CN112601057B - Anti 5G signal interference device that removes of C wave band - Google Patents

Anti 5G signal interference device that removes of C wave band Download PDF

Info

Publication number
CN112601057B
CN112601057B CN202011354940.2A CN202011354940A CN112601057B CN 112601057 B CN112601057 B CN 112601057B CN 202011354940 A CN202011354940 A CN 202011354940A CN 112601057 B CN112601057 B CN 112601057B
Authority
CN
China
Prior art keywords
medium
accommodating cavity
inner diameter
cavity
media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011354940.2A
Other languages
Chinese (zh)
Other versions
CN112601057A (en
Inventor
叶盛洋
徐明森
周星
赖海友
肖剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Shengyang Science & Technology Co ltd
Original Assignee
Zhejiang Shengyang Science & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shengyang Science & Technology Co ltd filed Critical Zhejiang Shengyang Science & Technology Co ltd
Priority to CN202011354940.2A priority Critical patent/CN112601057B/en
Publication of CN112601057A publication Critical patent/CN112601057A/en
Application granted granted Critical
Publication of CN112601057B publication Critical patent/CN112601057B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/20Adaptations for transmission via a GHz frequency band, e.g. via satellite
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/50Tuning indicators; Automatic tuning control

Abstract

The invention discloses a C-band anti-moving 5G signal interference device, which comprises a high-frequency head, a filter and a waveguide tube, wherein the high-frequency head, the filter and the waveguide tube are sequentially connected; a medium accommodating cavity is arranged in the filter, a plurality of pieces of media are arranged in the medium accommodating cavity along the direction from the high-frequency head to the waveguide tube, and a medium hole is formed in the center of each piece of media; the anti-movement 5G signal interference device has the characteristic of anti-movement 5G signal interference.

Description

Anti 5G signal interference device that removes of C wave band
Technical Field
The invention relates to the technical field of communication, in particular to a C-band anti-mobile 5G signal interference device.
Background
With the formal commercial use of 5G signals, more and more cities begin to build 5G base stations in a large scale, and large operators also tighten the site settings in the central urban areas of the large cities, so that the situation that the 5G signals interfere with the reception of C-band satellite signals in the future is more and more common. The 5G signal frequency occupies part of the C-band frequency range. For a tuner, the C wave band comprises an extended C wave band and a standard C wave band, the downlink frequencies are 3 400MHz-3 700MHz and 3 700MHz-4 200MHz respectively, and signals of the wave bands are easily interfered by common-frequency signals.
In the process of checking the problem that 5G signals interfere C-band satellite signals, a narrow-band tuner is found to be capable of solving the 5G interference, but the precondition is that the 5G signal strength near the antenna is weak, or the C-band antenna is located in a wide suburb area and no complex electromagnetic environment exists around the antenna. However, the sites of the 5G base stations in the main urban area are dense, the antenna orientation may be right opposite to the base station or the central urban area in which the electromagnetic environment is extremely complex, and the signal intensity transmitted by the 5G base station is much greater than the satellite signal intensity of the C-band, so that the anti-interference requirement cannot be met even with a narrow-band tuner, the 5G signal can still saturate the tuner performance, thereby affecting signal reception, and the decoding picture shows a checkered screen or mosaic, and the numerical value shows that the error rate of the receiver is increased, so that a new filtering anti-saturation measure must be taken.
In view of the above problems, the present invention provides a C-band anti-mobile 5G signal interference apparatus, and the apparatus is thus developed.
Disclosure of Invention
The invention provides a C-band anti-movement 5G signal interference device, which has the characteristic of anti-movement 5G signal interference; specifically, the invention is realized by the following technical scheme:
a C-band anti-moving 5G signal interference device comprises a high-frequency head, a filter and a waveguide tube which are sequentially connected; a medium accommodating cavity is arranged in the filter, a plurality of pieces of media are arranged in the medium accommodating cavity, and a medium hole is formed in the center of each piece of media; a first hole is formed in one end, connected with the high-frequency head, of the filter, and the first hole is communicated with a medium accommodating cavity of the filter and a cavity in the high-frequency head; and one end of the filter connected with the waveguide tube is provided with a second hole, and the second hole is communicated with the medium accommodating cavity of the filter and the cavity in the waveguide tube.
Furthermore, one end of the medium accommodating cavity close to the tuner is a first end, and one end of the medium accommodating cavity close to the waveguide tube cavity is a second end; along the direction from the high-frequency head to the waveguide tube, a first medium and a second medium are sequentially arranged in the medium accommodating cavity; through the setting of first medium and second medium, hold the chamber with the medium and divide into the triplex, along tuner to the direction of wave guide, hold chamber and third and hold the chamber for first holding chamber, second in proper order.
Further, the inner diameter of the first accommodating cavity ranges from 89.15mm to 90.15 mm; the inner diameter of the second accommodating cavity ranges from 87.12mm to 88.12 mm; the inner diameter of the third containing cavity ranges from 89.15mm to 90.15 mm.
Preferably, the inner diameter of the first containing cavity is 89.65mm; the inner diameter of the first accommodating cavity is 87.62mm; the inner diameter of the third containing cavity is 89.65mm.
Further, the distance between the first medium and the first end of the medium accommodating cavity ranges from 17.16mm to 18.16mm; the distance between the first medium and the second medium ranges from 15.09mm to 16.09mm; the second media is at a distance from the second end of the media holding cavity in the range of 17.19mm to 18.19mm.
Preferably, the distance between the first medium and the first end of the medium accommodating chamber is 17.66mm; the distance between the first medium and the second medium is 15.59mm; the second media is located 17.69mm from the second end of the media holding cavity.
Further, the thickness of the medium ranges from 5.35mm to 6.35mm,
preferably, the thickness of the medium is 5.85mm.
Further, the media center is provided with media holes ranging in size from 37.63mm to 38.63 mm.
Preferably, the media hole size is 38.13mm in the center of the media.
Further, the inner diameter of the first hole is 43.37mm to 44.37mm; the inner diameter of the second hole is 43.37mm to 44.37mm.
Preferably, the first bore has an inner diameter dimension of 43.87mm and the second bore has an inner diameter dimension of 43.87mm.
The beneficial effect of this application lies in:
the anti-interference measure under the high-strength 5G interference environment is researched, the principle and the structure of the narrow-band filter and the narrow-band tuner are analyzed, and the requirements of stronger 5G signal anti-interference can be met and the anti-oscillation function is achieved through the combined application of the narrow-band tuner (the frequency band is 3 700MHz-4 200MHz) + the narrow-band filter (the frequency band is 3 700MHz-4 200MHz).
Drawings
FIG. 1 is a perspective view of an embodiment of a C-band anti-interference apparatus for 5G signals according to the present invention;
FIG. 2 is an internal structural diagram of an embodiment of a C-band anti-interference apparatus for 5G signals provided by the present invention;
FIG. 3 is a schematic diagram of an embodiment of a one-piece half filter provided by the present invention;
FIG. 4 is a simulation experiment data diagram of an anti-moving 5G signal interference device in a preferred C-band provided by the present invention;
fig. 5 is a data diagram of an actual experiment of the preferred C-band anti-mobile 5G signal interference apparatus provided by the present invention.
Wherein: 1. a tuner; 2. a filter; 3. a waveguide tube; 4. a media containment chamber; 5. a medium; 6. a first hole; 7. a second hole; 8. a media aperture; 9. a first medium; 10. a second medium; 11. a first end; 12. a second end; 13. a first accommodating chamber; 14. a second accommodating chamber; 15. a third accommodating chamber; 16. and a half filter.
Detailed Description
The invention is further described with reference to the following figures and detailed description.
As shown in fig. 1 and 2, a C-band anti-moving 5G signal interference device includes a tuner 1, a filter 2 and a waveguide 3, which are connected in sequence; the waveguide 3 is used for connecting the feed source.
A medium accommodating chamber 4 is provided in the filter 2.
Wherein, the one end of being connected with tuner 1 in the filter 2 is seted up first hole 6, and first hole 6 intercommunication filter 2's medium holds chamber 4 and the interior cavity of tuner 1, and the internal diameter size of first hole 6 is 43.37mm to 44.37mm.
Preferably, the first bore 6 has an inner diameter dimension of 43.87mm.
Wherein, the one end of being connected with waveguide tube 3 in the wave filter 2 is seted up second hole 7, and second hole 7 intercommunication wave filter 2's medium holds the chamber 4 and the cavity in the waveguide tube 3, and the internal diameter size of second hole 7 is 43.37mm to 44.37mm.
Preferably, the inner diameter of the second bore 7 is 43.87mm.
The media receiving chamber 4 has an outer diameter dimension in the range of 98.7mm to 99.7mm.
The outer diameter of the media containment chamber 4 is preferably 99.2mm in size.
In the medium accommodating cavity 4 of the filter 2, a plurality of pieces of media 5 are sequentially arranged at intervals along the direction from the high-frequency head 1 to the waveguide tube 3, and the material of the media 5 is selected from metal. Wherein each piece of media 5 is provided with a media hole 8 in the center.
The media holes 8 centrally disposed in the media 5 range in size from 37.63mm to 38.63 mm.
Preferably, the media hole 8 centrally located in the media 5 is 38.13mm in size.
Two pieces of media 5 are preferably arranged in the medium accommodating cavity 4, and a first medium 9 and a second medium 10 are arranged in sequence along the direction from the high-frequency head 1 to the waveguide tube 3; through the arrangement of the first medium 9 and the second medium 10, the medium accommodating cavity 4 is divided into three parts, namely a first accommodating cavity 13, a second accommodating cavity 14 and a third accommodating cavity 15 which are connected in sequence along the direction from the high-frequency head 1 to the waveguide tube 3.
The inner diameter of the first receiving chamber 13 ranges between 89.15mm and 90.15 mm.
Preferably, the inner diameter of the first receiving chamber 13 is 89.65mm.
The inner diameter of the second receiving chamber 14 ranges between 87.12mm and 88.12 mm.
Preferably, the inner diameter of the first receiving chamber 13 is 87.62mm.
The inner diameter of the third receiving chamber 15 ranges between 89.15mm and 90.15 mm.
Preferably, the inner diameter of the third receiving chamber 15 is 89.65mm.
Two ends of the medium accommodating cavity 4 are named as a first end 11 and a second end 12 respectively, wherein the first end 11 is close to the high-frequency tuner 1, and the second end 12 is close to the waveguide 3.
Wherein the distance between the first medium 9 and the first end 11 of the medium accommodating cavity 4 is in the range of 17.16mm to 18.16mm.
Preferably, the distance between the first medium 9 and the first end 11 of the medium accommodating chamber 4 is 17.66mm.
The first medium 9 is at a distance from the second medium 10 in the range of 15.09mm to 16.09mm.
Preferably, the distance between the first medium 9 and the second medium 10 is 15.59mm.
The second media 10 is at a distance in the range of 17.19mm to 18.19mm from the second end 12 of the media receiving chamber 4.
Preferably the second media 10 is at a distance of 17.69mm from the second end 12 of the media receiving chamber 4.
The thickness of the medium 5 ranges between 5.35mm and 6.35mm, preferably the thickness of the medium 5 is 5.85mm.
The filter 2 and the waveguide 3 are integrally connected to form an integral filter device, and the filter 2 and the tuner 1 are assembled and connected.
As shown in fig. 3, for the convenience of manufacturing, the filter 2 is symmetrically divided into two half filters 16 along the axis thereof, and when assembling, the two half filters 16 are folded to form a complete filter 2, and a hollow cavity is formed inside.
Each half filter 16 may be formed by die casting or by injection molding.
Selecting the relevant sizes of the C-band mobile 5G signal interference rejection device as preferred values, thereby obtaining a preferred embodiment of the C-band mobile 5G signal interference rejection device, and performing simulation experiments on the preferred embodiment on simulation software to obtain simulation experiment data as shown in fig. 4; meanwhile, the practical experiment is carried out on the preferred embodiment, the practical experiment data shown in figure 5 is obtained, and the experimental conclusion is that the device has the suppression ratio of more than 40dB within the range of 3-3.7GHz, the internal loss of less than 0.1dB and the return loss is good.
The above is the preferred embodiment of the present invention, and several other simple substitutions and modifications made on the premise of the inventive concept should be considered as falling into the protection scope of the present invention.

Claims (6)

1. A C-band anti-moving 5G signal interference device comprises a high-frequency head and a waveguide tube; the method is characterized in that: a filter is arranged between the tuner and the waveguide tube, a medium accommodating cavity is arranged in the filter, a plurality of pieces of media are arranged in the medium accommodating cavity, and a medium hole is formed in the center of each piece of media; a first hole is formed in one end, connected with the high-frequency head, of the filter, and the first hole is communicated with a medium accommodating cavity of the filter and a cavity in the high-frequency head; a second hole is formed in one end, connected with the waveguide tube, of the filter, and the second hole is communicated with the medium accommodating cavity of the filter and the cavity in the waveguide tube; one end of the medium accommodating cavity close to the tuner is a first end, and one end of the medium accommodating cavity close to the waveguide tube cavity is a second end; along the direction from the high-frequency head to the waveguide tube, a first medium and a second medium are sequentially arranged in the medium accommodating cavity; the medium containing cavity is divided into three parts by the arrangement of a first medium and a second medium, and the three parts are a first containing cavity, a second containing cavity and a third containing cavity in sequence along the direction from the high-frequency head to the waveguide tube; the inner diameter of the first accommodating cavity ranges from 89.15mm to 90.15 mm; the inner diameter of the second accommodating cavity ranges from 87.12mm to 88.12 mm; the inner diameter of the third accommodating cavity ranges from 89.15mm to 90.15 mm; the distance between the first medium and the first end of the medium containing cavity ranges from 17.16mm to 18.16mm; the distance between the first medium and the second medium ranges from 15.09mm to 16.09mm; the second medium is at a distance ranging from 17.19mm to 18.19mm from the second end of the medium accommodating cavity; the thickness of the medium ranges from 5.35mm to 6.35 mm; the size of the medium hole arranged in the center of the medium ranges from 37.63mm to 38.63 mm; the inner diameter of the first hole is 43.37mm to 44.37mm; the inner diameter of the second hole is 43.37mm to 44.37mm in size.
2. The C-band mobile 5G signal jamming immunity device of claim 1, wherein: the inner diameter of the first accommodating cavity is 89.65mm; the inner diameter of the first accommodating cavity is 87.62mm; the inner diameter of the third containing cavity is 89.65mm.
3. The C-band anti-mobile 5G signal interference apparatus according to claim 1, wherein: the distance between the first medium and the first end of the medium accommodating cavity is 17.66mm; the distance between the first medium and the second medium is 15.59mm; the second media is located 17.69mm from the second end of the media holding cavity.
4. The C-band mobile 5G signal jamming immunity device of claim 1, wherein: the thickness of the medium was 5.85mm.
5. The C-band anti-mobile 5G signal interference apparatus according to claim 1, wherein: the media hole size at the center of the media was 38.13mm.
6. The C-band mobile 5G signal jamming immunity device of claim 1, wherein: the first bore has an inner diameter dimension of 43.87mm and the second bore has an inner diameter dimension of 43.87mm.
CN202011354940.2A 2020-11-27 2020-11-27 Anti 5G signal interference device that removes of C wave band Active CN112601057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011354940.2A CN112601057B (en) 2020-11-27 2020-11-27 Anti 5G signal interference device that removes of C wave band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011354940.2A CN112601057B (en) 2020-11-27 2020-11-27 Anti 5G signal interference device that removes of C wave band

Publications (2)

Publication Number Publication Date
CN112601057A CN112601057A (en) 2021-04-02
CN112601057B true CN112601057B (en) 2023-03-03

Family

ID=75184374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011354940.2A Active CN112601057B (en) 2020-11-27 2020-11-27 Anti 5G signal interference device that removes of C wave band

Country Status (1)

Country Link
CN (1) CN112601057B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202949399U (en) * 2012-06-06 2013-05-22 深圳奥视通电子有限公司 C-waveband tuner anti-interference filter
CN209860873U (en) * 2019-06-20 2019-12-27 中山市瀚扬电子科技有限公司 anti-5G signal interference special frequency demultiplier
CN210092363U (en) * 2019-08-21 2020-02-18 南通市气象局 anti-5G interference windproof meteorological satellite antenna
CN211019020U (en) * 2019-08-30 2020-07-14 珠海市普斯赛特科技有限公司 Anti-interference frequency demultiplier
CN211125947U (en) * 2020-02-13 2020-07-28 深圳市海拓达电子技术有限公司 Filter special for resisting 5G signal interference
CN211350916U (en) * 2020-03-09 2020-08-25 中国联合网络通信集团有限公司 Waveguide port band-pass filter
CN111711419A (en) * 2020-06-24 2020-09-25 珠海市普斯赛特科技有限公司 C-band frequency reduction circuit and frequency reducer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832069B2 (en) * 1987-04-09 1996-03-27 パイオニア株式会社 Recorded information reproducing device
JP3470613B2 (en) * 1998-09-28 2003-11-25 株式会社村田製作所 Dielectric filter device, duplexer and communication device
CN105578090A (en) * 2016-01-22 2016-05-11 珠海佳讯创新科技股份有限公司 Dual output high-frequency tuner allowing hybrid input of ground wave signal and satellite signal
CN206349477U (en) * 2016-12-08 2017-07-21 南京广顺网络通信设备有限公司 One kind miniaturization band resistance broadband combiner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202949399U (en) * 2012-06-06 2013-05-22 深圳奥视通电子有限公司 C-waveband tuner anti-interference filter
CN209860873U (en) * 2019-06-20 2019-12-27 中山市瀚扬电子科技有限公司 anti-5G signal interference special frequency demultiplier
CN210092363U (en) * 2019-08-21 2020-02-18 南通市气象局 anti-5G interference windproof meteorological satellite antenna
CN211019020U (en) * 2019-08-30 2020-07-14 珠海市普斯赛特科技有限公司 Anti-interference frequency demultiplier
CN211125947U (en) * 2020-02-13 2020-07-28 深圳市海拓达电子技术有限公司 Filter special for resisting 5G signal interference
CN211350916U (en) * 2020-03-09 2020-08-25 中国联合网络通信集团有限公司 Waveguide port band-pass filter
CN111711419A (en) * 2020-06-24 2020-09-25 珠海市普斯赛特科技有限公司 C-band frequency reduction circuit and frequency reducer

Also Published As

Publication number Publication date
CN112601057A (en) 2021-04-02

Similar Documents

Publication Publication Date Title
US7541893B2 (en) Ceramic RF filter and duplexer having improved third harmonic response
CN109983616B (en) Filter and communication equipment
KR100976251B1 (en) Non-contacting cavity filter using for matching tuning bar
CN112601057B (en) Anti 5G signal interference device that removes of C wave band
CN202094255U (en) Triple-band band-pass filter based on hairpin resonator
CN100566012C (en) A kind of duplexer that reduces passive intermodulation
US10056663B2 (en) Intermodulation distortion reduction system using insulated tuning elements
CN214205551U (en) Anti 5G signal interference device that removes of C wave band
EP1098385A2 (en) Dielectric filter, composite dielectric filter, dielectric duplexer, dielectric diplexer, and communication apparatus incorporating the same
EP1497888A1 (en) Ceramic rf filter having improved third harmonic response
CN104241797A (en) Resonant cavity for coaxial resonant diplexer, and coaxial resonant diplexer thereof
CN218243631U (en) KU wave band anti-moving 5G signal interference device
CN216354692U (en) Filter and communication device
CN210430050U (en) Coaxial cavity duplexer
CN113540721B (en) Filter and communication equipment
KR100729969B1 (en) Repeater having dielectric band stop resonators
CN212571292U (en) Filter and communication equipment
KR101033506B1 (en) Wide band resonance filter having coupling device
CN110429361B (en) Dual-mode dual-frequency coaxial cavity filter
CN113131147A (en) Communication device and filter thereof
CN219534846U (en) Microwave combining and branching radio frequency unit realized by utilizing circulator
CN213878357U (en) Dielectric duplexer and communication apparatus
CN115000659B (en) Waveguide filter based on resonant coupling structure
CN113629368A (en) Communication device and filter thereof
CN216413223U (en) Small UHF band-pass duplexer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant