CN112599412A - 一种防击穿的氮化镓基功率器件制备方法 - Google Patents

一种防击穿的氮化镓基功率器件制备方法 Download PDF

Info

Publication number
CN112599412A
CN112599412A CN202011329275.1A CN202011329275A CN112599412A CN 112599412 A CN112599412 A CN 112599412A CN 202011329275 A CN202011329275 A CN 202011329275A CN 112599412 A CN112599412 A CN 112599412A
Authority
CN
China
Prior art keywords
layer
ito
breakdown
gallium nitride
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011329275.1A
Other languages
English (en)
Inventor
郝惠莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202011329275.1A priority Critical patent/CN112599412A/zh
Publication of CN112599412A publication Critical patent/CN112599412A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • H01L29/454Ohmic electrodes on AIII-BV compounds on thin film AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于半导体的技术领域,公开了一种防击穿的氮化镓基功率器件制备方法,在衬底上外延生长氮化镓基层,再沉积氧化铟锡ITO层,然后通过刻蚀工艺仅保留源电极和漏电极区域的氧化铟锡ITO层,最后,制备源电极、漏电极和栅电极。本发明的制备方法操作简单,成本低廉,效率高,适应性强,极具应用前景。

Description

一种防击穿的氮化镓基功率器件制备方法
技术领域
本发明涉及半导体的技术领域,尤其涉及一种防击穿的氮化镓基功率器件制备方法。
背景技术
以Si技术为基础的半导体技术经过长时间的发展,成为了整个半导体产业的助推剂。近年来,随着科技的进步,第一代半导体材料Si、Ge和第二代半导体材料GaAs、InSb等已不能完全满足产业迅速发展的需要,于是宽禁带半导体材料(SiC、GaN等)渐渐的引起了人们的重视。SiC和GaN材料由于具有更高的电子迁移率、更大的导热系数、更高的击穿电场等,成为了电力电子器件领域中的研究热点。SiC基电力电子器件发展较早,但是其较高的成本严重制约了它的发展,尤其是它在市场上的推广。GaN电力电子器件发展较晚,其研究开始于2000年左右,但是GaN和SiC具有相类似的优越特性,而且成本随着研究的深入将会有很大的降低,因此,GaN基功率器件在电力电子应用领域具有非常大的潜力。
电力电子器件通常要求工作在开、关状态下,开态时要求电力电子器件的特征导通电阻要低,关态时要求击穿电压较高。击穿电压是电力电子器件的重要参数,根据GaN材料的性能,击穿电场在3MV/cm的量级。目前的GaN基功率器件往往在远没达到此击穿电场的条件下,就已经被击穿,其中一个重要原因是GaN基功率器件在制作过程中,为了形成源漏欧姆接触电极,在做完欧姆金属蒸发后,需要对欧姆金属进行退火,才能形成真正的欧姆接触,但是退火之后,源漏电极金属渗入材料的深度不同,会使得源漏电极在下方的AlGaN材料中形成金属尖峰。这样,器件工作时,随着漏压的加大,电极的金属尖峰会引入电场峰值,最终导致碰撞电离和雪崩击穿,造成器件击穿。
发明内容
本发明的目的在于克服现有技术中退火处理造成源漏电极金属渗入材料的深度不同,会使得源漏电极在下方的AlGaN材料中形成金属尖峰,最终导致碰撞电离和雪崩击穿的缺陷,提供一种防击穿的氮化镓基功率器件制备方法。
为实现上述目的,本发明提供如下技术方案:
一种防击穿的氮化镓基功率器件制备方法,在衬底上外延生长氮化镓基层,再沉积氧化铟锡ITO层,然后通过刻蚀工艺仅保留源电极和漏电极区域的氧化铟锡ITO层,最后,制备源电极、漏电极和栅电极。
进一步,包括以下步骤:
步骤一、在衬底上依次外延生长GaN层和AlGaN层,再进行光刻,然后再刻蚀AlGaN层的边缘部分至GaN层的一部分也刻蚀掉;
步骤二、沉积氧化铟锡ITO层,然后进行刻蚀,仅保留源电极和漏电极区域的氧化铟锡ITO层,再对保留下来的氧化铟锡ITO层进行退火处理;
步骤三、在源电极和漏电极区域的氧化铟锡ITO层上制备源电极、漏电极,在AlGaN层上制备栅电极;
步骤四、沉积钝化层,并将源电极、漏电极和栅电极上方的钝化层刻蚀掉。
进一步,利用电子束蒸发台,蒸镀形成氧化铟锡ITO层,所述氧化铟锡ITO层的厚度设置为15nm至25nm。
进一步,所述源电极、漏电极均设置为利用电子束蒸发设备蒸镀后,再进行退火处理制成的欧姆接触电极,均采用Ti/Al/Ti/Au或者Ti/Al/Ni/Au多层金属材料制成,所述栅电极为利用电子束蒸发设备蒸镀制成,采用Ni/Au或者Ni/Pt/Au多层金属材料制成。
进一步,所述衬底采用Si、蓝宝石或者SiC材料制成,所述钝化层采用SiN材料制成。
进一步,所述步骤一中的刻蚀深度要大于200nm。
本发明有益的技术效果在于:
在制备源漏欧姆接触电极之前,在欧姆电极区域制作一层氧化铟锡ITO层,该氧化铟锡ITO层能在不影响电极导电性的前提下,阻止欧姆接触电极金属退火过程中形成的金属尖峰渗入到下方AlGaN层中,从而在器件工作时,不会形成电场峰值,避免导致碰撞电离和雪崩击穿,提升了整个器件的击穿电压。本发明的制备方法操作简单,成本低廉,效率高,适应性强,极具应用前景。
附图说明
图1为本发明的总体流程示意图;
图2为本发明的制备方法的具体图示示意图。
具体实施方式
下面结合附图及较佳实施例详细说明本发明的具体实施方式。
本发明在充分考量欧姆接触电极制备工艺的前提下,提出了一种防击穿的氮化镓基功率器件制备方法,如图1所示,在衬底上外延生长氮化镓基层,再沉积氧化铟锡ITO层,然后通过刻蚀工艺仅保留源电极和漏电极区域的氧化铟锡ITO层,最后,制备源电极、漏电极和栅电极。这样,在制备源漏欧姆接触电极之前,在欧姆电极区域制作一层氧化铟锡ITO层,该氧化铟锡ITO层能在不影响电极导电性的前提下,阻止欧姆接触电极金属退火过程中形成的金属尖峰渗入到下方AlGaN层中,从而在器件工作时,不会形成电场峰值,避免导致碰撞电离和雪崩击穿,提升了整个器件的击穿电压。
如图2所示,具体包括以下步骤:
步骤一、在衬底上依次外延生长GaN层和AlGaN层,可将整个衬底放入MOCVD设备中进行外延生长,再进行光刻,然后再利用ICP设备刻蚀AlGaN层的边缘部分至GaN层的一部分也刻蚀掉,以阻断AlGaN/GaN界面天然形成的二维电子气,刻蚀深度要大于200nm;
该衬底可采用Si、蓝宝石或者SiC材料制成。
步骤二、沉积氧化铟锡ITO层,然后进行刻蚀,仅保留源电极和漏电极区域的氧化铟锡ITO层,再对保留下来的氧化铟锡ITO层进行退火处理;
可利用电子束蒸发台,蒸镀形成氧化铟锡ITO层,该氧化铟锡ITO层的厚度设置为1-1000nm,优先20nm左右。氧化铟锡ITO层蒸镀完成后,进行光刻以及刻蚀工艺,将源漏欧姆接触电极区域的氧化铟锡ITO层保留下来,其余区域的氧化铟锡ITO层去除,然后进行退火处理,退火后的氧化铟锡ITO层的电阻达到最小,导电性能达到最好。
步骤三、在源电极和漏电极区域的氧化铟锡ITO层上制备源电极、漏电极,在AlGaN层上制备栅电极;
先对整个片子进行光刻,利用电子束蒸发台在欧姆接触区域蒸镀形成源漏欧姆接触电极,两个电极均采用多层金属结构,如Ti/Al/Ni/Au等。蒸镀完成后,对源漏电极进行退火,以形成欧姆接触电极,退火过程中,由于欧姆接触电极下方氧化铟锡ITO层的存在,电极金属不会渗入AlGaN层,从而不会形成电场尖峰,提升了整个器件的击穿电压。
继续对片子进行光刻,并利用电子束蒸发设备在AlGaN层上的栅电极区域蒸镀形成栅电极,该栅电极也采用多层金属结构,如Ni/Au或者Ni/Pt/Au等。
步骤四、沉积钝化层,并将源电极、漏电极和栅电极上方的钝化层刻蚀掉。
在整个片子表面利用PECVD设备沉积一层SiN薄膜,作为器件的钝化层,然后利用光刻及刻蚀工艺,将源、漏、栅电极上方的SiN薄膜去除,最后得到完整的器件结构。
以上所述仅为本发明的优选实施例,所述实施例并非用于限制本发明的保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明所附权利要求的保护范围内。

Claims (6)

1.一种防击穿的氮化镓基功率器件制备方法,其特征在于:在衬底上外延生长氮化镓基层,再沉积氧化铟锡ITO层,然后通过刻蚀工艺仅保留源电极和漏电极区域的氧化铟锡ITO层,最后,制备源电极、漏电极和栅电极。
2.根据权利要求1所述的防击穿的氮化镓基功率器件制备方法,其特征在于包括以下步骤:
步骤一、在衬底上依次外延生长GaN层和AlGaN层,再进行光刻,然后再刻蚀AlGaN层的边缘部分至GaN层的一部分也刻蚀掉;
步骤二、沉积氧化铟锡ITO层,然后进行刻蚀,仅保留源电极和漏电极区域的氧化铟锡ITO层,再对保留下来的氧化铟锡ITO层进行退火处理;
步骤三、在源电极和漏电极区域的氧化铟锡ITO层上制备源电极、漏电极,在AlGaN层上制备栅电极;
步骤四、沉积钝化层,并将源电极、漏电极和栅电极上方的钝化层刻蚀掉。
3.根据权利要求2所述的防击穿的氮化镓基功率器件制备方法,其特征在于:利用电子束蒸发台蒸镀形成氧化铟锡ITO层,所述氧化铟锡ITO层的厚度设置为1-1000nm。
4.根据权利要求2所述的防击穿的氮化镓基功率器件制备方法,其特征在于:所述源电极、漏电极均设置为利用电子束蒸发设备蒸镀后,再进行退火处理制成的欧姆接触电极,均采用Ti/Al/Ti/Au或者Ti/Al/Ni/Au多层金属材料制成,所述栅电极为利用电子束蒸发设备蒸镀制成,采用Ni/Au或者Ni/Pt/Au多层金属材料制成。
5.根据权利要求2所述的防击穿的氮化镓基功率器件制备方法,其特征在于:所述衬底采用Si、蓝宝石或者SiC材料制成,所述钝化层采用SiN材料制成。
6.根据权利要求5所述的防击穿的氮化镓基功率器件制备方法,其特征在于:所述步骤一中的刻蚀深度要大于200nm。
CN202011329275.1A 2020-11-24 2020-11-24 一种防击穿的氮化镓基功率器件制备方法 Pending CN112599412A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011329275.1A CN112599412A (zh) 2020-11-24 2020-11-24 一种防击穿的氮化镓基功率器件制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011329275.1A CN112599412A (zh) 2020-11-24 2020-11-24 一种防击穿的氮化镓基功率器件制备方法

Publications (1)

Publication Number Publication Date
CN112599412A true CN112599412A (zh) 2021-04-02

Family

ID=75183857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011329275.1A Pending CN112599412A (zh) 2020-11-24 2020-11-24 一种防击穿的氮化镓基功率器件制备方法

Country Status (1)

Country Link
CN (1) CN112599412A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484067A (zh) * 2009-06-26 2012-05-30 康奈尔大学 包括铝-硅氮化物钝化的用于形成iii-v半导体结构的方法
CN102945859A (zh) * 2012-11-07 2013-02-27 电子科技大学 一种GaN异质结HEMT器件
US20150048304A1 (en) * 2011-09-30 2015-02-19 Soko Kagaku Co., Ltd. Nitride semiconductor element and method for producing same
US20150060947A1 (en) * 2013-08-30 2015-03-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transistor with Diamond Gate
CN104704615A (zh) * 2012-09-28 2015-06-10 夏普株式会社 开关元件
US20160079382A1 (en) * 2014-09-16 2016-03-17 Kabushiki Kaisha Toshiba Semiconductor device
CN108054098A (zh) * 2017-12-18 2018-05-18 山东聚芯光电科技有限公司 一种带有场板的GaN-HEMT芯片的制作工艺
CN110828557A (zh) * 2019-09-30 2020-02-21 西安交通大学 一种p-GaN欧姆接触电极及其制备方法和应用
CN110993688A (zh) * 2019-12-03 2020-04-10 广东省半导体产业技术研究院 一种三端半导体器件及其制作方法
CN111900203A (zh) * 2020-06-30 2020-11-06 中国电子科技集团公司第五十五研究所 一种GaN基高空穴迁移率晶体管及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484067A (zh) * 2009-06-26 2012-05-30 康奈尔大学 包括铝-硅氮化物钝化的用于形成iii-v半导体结构的方法
US20150048304A1 (en) * 2011-09-30 2015-02-19 Soko Kagaku Co., Ltd. Nitride semiconductor element and method for producing same
CN104704615A (zh) * 2012-09-28 2015-06-10 夏普株式会社 开关元件
CN102945859A (zh) * 2012-11-07 2013-02-27 电子科技大学 一种GaN异质结HEMT器件
US20150060947A1 (en) * 2013-08-30 2015-03-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transistor with Diamond Gate
US20160079382A1 (en) * 2014-09-16 2016-03-17 Kabushiki Kaisha Toshiba Semiconductor device
CN108054098A (zh) * 2017-12-18 2018-05-18 山东聚芯光电科技有限公司 一种带有场板的GaN-HEMT芯片的制作工艺
CN110828557A (zh) * 2019-09-30 2020-02-21 西安交通大学 一种p-GaN欧姆接触电极及其制备方法和应用
CN110993688A (zh) * 2019-12-03 2020-04-10 广东省半导体产业技术研究院 一种三端半导体器件及其制作方法
CN111900203A (zh) * 2020-06-30 2020-11-06 中国电子科技集团公司第五十五研究所 一种GaN基高空穴迁移率晶体管及其制备方法

Similar Documents

Publication Publication Date Title
CN104362181B (zh) 一种GaN异质结二极管器件及其制备方法
CN106783994B (zh) 一种抑制电流崩塌效应的增强型hemt器件及其制备方法
CN106981513A (zh) 基于高阻盖帽层的ⅲ族氮化物极化超结hemt器件及其制法
CN108110054B (zh) 一种GaN基HEMT器件及其制备方法
JP2013527987A (ja) 改良された接着力を有する半導体デバイス及びその製造方法
CN109244130A (zh) 基于p-GaN和SiN层的自对准栅结构GaN MIS-HEMT器件及其制作方法
CN107393969A (zh) 一种氮化镓基肖特基二极管半导体器件及制造方法
CN113013242A (zh) 基于n-GaN栅的p沟道GaN基异质结场效应晶体管
CN108231880B (zh) 一种增强型GaN基HEMT器件及其制备方法
WO2021139041A1 (zh) 氧化镓肖特基二极管及其制备方法
CN109950323A (zh) 极化超结的ⅲ族氮化物二极管器件及其制作方法
CN109950324A (zh) p型阳极的Ⅲ族氮化物二极管器件及其制作方法
US20220102540A1 (en) Gan-hemt device with sandwich structure and method for preparing the same
CN113380884A (zh) 一种hemt器件的栅极、hemt器件及其制备方法
CN104064595A (zh) 一种基于槽栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN103794643B (zh) 一种基于槽栅高压器件及其制作方法
CN112599412A (zh) 一种防击穿的氮化镓基功率器件制备方法
CN116053306A (zh) 基于氮化镓的高电子迁移率晶体管器件及其制备方法
CN110970499A (zh) GaN基横向超结器件及其制作方法
CN109830540B (zh) 一种基于空心阳极结构的肖特基二极管及其制备方法
CN209766426U (zh) 一种沉积多晶AlN的常关型HEMT器件
CN107958930A (zh) 一种氮化鎵基异质结场效应晶体管结构
CN112599586B (zh) 一种高可靠性氮化镓基功率器件及制备方法
CN111211176A (zh) 一种氮化镓基异质结集成器件结构及制造方法
CN104347700A (zh) 一种GaN基凹栅增强型HEMT器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210402

WD01 Invention patent application deemed withdrawn after publication