℃的真空中干燥8小时。得到绒状的ZnO。
以四氢呋喃为溶剂,取绒状的ZnO配置成0.4mol/L的溶液。向溶液中加入0.45gPANI,将混合溶液进行20分钟超声振荡,然后在30℃下搅拌18小时。
将沉淀物用水洗涤3次,并在60℃下干燥18小时。得到的最终产品就是绒球状的ZnO-PANI纳米复合材料。
实施例3
取ZnCl2配置成0.05mol/L的水溶液,并进行搅拌,加入NaOH和CTAB后在190℃下反应5小时。
冷却至室温。收集白色沉淀物,并用去离子水和乙醇洗涤几次,在70℃的真空中干燥9小时。得到绒状的ZnO。
以四氢呋喃为溶剂,取绒状的ZnO配置成0.5mol/L的溶液。向溶液中加入0.6gPANI,将混合溶液进行30分钟超声振荡,然后在45℃下搅拌24小时。
将沉淀物用水洗涤3次,并在70℃下干燥24小时。得到的最终产品就是绒球状的ZnO-PANI纳米复合材料。
实施例4
取ZnCl2配置成0.06mol/L的水溶液,并进行搅拌,加入NaOH和CTAB后在200℃下反应6小时。
冷却至室温。收集白色沉淀物,并用去离子水和乙醇洗涤几次,在80℃的真空中干燥10小时。得到绒状的ZnO。
以四氢呋喃为溶剂,取绒状的ZnO配置成0.6mol/L的溶液。向溶液中加入0.75gPANI,将混合溶液进行40分钟超声振荡,然后在60℃下搅拌36小时。
将沉淀物用水洗涤3次,并在80℃下干燥36小时。得到的最终产品就是绒球状的ZnO-PANI纳米复合材料。
实施例5
取ZnCl2配置成0.07mol/L的水溶液,并进行搅拌,加入NaOH和CTAB后在220℃下反应8小时。
冷却至室温。收集白色沉淀物,并用去离子水和乙醇洗涤几次,在85℃的真空中干燥12小时。得到绒状的ZnO。
以四氢呋喃为溶剂,取绒状的ZnO配置成0.7mol/L的溶液。向溶液中加入1.0gPANI,将混合溶液进行50分钟超声振荡,然后在75℃下搅拌48小时。
将沉淀物用水洗涤3次,并在85℃下干燥48小时。得到的最终产品就是绒球状的ZnO-PANI纳米复合材料。
以上所述仅是本发明的优选实施方式,加入不同含量的PANI得到厚度不同的绒球状的ZnO-PANI纳米复合材料。
应理解,上述实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解为在阅读本发明的内容后,本领域技术人员可以对本发明作各种改动和修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (6)

1.一种绒球状氧化锌-聚苯胺异质结构型光催化剂的制备方法,其特征在于上述方法的具体步骤为:
步骤一,在搅拌状态下将0.5~1.0g ZnCl2溶解在60~100ml去离子水中,形成ZnCl2溶液,随后继续搅拌0.5~1h,搅拌期间将2.0~3.0g NaOH和1.0~2.0g CTAB引入上述ZnCl2溶液中;
步骤二,将步骤一的反应混合物在160~220℃下反应2~8h,将所得产物过滤,洗涤,干燥后得到ZnO纳米粉体;
步骤三,以四氢呋喃为溶剂,配置聚苯胺溶液,将ZnO纳米粉体加入到上述聚苯胺溶液中;将混合溶液进行超声振荡10~50min,然后在15~85℃条件下搅拌12~48h。洗涤干燥后即得到绒球状ZnO-PANI纳米复合材料。
2.根据权利要1所述的一种绒球状氧化锌-聚苯胺异质结构型光催化剂的制备方法,其特征在于:步骤二中所述的将步骤一的反应混合物在160~220℃下反应2~8h后冷却至室温。
3.根据权利要求2所述的,一种绒球状氧化锌-聚苯胺异质结构型光催化剂的制备方法,其特征在于,步骤二中所述的洗涤为:用去离子水和乙醇洗涤洗涤。
4.根据权利要求3所述的,一种绒球状氧化锌-聚苯胺异质结构型光催化剂的制备方法,其特征在于,步骤二中所述的干燥为:在50~85℃的真空中干燥6~12小时。
5.根据权利要求1至4其中任意一个所述的一种绒球状氧化锌-聚苯胺异质结构型光催化剂的制备方法,其特征在于,步骤三中所述的聚苯胺溶液浓度为0.3g/L到1.0g/L。
6.根据权利要求5所述的一种绒球状氧化锌-聚苯胺异质结构型光催化剂的制备方法,其特征在于,步骤三中所述的ZnO纳米粉体质量为3~5g。
CN202011518459.2A 2020-12-21 2020-12-21 一种绒球状氧化锌-聚苯胺异质结构型的多功能光催化剂制备方法 Pending CN112619703A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011518459.2A CN112619703A (zh) 2020-12-21 2020-12-21 一种绒球状氧化锌-聚苯胺异质结构型的多功能光催化剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011518459.2A CN112619703A (zh) 2020-12-21 2020-12-21 一种绒球状氧化锌-聚苯胺异质结构型的多功能光催化剂制备方法

Publications (1)

Publication Number Publication Date
CN112619703A true CN112619703A (zh) 2021-04-09

Family

ID=75320749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011518459.2A Pending CN112619703A (zh) 2020-12-21 2020-12-21 一种绒球状氧化锌-聚苯胺异质结构型的多功能光催化剂制备方法

Country Status (1)

Country Link
CN (1) CN112619703A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583156A (zh) * 2021-06-30 2021-11-02 苏州大学 用于高通量太阳光敞口聚合的孔板制备方法及高通量太阳光敞口聚合方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011656A (zh) * 2007-01-26 2007-08-08 福建师范大学 一种可作为光催化剂使用的氧化锌纳米纤维膜的制备方法
CN101815563A (zh) * 2007-07-18 2010-08-25 新加坡南洋理工大学 空心多孔微球
CN103170369A (zh) * 2013-02-28 2013-06-26 安徽大学 氧化锌/聚苯胺复合光催化剂的制备方法
KR20150020505A (ko) * 2013-08-16 2015-02-26 성균관대학교산학협력단 고분자 물질을 이용하여 친수성 표면개질한 가시광 응답형 광촉매 및 이의 제조방법
CN104492490A (zh) * 2014-12-01 2015-04-08 常州大学 一种具有高效光催化活性的氧化锌-聚苯胺复合光催化材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011656A (zh) * 2007-01-26 2007-08-08 福建师范大学 一种可作为光催化剂使用的氧化锌纳米纤维膜的制备方法
CN101815563A (zh) * 2007-07-18 2010-08-25 新加坡南洋理工大学 空心多孔微球
CN103170369A (zh) * 2013-02-28 2013-06-26 安徽大学 氧化锌/聚苯胺复合光催化剂的制备方法
KR20150020505A (ko) * 2013-08-16 2015-02-26 성균관대학교산학협력단 고분자 물질을 이용하여 친수성 표면개질한 가시광 응답형 광촉매 및 이의 제조방법
CN104492490A (zh) * 2014-12-01 2015-04-08 常州大学 一种具有高效光催化活性的氧化锌-聚苯胺复合光催化材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAO ZOU 等: "Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583156A (zh) * 2021-06-30 2021-11-02 苏州大学 用于高通量太阳光敞口聚合的孔板制备方法及高通量太阳光敞口聚合方法
CN113583156B (zh) * 2021-06-30 2023-01-13 苏州大学 用于高通量太阳光敞口聚合的孔板制备方法及高通量太阳光敞口聚合方法

Similar Documents

Publication Publication Date Title
Li et al. Fabrication of ZIF-8@ TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation
Zhang et al. Microwave hydrothermally synthesized WO 3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B
Liu et al. Photoreduction of Cr (VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe (III) ions
Mondal et al. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials–a mini-review
Hua et al. Visible-light-driven photocatalytic degradation of tetracycline hydrochloride by Z-scheme Ag3PO4/1T@ 2H-MoS2 heterojunction: degradation mechanism, toxicity assessment, and potential applications
Xu et al. A 3D porous structured cellulose nanofibrils-based hydrogel with carbon dots-enhanced synergetic effects of adsorption and photocatalysis for effective Cr (VI) removal
Ikram et al. Chitosan/starch-doped MnO2 nanocomposite served as dye degradation, bacterial activity, and insilico molecular docking study
CN105435847B (zh) 一种Bi2WO6/BiOI@季铵盐无机/有机复合光催化杀菌剂及其制备方法
Ozaki et al. Marked promotive effect of iron on visible-light-induced photocatalytic activities of nitrogen-and silicon-codoped titanias
Basaleh et al. Novel visible light heterojunction CdS/Gd2O3 nanocomposites photocatalysts for Cr (VI) photoreduction
Xu et al. Heterojunction material BiYO3/g-C3N4 modified with cellulose nanofibers for photocatalytic degradation of tetracycline
Tuna et al. Deposition of CaFe2O4 and LaFeO3 perovskites on polyurethane filter: a new photocatalytic support for flowthrough degradation of tetracycline antibiotic
Ji et al. Electrospun organic/inorganic hybrid nanofibers as low-cytotoxicity and recyclable photocatalysts
El-Yazeed et al. Fabrication and characterization of reduced graphene-BiVO4 nanocomposites for enhancing visible light photocatalytic and antibacterial activity
Yusuff et al. Photocatalytic degradation of an anionic dye in aqueous solution by visible light responsive zinc oxide-termite hill composite
Gul et al. Photodegradation of orange II dye using pn junction NiO/TiO2 composite, and assessment of its biological activities
Wu et al. Construction of Z-scheme CoAl-LDH/Bi2MoO6 heterojunction for enhanced photocatalytic degradation of antibiotics in natural water bodies
Sharma et al. Carbon quantum dots embedded trimetallic oxide: Characterization and photocatalytic degradation of Ofloxacin
Kasinathan et al. Fabrication of 3D/2D Bi2MoO6/g-C3N4 heterostructure with enhanced photocatalytic behavior in the degradation of harmful organics
CN112619703A (zh) 一种绒球状氧化锌-聚苯胺异质结构型的多功能光催化剂制备方法
Chen et al. Photocatalytic degradation of tetracycline wastewater through heterojunction based on 2D rhombic ZrMo2O8 nanosheet and nano-TiO2
Toan et al. Ultrasonic-assisted synthesis of magnetic recyclable Fe 3 O 4/rice husk biochar based photocatalysts for ciprofloxacin photodegradation in aqueous solution
Huang et al. Carboxymethyl cellulose gels immobilized Ag/AgCl-ZnO nanoparticles for improving sunlight-catalyzed antibacterial performance
CN113893884A (zh) 高效环保的可见光光催化剂及其制备方法和应用
Adnan et al. Visible light-enable oxidation and antibacterial of zinc oxide hybrid chitosan photocatalyst towards aromatic compounds treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination