CN112604684B - 一种金碳复合纳米颗粒模拟酶及其制备方法 - Google Patents

一种金碳复合纳米颗粒模拟酶及其制备方法 Download PDF

Info

Publication number
CN112604684B
CN112604684B CN202011511083.2A CN202011511083A CN112604684B CN 112604684 B CN112604684 B CN 112604684B CN 202011511083 A CN202011511083 A CN 202011511083A CN 112604684 B CN112604684 B CN 112604684B
Authority
CN
China
Prior art keywords
solution
gold
carbon
enzyme
mimic enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011511083.2A
Other languages
English (en)
Other versions
CN112604684A (zh
Inventor
何伟伟
赵珺
毛远洋
王晗晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuchang University
Original Assignee
Xuchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuchang University filed Critical Xuchang University
Priority to CN202011511083.2A priority Critical patent/CN112604684B/zh
Publication of CN112604684A publication Critical patent/CN112604684A/zh
Application granted granted Critical
Publication of CN112604684B publication Critical patent/CN112604684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种树枝状金碳复合纳米颗粒模拟酶的制备。其纳米颗粒形貌呈树枝状结构,纳米颗粒组成Au/C原子比为1.07:84.64,平均粒径为68±15 nm。将柠檬酸溶于水后加入乙二胺搅拌均匀,升温至200℃,恒温反应5小时,将得到的碳溶液加水稀释并超声分散,随后向碳的水溶液中加入氯金酸和AA溶液(氯金酸与AA的摩尔比为1:5),30℃下静置一个小时后,反应结束后离心分离,洗涤得到金碳复合纳米颗粒,分散到水中得到得到金碳纳米粒子模拟酶溶液。所得树枝状金碳复合纳米颗粒模拟酶在酸性环境下具有很好的类酶活,作为一种新颖模拟酶在免疫分析、生物检测及临床诊断等领域都有潜在的应用价值。

Description

一种金碳复合纳米颗粒模拟酶及其制备方法
技术领域
本发明属于催化材料和分析化学领域,具体涉及一种金碳复合纳米颗粒模拟酶及其制备方法。
背景技术
酶是催化反应的生物分子之一,具有催化的高选择性和加速化学反应的特点。然而,天然酶的固有缺点如制备与纯化成本较高,稳定性低,存储寿命短,此外还严重依赖于温度,pH,反应环境等限制着天然酶的发展。为了克服这些局限性,投入大量精力来开发高度稳定,催化可调控,低成本且易于合成,结构涵盖从分子领域到无机纳米材料的酶模拟物。纳米酶是具有两种独特特性的酶模拟物,它兼具纳米材料的特性和天然酶的催化活性,因此,纳米酶材料和结构已广泛用于医药,化工,食品安全,农业和环境管理等领域。
近年来,随着纳米科技的兴起和迅速发展,纳米材料表现出许多与块体材料显著不同的新奇性质。自首次报道合成具有类过氧化物酶的四氧化三铁(Fe3O4)磁性纳米粒子(NPs)并应用于酶联免疫分析以来,越来越多的表现出优异的类酶活性并基于纳米材料的酶模拟物相继被报道。例如贵金属NPs,金属氧化物NPs,金属硫化物NPs,碳基纳米材料和其他一些纳米复合材料等。
此外,我们课题组还报道了Au@Pt、AuPt、AgPd、AgPt等双金属纳米颗粒具有类过氧化物酶、类氧化酶、类过氧化氢酶等特征,并开发了它们在生物检测中的应用。这些纳米材料合成方法简单,催化过程可控可调节,对环境的依赖性较低。他们优异的类酶催化活性的可能归因于大小与天然酶相当,具有很好分散度和高比表面积是几个关键因素,对后续的纳米酶材料的设计提供了新的思路。
当金属材料的尺寸减小到纳米级尺寸,所得的含纳米粒子变为最有效的催化剂之一,并已被广泛用于催化。我们认为不论是金属自身还是作为金属与金属的复合结构,具有的类酶活性源于自身独特的属性。
发明内容
本发明目的是提供一种树枝状金碳复合纳米颗粒模拟酶,它具有光调控类氧化物酶活性的特征,可用作氧化物模拟酶。
为达到上述目的,采用技术方案如下:
金碳复合纳米颗粒模拟酶,其纳米颗粒形貌呈树枝状结构,纳米颗粒组成Au/C的原子比为1.07: 84.64,平均粒径为68 ± 15 nm。
上述金碳复合纳米颗粒模拟酶的制备方法,包括以下步骤:
1)将柠檬酸溶于中,随后加入乙二胺搅拌均匀,升温至200℃,恒温反应5小时;
2)将得到的碳溶液加水稀释并超声分散,随后向碳的水溶液中加入氯金酸和AA溶液(氯金酸与AA的摩尔比为1:5);
3)30℃下静置一个小时后,反应结束后离心分离,洗涤得到金碳复合纳米颗粒,分散到水中得到金碳纳米粒子模拟酶溶液。
按上述方案,碳的水溶液的稀释比例为5mL的水中加入400微升的纯碳溶液。
按上述方案,所用原料氯金酸溶液与AA溶液的物质的量之比为1:5。
按上述方案,离心转速为8000-9000 rpm/min,时长5-10min。
本发明树枝状金碳复合纳米颗粒模拟酶作为氧化酶可以在没有H2O2存在的情况下可与3,3’,5,5’-四甲基联苯胺(TMB)发生显色反应,将TMB氧化为蓝色,证实金碳复合纳米颗粒模拟酶具有类氧化物酶活性的特征,可用作氧化物模拟酶。
本发明相对于现有技术,有益效果如下:
本专利申请中设计金属-碳这一结构纳米颗粒,突破了金颗粒自身不具有类酶活性的属性,与碳的复合形式,也增加了催化过程中的电子转移,在可见光范围内提供广泛的光学响应结合出色的热化学性能稳定性,将催化过程变得可控可调节。
两步合成了金碳复合纳米颗粒模拟酶溶液,合成方法与操作相对简单、高效、重复性高,所用试剂无毒,反应中产生的产物和副产物也对环境友好。
所得金碳复合纳米颗粒模拟酶溶液在不存在过氧化氢的情况下对有机底物3,3’,5,5’-四甲基联苯胺具有光激发催化氧化活性,表现出光调控的类氧化酶活性特征。
附图说明
图1是实施例1中金碳复合纳米颗粒的透射电镜照片;
图2是不同金含量的金碳复合纳米颗粒与金颗粒、碳溶液等不同纳米颗粒在光照作用下催化TMB的氧化反应的活性对比图;
图3 是不同金含量的金碳复合纳米颗粒与金颗粒、碳溶液等不同纳米颗粒在不同光源下催化TMB 的氧化反应的活性对比图;
附图4是金碳复合纳米颗粒模拟酶在非小细胞肺癌细胞上抗肿瘤实验用酶联仪测定细胞的吸光度对比图。
具体实施方式
以下实施例进一步阐释本发明的技术方案,但不作为对本发明保护范围的限制。
实施例1
金碳复合纳米颗粒模拟酶的制备:
将1.05克柠檬酸溶解于10mL的去离子水中,磁力搅拌15分钟后加入0.335mL乙二胺继续搅拌15分钟后,将混合溶液转移至50mL聚四氟乙烯反应釜中200℃反应5小时。将所得到的棕黑色溶液12000 rpm/min高速离心,去除大颗粒物。
将得到的碳溶液加水稀释并超声分散,随后向碳的水溶液中加入氯金酸和AA溶液(氯金酸与AA的摩尔比为1:5),30℃下静置一个小时后,反应结束后将得到的溶液8000rpm/min高速离心,两次洗涤得到金碳复合纳米颗粒,分散到水中得到金碳纳米粒子模拟酶溶液。
附图1为本实施例所得金碳复合纳米结构的透射电子显微镜图。金碳复合纳米颗粒的形貌为树枝状结构。金碳复合纳米颗粒的尺寸粒径为68 ± 15nm。
金碳合金纳米颗粒模拟酶溶液的类酶活性的比色测定步骤如下:
类氧化酶特征测试:取5.7ml 去离子水,依次向其中加入60µl 20mM 3,3’,5,5’-四甲基联苯胺(TMB)和500µl 1.8mM金碳复合纳米颗粒模拟酶溶液(实施例1制得的纳米酶颗粒分散于2mL的去离子水中所得到的溶液),然后将上述溶液混合均匀;室温(25℃)下放置在带有420截止滤光片的光源下10-25分钟后,即可观察到溶液从无色变为蓝色,这些表明金碳复合纳米颗粒模拟酶对水溶液中的溶解氧氧化底物3,3’,5,5’-四甲基联苯胺有很高的催化活性,表明本发明的金碳复合纳米颗粒模拟酶具有类似氧化酶的特征,可作为氧化酶模拟酶。
附图2分别是不同金含量的金碳复合纳米颗粒与金颗粒、碳溶液等不同纳米颗粒催化TMB的氧化反应的活性对比图。从图中可以看出,与单独的金颗粒与碳溶液相比相比,金碳复合纳米颗粒催化TMB 的效果最为显著。不同的金含量的金碳纳米复合模拟酶表现出不同的催化活性,在催化TMB的实验中,且随着金含量从0.6mM到1.8mM的增加,类氧化物酶表现越为优异,但是金的含量达到1.8mM后,类氧化物酶的活性会有下降的趋势。
附图3分别是不同金含量的金碳复合纳米颗粒与金颗粒、碳溶液等不同纳米颗粒在不同光源下催化TMB 的氧化反应的活性对比图。浓度相同的溶液在三种不同的光源下进行TMB催化实验,与520带通,700带通光源相比,在420截止光源下可以达到最优的催化效果。
附图4是金碳复合纳米颗粒模拟酶在非小细胞肺癌细胞上抗肿瘤实验,在96孔板上先进行细胞培养,再将金碳复合纳米颗粒均匀涂布在细胞上,培养四个小时后,用660激光照射,待进行12小时后,用酶联仪测定细胞的吸光度。
实施例2
将1.05克柠檬酸溶解于10mL的去离子水中,磁力搅拌15分钟后加入0.335mL乙二胺继续搅拌15分钟后,将混合溶液转移至50mL聚四氟乙烯反应釜中200℃反应5小时。将所得到的棕黑色溶液12000 rpm/min高速离心,去除大颗粒物。
将得到的碳溶液加水稀释并超声分散,随后向碳的水溶液中加入氯金酸和AA溶液(氯金酸与AA的摩尔比为1:10),30℃下静置一个小时后,反应结束后将得到的溶液9000rpm/min高速离心,两次洗涤得到金碳复合纳米颗粒,分散到水中得到金碳纳米粒子模拟酶溶液。
实施例3
将1.05克柠檬酸溶解于10mL的去离子水中,磁力搅拌15分钟后加入0.335mL乙二胺继续搅拌15分钟后,将混合溶液转移至50mL聚四氟乙烯反应釜中200℃反应5小时。将所得到的棕黑色溶液12000 rpm/min高速离心,去除大颗粒物。
将得到的碳溶液加水稀释并超声分散,随后向碳的水溶液中加入氯金酸和AA溶液(氯金酸与AA的摩尔比为1:7),30℃下静置一个小时后,反应结束后将得到的溶液8500rpm/min高速离心,两次洗涤得到金碳复合纳米颗粒,分散到水中得到金碳纳米粒子模拟酶溶液。
由上可知,本发明制备的树枝状金碳复合纳米颗粒溶液,具有类似氧化酶的催化功能,可作为一种新颖的氧化物模拟酶。

Claims (4)

1.一种金碳复合纳米颗粒模拟酶,其特征在于:所述金碳复合纳米颗粒模拟酶具有光激发氧化活性;纳米颗粒形貌呈树枝状结构,纳米颗粒组成Au/C的原子比为84.64:1.07,平均粒径为68±15nm,所述金碳复合纳米颗粒模拟酶的制备方法,包括以下步骤:
1)将柠檬酸溶于去离子水中,随后加入乙二胺搅拌均匀,升温至200℃,恒温反应5小时,将上述反应所得棕黑色溶液在12000rpm/min高速离心,去除大颗粒物,得到所需碳溶液;
2)将得到的碳溶液加水稀释并超声分散,随后向碳的水溶液中加入氯金酸和AA溶液;
3)30℃下静置一个小时后,反应结束后离心分离,洗涤得到金碳复合纳米颗粒,分散到水中得到金碳复合纳米颗粒模拟酶溶液;
其中碳的水溶液的稀释比例为5mL的水中加入400微升的纯碳溶液,氯金酸溶液与AA溶液的物质的量之比为1:5-10。
2.如权利要求1所述金碳复合纳米颗粒模拟酶,其特征在于:步骤3)中离心转速为8000-9000rpm/min,时长5-10min。
3.如权利要求1所述金碳复合纳米颗粒模拟酶作为光激发氧化物模拟酶应用。
4.一种利用权利要求1所述金碳复合纳米颗粒模拟酶在非小细胞肺癌细胞上抗肿瘤实验的方法,包括以下步骤:
在96孔板上先进行细胞培养,再将金碳复合纳米颗粒模拟酶均匀涂布在细胞上,培养四个小时后,用660激光照射,待进行12小时后,用酶联仪测定细胞的吸光度。
CN202011511083.2A 2020-12-18 2020-12-18 一种金碳复合纳米颗粒模拟酶及其制备方法 Active CN112604684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011511083.2A CN112604684B (zh) 2020-12-18 2020-12-18 一种金碳复合纳米颗粒模拟酶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011511083.2A CN112604684B (zh) 2020-12-18 2020-12-18 一种金碳复合纳米颗粒模拟酶及其制备方法

Publications (2)

Publication Number Publication Date
CN112604684A CN112604684A (zh) 2021-04-06
CN112604684B true CN112604684B (zh) 2023-08-15

Family

ID=75243586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011511083.2A Active CN112604684B (zh) 2020-12-18 2020-12-18 一种金碳复合纳米颗粒模拟酶及其制备方法

Country Status (1)

Country Link
CN (1) CN112604684B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177200B (zh) * 2021-12-02 2022-08-19 中南大学 一种habt-c纳米材料及其制备和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895987A (zh) * 2012-10-12 2013-01-30 中南大学 一种Au/g-C3N4复合型微纳米材料的制备方法
CN105352919A (zh) * 2015-08-31 2016-02-24 湖南科技大学 双色荧光含金碳点的制备及该碳点在可视化检测的应用
CN105798324A (zh) * 2016-03-21 2016-07-27 中山大学 一种基于自组装结构模拟酶及其制备方法与应用
CN106111030A (zh) * 2016-08-03 2016-11-16 南京理工大学 一种金/碳复合微球及其制备方法
CN106111131A (zh) * 2016-06-24 2016-11-16 许昌学院 一种树枝状金铂合金纳米颗粒模拟酶及其制备方法和应用
CN106141200A (zh) * 2015-03-26 2016-11-23 上海交通大学 一种碳点/金复合纳米粒子的制备方法及用途
CN110960696A (zh) * 2019-12-02 2020-04-07 西南大学 具有类生物酶活性的中空氧化钴@金铂纳米球的制备方法
AU2020100704A4 (en) * 2020-05-05 2020-06-11 Chen, Shumeng Miss A method of synthesis of ultrathin palladium nanosheet with peroxidase mimetic activity for the colorimetric detection of H2O2

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895987A (zh) * 2012-10-12 2013-01-30 中南大学 一种Au/g-C3N4复合型微纳米材料的制备方法
CN106141200A (zh) * 2015-03-26 2016-11-23 上海交通大学 一种碳点/金复合纳米粒子的制备方法及用途
CN105352919A (zh) * 2015-08-31 2016-02-24 湖南科技大学 双色荧光含金碳点的制备及该碳点在可视化检测的应用
CN105798324A (zh) * 2016-03-21 2016-07-27 中山大学 一种基于自组装结构模拟酶及其制备方法与应用
CN106111131A (zh) * 2016-06-24 2016-11-16 许昌学院 一种树枝状金铂合金纳米颗粒模拟酶及其制备方法和应用
CN106111030A (zh) * 2016-08-03 2016-11-16 南京理工大学 一种金/碳复合微球及其制备方法
CN110960696A (zh) * 2019-12-02 2020-04-07 西南大学 具有类生物酶活性的中空氧化钴@金铂纳米球的制备方法
AU2020100704A4 (en) * 2020-05-05 2020-06-11 Chen, Shumeng Miss A method of synthesis of ultrathin palladium nanosheet with peroxidase mimetic activity for the colorimetric detection of H2O2

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"金/碳量子点纳米复合物的类过氧化物酶活性及对生物小分子的检测";董雪娇;《全国优秀硕士学位论文全文数据库 工程科技I辑》;20190915(第9期);B014-9 *

Also Published As

Publication number Publication date
CN112604684A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN107890873B (zh) 一种空心状铂铜钴三元合金纳米颗粒模拟酶及其制备和应用
Choleva et al. Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose
Huang et al. Layered vanadium (IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose
Wang et al. Metastable α-AgVO 3 microrods as peroxidase mimetics for colorimetric determination of H 2 O 2
Guo et al. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity
CN108445142B (zh) 一种铑片纳米酶在模拟生物酶催化中的应用
Huang et al. One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications
Sheng et al. Direct electrochemistry of glucose oxidase immobilized on NdPO4 nanoparticles/chitosan composite film on glassy carbon electrodes and its biosensing application
Qiao et al. Double enzymatic cascade reactions within FeSe–Pt@ SiO 2 nanospheres: synthesis and application toward colorimetric biosensing of H 2 O 2 and glucose
Xi et al. Iron doped graphitic carbon nitride with peroxidase like activity for colorimetric detection of sarcosine and hydrogen peroxide
Liang et al. Zwitterionic daptomycin stabilized palladium nanoparticles with enhanced peroxidase-like properties for glucose detection
Wang et al. A 3-dimensional C/CeO 2 hollow nanostructure framework as a peroxidase mimetic, and its application to the colorimetric determination of hydrogen peroxide
CN112604684B (zh) 一种金碳复合纳米颗粒模拟酶及其制备方法
Aghayan et al. Micellar catalysis of an iron (III)-MOF: enhanced biosensing characteristics
Wu et al. One-pot synthesized Cu/Au/Pt trimetallic nanoparticles as a novel enzyme mimic for biosensing applications
Huang et al. One-step cascade detection of glucose at neutral pH based on oxidase-integrated copper (ii) metal–organic framework composites
Jia et al. TiO2/SnOx-Au nanocomposite catalyzed photochromic reaction for colorimetric immunoassay of tumor marker
Ghosh et al. Superior Peroxidase‐Like Activity of Gold Nanorattles in Ultrasensitive H2O2 Sensing and Antioxidant Screening
CN113105646B (zh) 双金属-有机无限配位聚合物纳米微球的制备方法和应用
CN113084187A (zh) 一种金银钯三金属过氧化物模拟酶的制备方法及其应用
CN113000079B (zh) 一种重金属离子检测电化学微流控传感芯片及其制备方法
CN115818695B (zh) 具有四酶活性的荔枝状氧化亚铜/氧化铜纳米微球的制备方法
CN113351258A (zh) 一种由海藻酸钠作为配体修饰的铂纳米粒子及其氧化酶活性
Kumara et al. Cerium oxide nanostructures for bio-sensing application
CN111375760B (zh) 一种以卡拉胶作还原剂的Au-Ag纳米核壳材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant