CN112611798A - 一种同分异构体的在线质谱探测方法 - Google Patents

一种同分异构体的在线质谱探测方法 Download PDF

Info

Publication number
CN112611798A
CN112611798A CN202110023616.0A CN202110023616A CN112611798A CN 112611798 A CN112611798 A CN 112611798A CN 202110023616 A CN202110023616 A CN 202110023616A CN 112611798 A CN112611798 A CN 112611798A
Authority
CN
China
Prior art keywords
electron energy
sample
energy
isomers
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110023616.0A
Other languages
English (en)
Other versions
CN112611798B (zh
Inventor
黄泽建
方向
江游
戴新华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Metrology
Original Assignee
National Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Metrology filed Critical National Institute of Metrology
Priority to CN202110023616.0A priority Critical patent/CN112611798B/zh
Publication of CN112611798A publication Critical patent/CN112611798A/zh
Application granted granted Critical
Publication of CN112611798B publication Critical patent/CN112611798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明涉及质谱技术领域,尤其涉及一种同分异构体的在线质谱探测方法。所述在线质谱探测方法包括:采用扫描电子能量的方法,将待测样品中具有不同电离能的同分异构体识别出来。通过扫描电子能量的方式,可以得到基于电离能的第二维信息,从而可以根据电离能来区别分子量相同而电离能不同的分子,进而区分不同的同分异构体;对标样建立电离能与质谱信号强度之间的第一级关系,并将此关系带入混合物下得到的关系式,从而可以实现同分异构体的定性定量分析。对于在线质谱,本发明以最经济的代价,直接对各种有机小分子进行检测,不仅可以识别不同分子量的物质,也可以区分同分异构体,从而大幅度提高在线质谱的定性和定量能力。

Description

一种同分异构体的在线质谱探测方法
技术领域
本发明涉及质谱技术领域,尤其涉及一种同分异构体的在线质谱探测方法。
背景技术
质谱是研究物质基本组成、结构特征、物理和化学性质最基本的仪器之一,是生命科学、材料科学、食品安全、环境保护等领域的必备仪器,是现代分析仪器的核心。质谱本质是利用电场和/或磁场将运动的离子按它们的质荷比分离后进行检测的一种波谱方法,通过测量离子的准确质荷比即可确定离子的化合物组成。质谱主要用于化合物的结构鉴定,能提供化合物的分子量、元素组成以及官能团等结构信息。质谱分析范围广泛,适用于气体、液体和固体;分析速度快、灵敏度高、样品用量小;可以直接定性分析;借助各种分离手段,还可以对复杂化合物进行准确的定量分析。由于质谱的上述特点,其广泛应用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析领域。
随着仪器技术的不断发展,质谱仪的性能也朝着高灵敏度、高准确度、更强结构鉴定能力的方向发展,尤其是近些年对于同分异构体的探测技术发展有了长足的进步。
由于质谱检测的是质荷比,因此,对于分子量相同而结构不同的物质的探测,一直是质谱技术努力解决的问题。通常,对于同分异构的探测,有以下几种方法:
第一,通过分离手段先将混合物分离开,比如与气相色谱(GC)、液相色谱(LC)、毛细管电泳(CE)等联用,然后再对每一个分离后的单一物质进行探测。该方法应用最广,也是发展最成熟的一种技术。
第二,通过多级质谱串联的方式来对分子的结构进行鉴定。通常会配合软电离源技术,如化学电离源(CI)、电喷雾电离源(ESI)、大气压化学电离源(APCI)、大气压光电离子源(APPI)、基质辅助激光解吸附离子源(MALDI)、解吸附电喷雾离子源(DESI)、实时直接分析离子源(DART)、紫外光电离源(UV PD)、辉光放电电子轰击电离(GDEI)源以及低电子能量EI源(LEI)等等,先得到待分析物质的分子离子峰,然后再将分子离子打碎,做二级离子碎片质谱图、三级离子碎片质谱图,甚至更高级的离子碎片质谱图,来对分子的结构信息进行鉴定。实现的方式包括三重四极杆、离子阱多级碎裂、飞行时间-飞行时间串联等等。
第三,通过同分异构体具有不同结构构型的特点,结合离子漂移管技术,将同分异构体在时间和空间上进行分离,之后再进行检测。
然而,上述探测手段都是属于实验室级质谱的仪器技术,难以满足现场在线检测。
而对于现场在线检测来说,速度是第一位的,快速甚至实时是十分重要和必要的。因为时间就是金钱、时间就是生命。比如,在毒气泄露、化工厂爆炸、化学毒剂释放等等各种突发性应急事件中,以最快的速度准确的判断出是何物质和具有多少含量是事关生死的大事。
然而,与GC、LC,甚至CE等联用,由于一个分析周期耗时过长,短则数分钟,长者几十分钟,因此在现场在线检测应用中,是具有明显的技术劣势的。
而各种软电离离子源,包括CI、ESI、APCI、APPI、MALDI、DESI、DART、UV PD、GDEI、LEI等等,由于电离后得到的通常是分子离子峰,而同分异构体分子量相同,因此这些软电离方法也无法将同分异构体中的不同物质区分出来。
软电离技术加上如离子漂移管、多级质谱结构解析等方法可以区分同分异构体,但是,仪器大小尺寸及复杂程度也将呈指数级增长,这显然不适合现场和在线应用。
鉴于此,特提出本发明。
发明内容
本发明的目的是提供一种同分异构体的在线质谱探测方法,以最经济的方式、实现对包括同分异构体在内的各种有机小分子在现场的快速检测。
具体地,本发明提供以下技术方案:
本发明提供一种同分异构体的在线质谱探测方法,包括:采用扫描电子能量的方法,将待测样品中具有不同电离能的同分异构体识别出来。
现有技术中,在线质谱在对待测样品进行分析的过程中,采用低电子能量电子轰击电离源对样品分子进行电离,通过分子离子峰对应的分子量可以进行准确定性和定量;但是,对于同分异构体,由于分子量相同而无法识别。本发明意外发现,采用扫描电子能量的方法,可将待测样品中具有不同电离能的同分异构体识别出来。
具体而言,对于不同的物质,其电离能往往是不同的。比如氮气和一氧化碳,二者的分子量均为28Da,但氮气的电离能未15.58eV,一氧化碳的电离能为14.01eV;再比如乙苯和邻/间/对二甲苯的分子式均为C8H10,分子量均为106Da,但乙苯的电离能是8.77eV,邻二甲苯的电离能为8.56eV,间二甲苯的电离能为8.55eV,对二甲苯的电离能为8.44eV。电离能的大小决定了物质在什么条件下可以被电离或不被电离。以电子轰击电离源为例,当电子能量低于物质的电离能时,该物质不能被电离;当电子能量等于或大于物质的电离能时,该物质才能够被电离。如此,采用扫描电子能量的方法,并且让电子能量的扫描范围经过物质的电子能量值,就可以让该物质由完全不被电离到逐渐被电离。进而,随着电子能量的增加,就可以给出以电离能为参数的第二维信息,结合第一维的质谱离子谱峰信息,就可以实现对包括同分异构体在内的有机小分子的准确检测。
作为优选,电子能量的扫描范围包括待测样品的电子能量值。
作为优选,所述在线质谱探测方法包括:
步骤(1),将待测样品引入质谱真空系统离子源部位,设置电子轰击电离源的初始电子能(比如5eV),按照给定的质荷比范围(比如5~70eV),扫描得到第一张全谱;
步骤(2),将所述初始电子能按照一定的电子能量步进增量(比如按照0.01eV递增),再次扫描得到第二张全谱;重复所述步进增量的步骤,直到将所述初始电子能升高至终止电子能,扫描得到第n张全谱;
步骤(3),从得到的所有全谱信息中,按照特征离子进行提取,得到提取离子谱图。
在上述步骤(2)中,增量可以根据待测样品的情况来灵活选择递增步长。
作为优选,所述初始电子能低于待测样品的电离能。
作为优选,所述终止电子能高于待测样品的电离能。
作为优选,步骤(3)中,所述提取离子谱图的横坐标为电子能量,纵坐标为提取离子的质谱信号强度。
作为优选,所述在线质谱探测方法还包括通过数值计算得到待测样品中各同分异构体含量的步骤。
具体而言,对待测样品中的各待分析物分别建立电子能量与质谱信号强度之间的标准曲线y=f(x),其中x为电子能量,y为待测样品的分子离子峰的质谱信号强度;
对存在同分异构体的待分析物的提取离子谱图,依次建立质谱信号强度与电子能量之间的关系y=fn(x),n=1、2、...、n,然后解方程y=k1f1(x)+k2f2(x)+...+knfn(x),其中n代表第n种同分异构体,计算出k1、k2、...、kn,即可计算出待测样品中含有哪些同分异构体、以及各同分异构体对应的强度。
作为本发明的较佳技术方案,所述在线质谱探测方法包括:
步骤(1),将待测样品引入质谱真空系统离子源部位,设置电子轰击电离源的初始电子能,按照给定的质荷比范围,扫描得到第一张全谱;所述初始电子能低于待测样品的电离能;
步骤(2),将所述初始电子能按照一定的电子能量步进增量,再次扫描得到第二张全谱;重复所述步进增量的步骤,直到将所述初始电子能升高至终止电子能,扫描得到第n张全谱;所述终止电子能高于待测样品的电离能;
步骤(3),从得到的所有全谱信息中,按照特征离子进行提取,得到提取离子谱图;所述提取离子谱图的横坐标为电子能量,纵坐标为提取离子的质谱信号强度;
步骤(4),对待测样品中的各待分析物分别建立电子能量与质谱信号强度之间的标准曲线y=f(x),其中x为电子能量,y为待测样品的分子离子峰的质谱信号强度;
对存在同分异构体的待分析物的提取离子谱图,依次建立质谱信号强度与电子能量之间的关系y=fn(x),n=1、2、...、n,然后解方程y=k1f1(x)+k2f2(x)+...+knfn(x),其中n代表第n种同分异构体,计算出k1、k2、...、kn,即可计算出待测样品中含有哪些同分异构体、以及各同分异构体对应的强度。
本发明的有益效果在于:
(1)利用低电子能量电子轰击电离源技术可以实现“软”电离,得到待测样品的分子离子峰,从而得到其分子量信息。
(2)通过扫描电子能量的方式,可以得到基于电离能的第二维信息,从而可以根据电离能来区别分子量相同而电离能不同的分子,进而区分不同的同分异构体。
(3)对标样建立电离能与质谱信号强度之间的第一级关系,并将此关系带入混合物下得到的关系式,从而可以实现同分异构体的定性定量分析。
(4)对于在线质谱,本发明以最经济的代价,直接对各种有机小分子进行检测,不仅可以识别不同分子量的物质,也可以区分同分异构体,从而大幅度提高在线质谱的定性和定量能力。
附图说明
图1为利用EI源对待测样品进行电离,随着电离能增加,得到的某个离子信号强度的变化的一个示意图,通常这个离子是该样品的分子离子。
图2为三种不同的物质随着电子能量增加,质谱离子信号的变化情况示意图;其中,A为CO2,B为O2,C为N2
图3为某个离子的提取离子质谱图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明实施例提供一种同分异构体的在线质谱探测方法,包括:
步骤(1),将待测样品引入质谱真空系统离子源部位,设置电子轰击电离源的初始电子能,比如从5eV开始,按照给定的质荷比范围,扫描得到第一张全谱;所述初始电子能低于待测样品的电离能;
步骤(2),将所述初始电子能按照一定的电子能量步进增量,比如以0.01eV递增,再次扫描得到第二张全谱;重复所述步进增量的步骤,直到将所述初始电子能升高至终止电子能,比如30eV,扫描得到第n张全谱;所述终止电子能高于待测样品的电离能;
步骤(3),从得到的所有全谱信息中,按照特征离子进行提取,得到提取离子谱图;通常特征离子为某个感兴趣或要检测分子的分子离子,其代表了该物质的分子量信息。所述提取离子谱图的横坐标为电子能量,纵坐标为提取离子的质谱信号强度。如果待测样品中只有一种物质含有该特征离子,那么得到的提取离子谱图如图1所示(其中IE0为该物质的电离能,当电子能量低于IE0的时候,物质无法被电离,进而无质谱信号输出;当电子能量等于IE0的时候,物质被电离,此时质谱信号有输出;随着电子能量的逐步升高,质谱信号也开始逐渐升高);如果待测样品中有两种物质含有该特征离子,那么得到的提取离子谱图如图3所示(与图1不同,图3存在两种物质,且分子量相同,而电离能不同;其中第一种物质的电离能为IE0,第二种物质的电离能为IE1)。由于所用的电子能量为低电子能量,所以该特征离子就是该物质的分子离子。
步骤(4),为了准确的定性和定量,需要实现对待测样品中的各待分析物分别建立标准曲线;即在相同条件下,对各待分析物分别建立电子能量与质谱信号强度之间的标准曲线y=f(x),其中x为电子能量,y为待测样品的分子离子峰的质谱信号强度;
对存在同分异构体的待分析物的提取离子谱图,依次建立质谱信号强度与电子能量之间的关系y=fn(x),n=1、2、...、n,然后解方程y=k1f1(x)+k2f2(x)+...+knfn(x),其中n代表第n种同分异构体,计算出k1、k2、...、kn,即可计算出待测样品中含有哪些同分异构体、以及各同分异构体对应的强度。
本实施例中,利用上述方法对CO2、O2、N2进行探测,如图2所示,在电子能量较低,比如20eV以下时,只有分子离子峰;电子能量继续升高后,碎片离子就会开始出现;并且,电子能量越高,碎片离子的峰高就会越高。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (8)

1.一种同分异构体的在线质谱探测方法,其特征在于,包括:采用扫描电子能量的方法,将待测样品中具有不同电离能的同分异构体识别出来。
2.根据权利要求1所述的同分异构体的在线质谱探测方法,其特征在于,电子能量的扫描范围包括待测样品的电子能量值。
3.根据权利要求1或2所述的同分异构体的在线质谱探测方法,其特征在于,包括:
步骤(1),将待测样品引入质谱真空系统离子源部位,设置电子轰击电离源的初始电子能,按照给定的质荷比范围,扫描得到第一张全谱;
步骤(2),将所述初始电子能按照一定的电子能量步进增量,再次扫描得到第二张全谱;重复所述步进增量的步骤,直到将所述初始电子能升高至终止电子能,扫描得到第n张全谱;
步骤(3),从得到的所有全谱信息中,按照特征离子进行提取,得到提取离子谱图。
4.根据权利要求3所述的同分异构体的在线质谱探测方法,其特征在于,所述初始电子能低于待测样品的电离能;
和/或,所述终止电子能高于待测样品的电离能。
5.根据权利要求3所述的同分异构体的在线质谱探测方法,其特征在于,步骤(3)中,所述提取离子谱图的横坐标为电子能量,纵坐标为提取离子的质谱信号强度。
6.根据权利要求4或5所述的同分异构体的在线质谱探测方法,其特征在于,还包括通过数值计算得到待测样品中各同分异构体含量的步骤。
7.根据权利要求6所述的同分异构体的在线质谱探测方法,其特征在于,对待测样品中的各待分析物分别建立电子能量与质谱信号强度之间的标准曲线y=f(x),其中x为电子能量,y为待测样品的分子离子峰的质谱信号强度;
对存在同分异构体的待分析物的提取离子谱图,依次建立质谱信号强度与电子能量之间的关系y=fn(x),n=1、2、...、n,然后解方程y=k1f1(x)+k2f2(x)+...+knfn(x),其中n代表第n种同分异构体,计算出k1、k2、...、kn,即可计算出待测样品中含有哪些同分异构体、以及各同分异构体对应的强度。
8.根据权利要求1所述的同分异构体的在线质谱探测方法,其特征在于,包括:
步骤(1),将待测样品引入质谱真空系统离子源部位,设置电子轰击电离源的初始电子能,按照给定的质荷比范围,扫描得到第一张全谱;所述初始电子能低于待测样品的电离能;
步骤(2),将所述初始电子能按照一定的电子能量步进增量,再次扫描得到第二张全谱;重复所述步进增量的步骤,直到将所述初始电子能升高至终止电子能,扫描得到第n张全谱;所述终止电子能高于待测样品的电离能;
步骤(3),从得到的所有全谱信息中,按照特征离子进行提取,得到提取离子谱图;所述提取离子谱图的横坐标为电子能量,纵坐标为提取离子的质谱信号强度;
步骤(4),对待测样品中的各待分析物分别建立电子能量与质谱信号强度之间的标准曲线y=f(x),其中x为电子能量,y为待测样品的分子离子峰的质谱信号强度;
对存在同分异构体的待分析物的提取离子谱图,依次建立质谱信号强度与电子能量之间的关系y=fn(x),n=1、2、...、n,然后解方程y=k1f1(x)+k2f2(x)+...+knfn(x),其中n代表第n种同分异构体,计算出k1、k2、...、kn,即可计算出待测样品中含有哪些同分异构体、以及各同分异构体对应的强度。
CN202110023616.0A 2021-01-08 2021-01-08 一种同分异构体的在线质谱探测方法 Active CN112611798B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110023616.0A CN112611798B (zh) 2021-01-08 2021-01-08 一种同分异构体的在线质谱探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110023616.0A CN112611798B (zh) 2021-01-08 2021-01-08 一种同分异构体的在线质谱探测方法

Publications (2)

Publication Number Publication Date
CN112611798A true CN112611798A (zh) 2021-04-06
CN112611798B CN112611798B (zh) 2023-08-15

Family

ID=75253555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110023616.0A Active CN112611798B (zh) 2021-01-08 2021-01-08 一种同分异构体的在线质谱探测方法

Country Status (1)

Country Link
CN (1) CN112611798B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945530A (zh) * 2021-10-19 2022-01-18 中国计量科学研究院 气体浓度检测方法和质谱仪
CN116106396A (zh) * 2023-04-13 2023-05-12 杭州汇健科技有限公司 质谱数据的全谱拟合动态校正方法、装置、介质及质谱仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315313A (ja) * 2002-04-24 2003-11-06 Osaka Industrial Promotion Organization 質量分析法および質量分析装置
CN102117728A (zh) * 2009-12-30 2011-07-06 中国科学院大连化学物理研究所 一种源内碰撞诱导解离的质谱vuv光电离源装置
CN105842330A (zh) * 2015-09-09 2016-08-10 张华俊 一种质谱检测及解析方法
US20170117124A1 (en) * 2014-06-13 2017-04-27 DH Technologies Development Pte Ltd. Methods For Analysis of Lipids Using Mass Spectrometry
WO2017179147A1 (ja) * 2016-04-13 2017-10-19 株式会社島津製作所 質量分析を用いた異性体分析方法及びタンデム型質量分析装置
CN107389779A (zh) * 2016-11-01 2017-11-24 苏州芷宁信息科技有限公司 一种化学结构的快速分析方法
CN109841484A (zh) * 2017-11-27 2019-06-04 中国科学院大连化学物理研究所 同分异构体混合物定性和定量分析光电离质谱装置和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315313A (ja) * 2002-04-24 2003-11-06 Osaka Industrial Promotion Organization 質量分析法および質量分析装置
CN102117728A (zh) * 2009-12-30 2011-07-06 中国科学院大连化学物理研究所 一种源内碰撞诱导解离的质谱vuv光电离源装置
US20170117124A1 (en) * 2014-06-13 2017-04-27 DH Technologies Development Pte Ltd. Methods For Analysis of Lipids Using Mass Spectrometry
CN105842330A (zh) * 2015-09-09 2016-08-10 张华俊 一种质谱检测及解析方法
WO2017179147A1 (ja) * 2016-04-13 2017-10-19 株式会社島津製作所 質量分析を用いた異性体分析方法及びタンデム型質量分析装置
CN107389779A (zh) * 2016-11-01 2017-11-24 苏州芷宁信息科技有限公司 一种化学结构的快速分析方法
CN109841484A (zh) * 2017-11-27 2019-06-04 中国科学院大连化学物理研究所 同分异构体混合物定性和定量分析光电离质谱装置和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945530A (zh) * 2021-10-19 2022-01-18 中国计量科学研究院 气体浓度检测方法和质谱仪
CN113945530B (zh) * 2021-10-19 2024-06-14 中国计量科学研究院 气体浓度检测方法和质谱仪
CN116106396A (zh) * 2023-04-13 2023-05-12 杭州汇健科技有限公司 质谱数据的全谱拟合动态校正方法、装置、介质及质谱仪

Also Published As

Publication number Publication date
CN112611798B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
US20210265148A1 (en) Mass correction
US20160054264A1 (en) A Method of Screening Samples
CN112611798B (zh) 一种同分异构体的在线质谱探测方法
CN109841484B (zh) 同分异构体混合物定性和定量分析光电离质谱装置和方法
Ketkar et al. Atmospheric pressure ionization tandem mass spectrometric system for real-time detection of low-level pollutants in air
Yu et al. Real time analysis of trace volatile organic compounds in ambient air: a comparison between membrane inlet single photon ionization mass spectrometry and proton transfer reaction mass spectrometry
US9129783B2 (en) MS/MS analysis using ECD or ETD fragmentation
JP5227556B2 (ja) 分析装置
US20210293752A1 (en) Post-separation mobility analyser and method for determining ion collision cross-sections
WO2011058381A1 (en) Detection and/or quantification of a compound in a sample
Wyche et al. Performance of Chemical Ionization Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds
US8110793B2 (en) Tandem mass spectrometry with feedback control
CN109844522B (zh) 具有真空紫外检测器和质谱仪或离子迁移谱仪的气相色谱仪
Patel et al. Mass spectrometry-A review
CN107870194B (zh) 基质辅助激光解吸-气相极化诱导质子转移质谱
KR20190126138A (ko) 최적화된 표적 분석
RU2599900C2 (ru) Способ идентификации органических соединений методом хромато-масс-спектрометрии
CN112601958B (zh) 质量校正
JP4161125B2 (ja) 質量分析法および質量分析装置
Inomata et al. Differentiation of isomeric compounds by two-stage proton transfer reaction time-of-flight mass spectrometry
EP3155639B1 (en) System and method for enhancing charge-state determination in electrospray mass spectrometry
CN114300337A (zh) 光电离-四极杆质谱系统
CN112946058A (zh) 一种用于光电离质谱的信号校正的方法
WO2011115015A1 (ja) イオン分子反応イオン化質量分析装置及び分析方法
CN113063836B (zh) 一种用于同分异构体混合物在线分析的质谱联用装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant