CN112592713A - 一种量子点材料及其制备方法和应用 - Google Patents

一种量子点材料及其制备方法和应用 Download PDF

Info

Publication number
CN112592713A
CN112592713A CN202011528467.5A CN202011528467A CN112592713A CN 112592713 A CN112592713 A CN 112592713A CN 202011528467 A CN202011528467 A CN 202011528467A CN 112592713 A CN112592713 A CN 112592713A
Authority
CN
China
Prior art keywords
core
source
precursor
transition layer
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011528467.5A
Other languages
English (en)
Other versions
CN112592713B (zh
Inventor
孙小卫
张文达
王恺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Planck Innovation Technology Co ltd
Original Assignee
Shenzhen Planck Innovation Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Planck Innovation Technology Co ltd filed Critical Shenzhen Planck Innovation Technology Co ltd
Priority to CN202011528467.5A priority Critical patent/CN112592713B/zh
Publication of CN112592713A publication Critical patent/CN112592713A/zh
Application granted granted Critical
Publication of CN112592713B publication Critical patent/CN112592713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供一种量子点材料及其制备方法和应用,所述量子点材料为核壳结构,所述核壳结构依次包括核心、过渡层和壳层;所述过渡层的材料包括稀土元素硫化物、MnS、MgS、Al2S3中的任意一种,所述壳层的材料包括ZnS;或所述过渡层的材料包括ZnSe,所述壳层的材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种,所述量子点材料通过对所述过渡层和壳层材料进行选择,找到了与所述核心材料失配度较低且禁带宽的过渡层和壳层材料,使得所述量子点材料各层材料之间匹配度高,具有发光效率高、合成工艺简单、成本低等优点,适合工业化批量化生产。

Description

一种量子点材料及其制备方法和应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种量子点材料及其制备方法和应用。
背景技术
量子点是一种直径小于10nm的无机半导体纳米晶体材料,其粒径小于或接近激子波尔半径时会出现量子尺寸效应,并且随着量子点尺寸的逐渐减小,量子点的光谱出现蓝移现象,尺寸越小,则蓝移现象越显著,因此通过控制量子点的尺寸,就可以方便地调节其能隙宽度,从而控制其发出光的颜色。目前II-VI族、III-V族量子点的制备已经趋于成熟,量子产率可达到80%以上。已经广泛的用到显示照明、生物探针、光电探测器等领域。
其中,InP和CdSe量子点作为量子点材料的代表,具有低毒性和合适的发光范围等优点,被视为下一代量子点明星材料,已经成为全球研究热点。但是InP和CdSe量子点材料由于尺寸较小,比表面积大、表面缺陷多等不足,很容易导致荧光猝灭。所以为了提高量子点的发光性能,引入合适的、化学稳定的、宽带隙半导体壳层能够有效地提高其载流子的量子限效应。CN107502352A公开了一种InP/ZnS核壳结构量子点的制备方法,以碘化铟作为量子点制备In前驱体,十二硫醇作为硫源,以十八烯为稳定剂,油胺作为溶剂、反应剂和配体,油酸锌作为包裹壳层结构的Zn源,得到InP/ZnS核壳结构量子点,有效提高了量子点材料的发光产率,但是由于红色InP核心的成核和生长较难控制,难以得到尺寸分布均一、半峰宽窄的纳米晶颗粒,影响最终InP/ZnS核壳结构的形成,另一方面,InP和ZnS的晶格常数差距较大,ZnS较难有效生长在InP颗粒表面将其包覆,容易造成发光效率较低、稳定性较差等缺点。
通过壳层的梯度化来可以同时满足宽带隙与晶格匹配的要求,因此将壳层设计为多壳层、壳层梯度合金化,成为量子点材料制备领域研究的重点。CN107338048A公开了一种InP/GaP/ZnS核壳量子点的制备方法,包括如下步骤:将铟前驱体、镓前驱体和锌前驱体溶解于有机溶剂,得到In、Ga和Zn混合前驱体溶液;将P前驱体加入所述In、Ga、Zn混合前驱体溶液中,反应后得到InP/GaP/ZnS量子点核溶液;向所述InP/GaP/Zn量子点核溶液中间隔多次加入壳层材料进行反应,所述壳层材料为Zn盐溶液和硫醇的混合溶液,得到所述InP/GaP/ZnS核壳量子点,制备得到的量子点材料壳层厚度较厚、稳定性好。一般情况下,量子点的合成温度超过270℃时将形成梯度合金结构,高温合金化的最重要的优势是化学组分是渐变的,这可以有效减少晶格失配产生的缺陷。合金量子点最常见的合成方法是利用前驱体反应活性差异来控制合金量子点的形成。例如,向含有过量油酸镉的溶液中注入反应活性高的硒前体和反应活性低的硫前体,可用于制备高荧光量子产率的CdSeS梯度合金结构量子点。基于Cd、Zn、Se和S的反应活性的自然差异,自发地形成具有梯度组分的CdZnSeS合金量子点,通过控制各组分化学计量比,可以得到波长可调谐的高效率的梯度合金量子点;Lim等在InP量子点表面形成渐变的ZnSeS合金壳层,得到量子产率超50%的InP/ZnSeS/ZnS量子点。(参见“InP@ZnSeS,Core@Composition Gradient Shell Quantum Dots withEnhanced Stability”,Lim,J.;Bae,W.K.;Lee,D.;Nam,M.K.;Jung,J.;Lee,C.;Char,K.;Lee,S,Chem.Mat.2011,23(20),4459-4463);Lim等还采用连续离子层吸附法在CdSe二元核基础上生长ZnCdS梯度合金层,从而得到量子产率高达80%的CdSe/Zn1-xCdxS厚壳层核壳结构量子点,(参见“Influence of Shell Thickness on the Performance of Light-Emitting Devices Based on CdSe/Zn1-XCdXS Core/Shell Heterostructured QuantumDots.”Lim,J.;Jeong,B.G.;Park,M.;Kim,J.K.;Pietryga,J.M.;Park,Y.S,Adv.Mater.2014,26(47)),但这两种方法需要精确的控制壳层的成分梯度,合成工艺复杂,不利于产业化合成。因此,制备得到带隙宽度高、各层晶格匹配度高、发光效率高且合成工艺简单、成本低的量子点材料,是目前急需解决的问题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种量子点材料及其制备方法和应用,所述量子点材料为核壳结构,所述核壳结构依次包括核心、过渡层和壳层,通过选择合适的过渡层材料,减小了所述量子点材料核壳界面处的晶格失配度,且提高了禁带宽度,使所述量子点材料的量子产生率高,发光效率高,有十分重要的应用价值。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供一种量子点材料,所述量子点材料为核壳结构,所述核壳结构依次包括核心、过渡层和壳层;
所述过渡层的材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种,所述壳层的材料包括ZnS;
或所述过渡层的材料包括ZnSe,所述壳层的材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种。
本发明提供的量子点材料为核壳结构,其结构示意图如图1所示,其中,1代表核心;2代表过渡层,3代表壳层;过渡层2的材料选择为稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种,壳层3的材料选用ZnS;过渡层2的材料为ZnSe时,壳层3的材料选择为稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种;通过对所述过渡层材料和所述壳层材料的选择,使得所述核壳结构的量子点材料的各层之间晶格失配度较低,且禁带宽度较宽,因此可以使得核心材料产生的激子完全限制在核心,有效避免了激子跃迁至量子点表面,在表面缺陷态产生非辐射复合的问题,提高了所述量子点材料的量子产率和发光效率。
优选地,所述量子点材料的直径为4~10nm,例如4.5nm、5nm、5.5nm、6nm、6.5nm、7nm、7.5nm、8nm、8.5nm、9nm、9.5nm或10nm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
本发明提供的量子点材料的直径为4~10nm,采用透射电子显微镜在300kV的加速电压下对所述量子点材料进行观察,所述量子点材料的的透射电镜图如图2所示,并且通过统计图2中颗粒的平均直径,结果如图3所示,可以看出本发明提供的量子点材料的平均直径在9nm左右。
优选地,所述核心的直径为2~5nm,例如2.2nm、2.4nm、2.6nm、2.8nm、3nm、3.2nm、3.4nm、3.6nm、3.8nm、4nm、4.2nm、4.4nm、4.6nm或4.8nm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
采用透射电子显微镜在300kV的加速电压下对所述量子点材料的核心进行观察,图4为本发明提供的量子点材料的核心的透射电镜图,图5为图4上的核心进行粒径统计得到的平均粒径,从图4和图5可以看出,本发明提供的量子点材料的核心的直径在2~5nm,平均直径在4.25nm。
优选地,所述过渡层的厚度为1~2.5nm,例如1.1nm、1.2nm、1.3nm、1.4nm、1.5nm、1.6nm、1.7nm、1.8nm、1.9nm、2nm、2.1nm、2.2nm、2.3nm或2.4nm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
采用透射电子显微镜在300kV的加速电压下对所述量子点材料的核心和过渡层进行观察,图6为本发明提供的量子点材料的核心和过渡层的透射电镜图,图7为图6的颗粒进行粒径统计的到的平均粒径,从图6和图7可以看出本发明提供的量子点材料的核心加上过渡层的直径在4~10nm,平均直径在6.75nm,并且本发明提供的量子点材料的核心的直径在2~5nm,平均直径在4.25nm,因而可以推测本发明所述过渡层的厚度为1~2.5nm。
优选地,所述壳层的厚度为1~2.5nm,例如1.1nm、1.2nm、1.3nm、1.4nm、1.5nm、1.6nm、1.7nm、1.8nm、1.9nm、2nm、2.1nm、2.2nm、2.3nm或2.4nm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
本发明提供的量子点材料的壳层的厚度为1~2.5nm,可以通过所述量子点的直径(6~15nm),减去所述量子点材料的核心加上过渡层的直径(在4~10nm)推测本发明所述量子点材料的壳层为1~2.5nm
优选地,所述核心的材料包括InP或、CdSe、ZnTe、ZnSe、CdS或AgS中的任意一种,优选为InP或CdSe。。
优选地,所述稀土元素硫化物、稀土元素硒化物、稀土元素碲化物中的稀土元素为Ce、Eu或Nd。
作为本发明的优选技术方案,本发明所述量子点材料的核心材料为InP或CdSe,所述核层、过渡层以及壳层部分材料的禁带宽度以及与核心材料InP的失配度谱图如图8所示,从图8中可以看出,InP的禁带宽度为1.3eV,ZnSe、Nd2S3、ZnS、MnS的禁带宽度分别为2.6eV、2.7eV、3.6eV和3.7eV,ZnSe、Nd2S3、ZnS、MnS与InP的失配度分别为3.3%、2.8%、7.7%和4.3%,所以综合禁带宽度以及与InP的失配度低两个方面考虑,当InP为核心材料时,选择Nd2S3和MnS作为过渡层材料;同样的,核层、过渡层以及壳层部分材料的禁带宽度以及与核心材料CdSe的失配度谱图如图9所示,从图9中可以看出,CdSe的禁带宽度为1.7eV,CdS、ZnSe、Nd2S3、ZnS、MnS和Al2S3的禁带宽度分别为2.4eV、2.7eV、2.6eV、3.6eV、3.7eV和4.1eV,CdS、ZnSe、Nd2S3、ZnS、MnS和Al2S3与CdSe的失配度分别为4.4%、6.7%、6.3%、10.9%、7.6%和5%,所以综合禁带宽度以及与CdSe失配度低两个方面考虑,当CdSe为核心材料时,选择Nd2S3、MnS以及Al2S3作为过渡层材料。
第二方面,本发明提供一种如第一方面所述量子点材料的制备方法,所述制备方法包括如下步骤:
(1)核心阳离子前驱体和核心阴离子前驱体进行反应,得到核心材料;
(2)步骤(1)得到的核心材料、过渡层阳离子前驱体与过渡层阴离子前驱体进行反应,得到核心/过渡层材料;
(3)步骤(2)得到的核心/过渡层材料、壳层阳离子前驱体与壳层阴离子前驱体进行反应,得到所述量子点材料;
所述过渡层材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种,所述壳层材料包括ZnS;
或所述过渡层材料包括ZnSe,所述壳层材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种。
本发明提供的一种量子点材料的制备方法的过程示意图如图10所示,其中1-1代表核心阳离子前驱体;1-2代表核心阴离子前驱体;1代表核心;步骤①代表核心阳离子前驱体1-1与核心阴离子前驱体1-2进行反应得到核心1的过程;2代表过渡层,步骤②代表将核心1、过渡层阳离子前驱体与过渡层阴离子前驱体进行反应,得到包覆有过渡层2的核心1的过程;3代表壳层;步骤③代表包覆有过渡层2的核心1、壳层阳离子前驱体与壳层阴离子前驱体进行反应,得到依次包括核心料1、过渡层2和壳层3的量子点材料,所述制备方法整个过程工艺简单、操作方便,有利于产业化生产。
优选地,步骤(1)所述核心阳离子前驱体包括核心阳离子源和溶剂的组合。
优选地,步骤(1)所述核心阴离子前驱体包括核心阴离子源和溶剂的组合。
优选地,所述核心阴离子源包括单质硒,所述核心阳离子源包括CdO。
优选地,所述核心阴离子源包括三(二甲胺基)膦和/或三(二乙胺基)膦,所述核心阳离子源包括InCl3、InBr3或InI3中的任意一种或至少两种的组合。
优选地,步骤(2)所述过渡层阳离子前驱体包括过渡层阳离子源和溶剂的组合。
优选地,步骤(2)所述过渡层阴离子前驱体包括过渡层阴离子源和溶剂的组合。
优选地,步骤(3)所述壳层阳离子前驱体包括壳层阳离子源和溶剂的组合。
优选地,步骤(3)所述壳层阴离子前驱体包括壳层阴离子源和溶剂的组合。
优选地,所述过渡层阳离子源包括Mn源、Mg源、Ce源、Eu源、Nd源或Al源,所述过渡层阴离子源包括S源,所述壳层阳离子源包括Zn源,所述壳层阴离子源包括S源;
优选地,所述过渡层阳离子源包括Zn源,所述过渡层阴离子源包括单质硒,所述壳层阳离子源包括Mn源、Mg源、Ce源、Eu源、Nd源或Al源,所述壳层阴离子源包括S源;
优选地,所述Mn源各自独立地包括醋酸锰、油酸锰、硬脂酸锰、四氟合锰酸钾、N-氨基甲酰-L-谷氨酸锰络合物、MnO2、MnCl2、MnI2或MnBr2中的任意一种或至少两种的组合;
优选地,所述Mg源各自独立地包括MgO、MgCl2、MgI2或MgBr2中的任意一种或至少两种的组合;
优选地,所述Ce源包括CeO2
优选地,所述Eu源各自独立地包括Eu2O3、EuCl3、EuI3或EuBr3中的任意一种或至少两种的组合;
优选地,所述Nd源各自独立地包括Nd2O3、NdCl3、NdI3或NdBr3中的任意一种或至少两种的组合;
优选地,所述Al源各自独立地包括Al2O3、AlCl3、AlI3或AlBr3中的任意一种或至少两种的组合;
优选地,所述S源各自独立地包括单质硫、十二硫醇或硫脲中的任意一种或至少两种的组合;
优选地,所述Zn源各自独立地包括硬脂酸锌、ZnCl2、ZnBr2或ZnI2中的任意一种或至少两种的组合;
优选地,所述溶剂各自独立地包括液体石蜡、油胺、十四胺、十六胺、十八烯、三辛基膦、月桂酸、肉豆蔻酸、软脂酸或油酸中的任意一种或至少两种的组合。
优选地,所述核心阳离子前驱体、核心阴离子前驱体、过渡层阳离子前驱体、过渡层阴离子前驱体、壳层阳离子前驱体与壳层阴离子前驱体中,以所述溶剂为1L计,所述核心阳离子源、核心阴离子源、过渡层阳离子源、过渡层阴离子源、壳层阳离子源和壳层阴离子源的摩尔质量各自独立地为0.2~2mol,例如0.3mol、0.4mol、0.5mol、0.6mol、0.7mol、0.8mol、0.9mol、1mol、1.2mol、1.4mol、1.6mol或1.8mol,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,步骤(1)所述反应的温度为150~250℃,例如160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃或240℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,步骤(1)所述反应的时间为2~60min,例如5min、10min、15min、20min、25min、30min、35min、40min、45min、50min或55min,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,步骤(2)和步骤(3)所述反应的温度各自独立地为200~350℃,例如210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃、300℃、310℃、320℃、330℃或340℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,步骤(2)和步骤(3)所述反应的时间各自独立地为5~60min例如5min、10min、15min、20min、25min、30min、35min、40min、45min、50min或55min,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
作为优选技术方案,所述制备方法具体包括如下步骤:
(1)核心阳离子前驱体和核心阴离子前驱体在150~250℃条件下反应2~60min,得到核心材料;所述核心阳离子前驱体包括核心阳离子源和溶剂的组合;所述核心阴离子前驱体包括核心阴离子源和溶剂的组合;
(2)步骤(1)得到的核心材料、过渡层阳离子前驱体与过渡层阴离子前驱体在200~350℃条件下反应5~60min,得到核心/过渡层材料;
(3)步骤(2)得到的核心/过渡层材料、壳层阳离子前驱体与壳层阴离子前驱体在200~350℃条件下反应5~60min,得到所述量子点材料;
所述核心材料包括InP或CdSe;
所述过渡层材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种,所述壳层材料包括ZnS;
或所述过渡层材料包括ZnSe,所述壳层材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种。
第三方面,本发明提供一种如第一方面所述的量子点材料在发光器件、荧光探针或荧光检测器中的应用。
相对于现有技术,本发明具有以下有益效果:
本发明提供的量子点材料具有核壳结构,所述核壳结构依次包括核心、过渡层和壳层,通过对过渡层材料和壳层材料的选择,找到了与核心材料失配度低,并且具有较宽的禁带宽度的材料,可以使所述核心材料产生的激子完全限制在所述核心,避免了核心材料产生的激子跃迁至所述量子点材料的表面,因而在表面缺陷态产生非辐射复合,降低量子产率的问题,与现有技术提供的量子点材料相比发光效率提高了3~48%;制备得到的量子点材料禁带宽、各层晶格之间匹配度高、发光效率高且合成工艺简单、成本低,适合工业化批量化生产。
附图说明
图1为本发明提供的量子点材料的结构示意图;
图2为本发明所述量子点的透射电镜图;
图3为图2中颗粒的平均直径分布谱图;
图4为本发明所述量子点材料核心的透射电镜图;
图5为图4中颗粒的平均直径分布谱图;
图6为本发明所述量子点材料核心和过渡层的透射电镜图;
图7为图6中颗粒的平均直径分布谱图;
图8为核层材料、过渡层材料以及壳层材料的禁带宽度以及与InP核心材料的失配度谱图;
图9为核层材料、过渡层材料以及壳层材料的禁带宽度以及与CdSe核心材料的失配度谱图;
图10为本发明提供的量子点材料的制备方法的过程示意图;
其中,1-核心,1-1-核心阳离子前驱体,1-2-核心阴离子前驱体,2-过渡层,3-壳层;
图10中,步骤①代表核心阳离子前驱体1-1与核心阴离子前驱体1-2进行反应得到核心1的过程;步骤②代表核心1、过渡层阳离子前驱体与过渡层阴离子前驱体进行反应,得到包覆有过渡层2的核心1的过程;步骤③包覆有过渡层2的核心1、壳层阳离子前驱体与壳层阴离子前驱体进行反应,得到依次包括核心1、过渡层2和壳层3的量子点材料的过程。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
一种量子点材料CdSe/Al2S3/ZnS,依次包括核心(CdSe,直径为3.5nm)、过渡层(Al2S3,厚度为1nm)和壳层(ZnS,厚度为2.25nm),该量子点材料的结构示意图如图1所示,其中1-核心,2-过渡层,3-壳层;
其制备方法如下:
(1)将5mmol Se粉与5mL三辛基膦(TOP)混合,直至Se粉完全溶解,得到Se前驱体;将0.3mmol CdO与5mL油酸(OA)混合,直至CdO完全溶解,得到Cd前驱体;在10mL十八烯(ODE)中加入5mL Cd前驱体,在氩气氛围下加热到120℃,真空抽气1h,再升温至250℃,加入1mLSe前驱体,反应45min,得到核心材料CdSe;
(2)将5mmol S粉与5mL TOP混合,直至S粉完全溶解,得到S前驱体;将1mmol Al2O3与5mL ODE混合,直至Al2O3完全溶解,得到Al前驱体;将1mL Al前驱体、1mL S前驱体与加入步骤(1)得到的核心材料CdSe混合,在250℃条件下反应45min,得到核心/过渡层材料CdSe/Al2S3
(3)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体;将1mL十二硫醇、2mL Zn前驱体与步骤(2)得到的核心/过渡层材料CdSe/Al2S3混合,升温到300℃,反应45min,得到所述量子点材料CdSe/Al2S3/ZnS。
实施例2
一种量子点材料InP/Eu2S3/ZnS,依次包括核心(InP,直径为2nm)、过渡层(Eu2S3,厚度为1nm)和壳层(ZnS,厚度为1nm),该量子点材料的结构与实施例1相同;
其制备方法如下:
(1)将0.45mmol三(二甲胺基)膦与1mL油胺充分混合,得到P前驱体;将0.34mmolInBr3与5mL油胺混合,得到In前驱体;将5mL In前驱体与1.45mL P前驱体混合,在氩气气氛下加热到140℃,真空抽气1h,再升温至200℃,反应10min得到核心材料InP;
(2)将2.2mmol EuCl3、1mL十二硫醇与步骤(1)得到的核心材料InP混合,升温至300℃,反应10min,得到核心/过渡层材料InP/Eu2S3
(3)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体;;将1mL十二硫醇、2mL Zn前驱体与步骤(2)得到核心/过渡层材料InP/Eu2S3混合,300℃反应20min,得到所述量子点材料InP/Eu2S3/ZnS。
实施例3
一种量子点材料InP/ZnSe/MnS,依次包括,依次包括核心(InP,直径为5nm)、过渡层(ZnSe,厚度为2.5nm)和壳层(MnS,厚度为2.5nm),该量子点材料的结构与实施例1相同;
(1)将0.45mmol三(二甲胺基)膦与1mL油胺充分混合,得到P前驱体;将0.34mmolInBr3与5mL油胺混合,得到In前驱体;将5mLIn前驱体与1.45mL P前驱体混合,在氩气气氛下加热到140℃,真空抽气30min,再升温至200℃,反应60min得到核心材料InP;
(2)将5mmol Se粉与5mL TOP混合,直至Se粉完全溶解,得到Se前驱体,将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体,将1mL Se前驱体、1mL Zn前驱体与步骤(1)得到的核心材料InP混合,升温至300℃,反应60min,得到核心/过渡层材料InP/ZnSe;
(3)将2.2mmol MnCl2、1mL十二硫醇与步骤(2)得到核心/过渡层材料InP/ZnSe混合,反应60min,得到所述量子点材料InP/ZnSe/MnS。
实施例4
一种量子点材料CdSe/ZnSe/Al2S3,依次包括,依次包括核心(CdSe,直径为3.5nm)、过渡层(ZnSe,厚度为2.25nm)和壳层(Al2S3,厚度为2.25nm),该量子点材料的结构与实施例1相同;
其制备方法如下:
(1)将5mmol Se粉与5mL TOP混合,直至Se粉完全溶解,得到Se前驱体;将0.3mmolCdO与5mL OA混合,直至CdO完全溶解,得到Cd前驱体;在10mL ODE中加入5mL Cd前驱体,在氩气氛围下加热到120℃,真空抽气30min,再升温至250℃,加入1mL Se前驱体,反应得到核心材料CdSe;
(2)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体,将1mL Se前驱体、1mL Zn前驱体与步骤(1)得到的CdSe核心材料混合,升温至300℃,反应45min,得到核心/过渡层材料CdSe/ZnSe;
(3)将5mmol S粉与5mL TOP混合,直至S粉完全溶解,得到S前驱体;将1mmol Al2O3与5mL OA混合,直至Al2O3完全溶解,得到Al前驱体;将1mL Al前驱体、1mL S前驱体与步骤(2)得到的核心/过渡层材料CdSe/ZnSe混合,反应45min,得到所述量子点材料CdSe/ZnSe/Al2S3
对比例1
一种量子点材料CdSe/ZnS,依次包括核心(CdSe,直径为4.87nm)、和壳层(ZnS,厚度为3.13nm);
其制备方法如下:
(1)将5mmol Se粉与5mL TOP混合,直至Se粉完全溶解,得到Se前驱体;将0.3mmolCdO与5mL OA混合,直至CdO完全溶解,得到Cd前驱体;在10mL十八烯(ODE)中加入5mL Cd前驱体,在氩气氛围下加热到120℃,真空抽气1h,再升温至250℃,加入1mL Se前驱体,反应50min,得到核心材料CdSe;
(2)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体;将1mL十二硫醇、2mL Zn前驱体与步骤(1)得到的核心材料CdSe混合,升温到300℃,反应45min,得到所述量子点材料CdSe/ZnS。
对比例2
一种量子点材料CdSe/ZnSe/ZnS,依次包括核心(CdSe,直径为3.5nm)、过渡层(ZnSe,厚度为2.25nm)和壳层(ZnS,厚度为2.25nm);
其制备方法如下:
(1)将5mmol Se粉与5mL TOP混合,直至Se粉完全溶解,得到Se前驱体;将0.3mmolCdO与5mL OA混合,直至CdO完全溶解,得到Cd前驱体;在10mL ODE中加入5mL Cd前驱体,在氩气氛围下加热到120℃,真空抽气1h,再升温至250℃,加入1mL Se前驱体,反应50min,得到核心材料CdSe;
(2)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体,将1mLSe前驱体、1mL Zn前驱体与步骤(1)得到的核心材料CdSe混合,升温至300℃,反应60min,得到核心/过渡层材料CdSe/ZnSe;
(3)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体;;将1mL十二硫醇、2mL Zn前驱体与步骤(2)得到核心/过渡层材料CdSe/ZnSe混合,反应20min,得到所述量子点材料CdSe/ZnSe/ZnS。
对比例3
一种量子点材料InP/ZnS,依次包括核心(InP,直径为4.87nm)、和壳层(ZnS,厚度为3.13nm);
其制备方法如下:
(1)将0.45mol三(二甲胺基)膦与1mL油胺充分混合,得到P前驱体;将0.34mmolInBr3与5mL油胺混合,得到In前驱体;将5mL In前驱体与1.45mL P前驱体混合,在氩气气氛下加热到140℃,真空抽气1h,再升温至200℃,反应45min得到核心材料InP;
(2)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体;将1mL十二硫醇、2mL Zn前驱体与步骤(1)得到的核心材料InP混合,升温到300℃,反应45min,得到所述量子点材料InP/ZnS。
对比例4
一种量子点材料InP/ZnSe/ZnS,依次包括核心(InP,直径为3.5nm)、过渡层(ZnSe,厚度为2.25nm)和壳层(ZnS,厚度为2.25nm);
其制备方法如下:
(1)将0.45mol三(二甲胺基)膦与1mL油胺充分混合,得到P前驱体;将0.34mmolInBr3与5mL油胺混合,得到In前驱体;将5mL In前驱体与1.45mL P前驱体混合,在氩气气氛下加热到140℃,真空抽气1h,再升温至200℃,反应45min得到核心材料InP;
(2)将5mol Se粉与5mL TOP混合,直至Se粉完全溶解,得到Se前驱体,将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体,将1mLSe前驱体、1mL Zn前驱体与步骤(1)得到的核心材料InP混合,升温至300℃,反应60min,得到核心/过渡层材料InP/ZnSe;
(3)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体;;将1mL十二硫醇、2mL Zn前驱体与步骤(2)得到核心/过渡层材料InP/ZnSe混合,反应20min,得到所述量子点材料InP/ZnSe/ZnS。
对比例5
一种量子点材料CdSe/Zn0.3Cd0.7Se/Zn0.7Cd0.3Se/ZnS,具体制备方法如下:
(1)将5mol Se粉与5mL TOP混合,直至Se粉完全溶解,得到Se前驱体;将0.157mmol氧化镉、0.44ml OA、13.46ml ODE添加到三颈瓶中。将烧瓶抽真空并加热至100℃以去除水和氧气,然后将反应物充满氩气并进一步加热到310℃。溶液澄清后,将制备的1.57ml Se前体快速注入反应溶液中,得到CdSe量子点;
(2)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体;将0.3mmol CdO与5mL OA混合,直至CdO完全溶解,得到Cd前驱体;将2.36ml Zn前驱体和2.36ml Cd前驱体的混合物添加到三颈瓶中,然后在20min后注入4.72ml Se前驱体,将温度升高到230℃,保持45min,得到CdSe/Zn0.3Cd0.7Se/量子点。
(3)将3.12ml Zn前驱体和3.12ml Cd前驱体的混合物添加到三颈瓶中,然后在20min后注入5.50ml Se前驱体,将温度升高到230℃,保持45min,得到CdSe/Zn0.3Cd0.7Se/Zn0.7Cd0.3Se量子点。
(4)将4ml Zn前驱体添加到三颈瓶中,然后在20min后注入6ml S前驱体,将温度升高到250℃,保持45min,得到量子点材料CdSe/Zn0.3Cd0.7Se/Zn0.7Cd0.3Se/ZnS。
对比例6
一种量子点材料InP/ZnSe0.7S0.3/ZnSe0.3S0.7/ZnS,具体制备方法如下:
(1)将0.45mol三(二甲胺基)膦与1mL油胺充分混合,得到P前驱体;将0.34mmolInBr3与5mL油胺混合,得到In前驱体;将5mL In前驱体与1.45mL P前驱体混合,在氩气气氛下加热到140℃,真空抽气1h,再升温至200℃,反应45min得到核心材料InP;
(2)将1.5g硬脂酸锌与6mL ODE混合,搅拌30min,得到Zn前驱体;将0.3mmol CdO与5mL OA混合,直至CdO完全溶解,得到Cd前驱体;将5mol Se粉与5mL TOP混合,直至Se粉完全溶解,得到Se前驱体;将2.36ml Zn前驱体和2.36ml Cd前驱体的混合物添加到三颈瓶中,然后在20min后注入4.72ml Se前驱体,将温度升高到230℃,保持45min,得到InP/ZnSe0.7S0.3量子点。
(3)将3.12ml Zn前驱体和3.12ml Cd前驱体的混合物添加到三颈瓶中,然后在20min后注入5.50ml Se前驱体,将温度升高到230℃,保持45min,得到InP/ZnSe0.7S0.3/ZnSe0.3S0.7量子点。
(4)将4ml Zn前驱体添加到三颈瓶中,然后在20min后注入6ml十二硫醇,将温度升高到250℃,保持45min,得到InP/ZnSe0.7S0.3/ZnSe0.3S0.7/ZnS量子点。
性能测试:
(1)量子点发光波长:采用9000分光光度计和150W静态氙灯作为激发源,测量样品的激发和发射光谱,使用北京光谱分析的紫外可见近红外分光光度计用于测定吸收光谱,得到量子点发光波长。
(2)发光效率:采用日本Hamamatsu Quantaurus QY公司生产,型号为C11347的量子效率仪进行发光效率测试。测试条件为:激发光源波长在250nm~800nm内可选,检测波长范围250nm~900nm自带消倍频滤光片,平均偏差<±1%,最终得到量子点的发光效率。
利用上述测试方法对实施例1~4和对比例1~6得到的量子点材料进行测试,测试结果如表1所示:
表1
Figure BDA0002851528680000181
Figure BDA0002851528680000191
根据表1数据可以看出:本发明提供的量子点材料具有更高的发光效率,具体来看,实施例1和4提供的量子点材料的发光效率为92%和91%,与对比例1(62%)、对比例3(64%)和对比例5(88%)相比,发光效率提高了3~48%;且与对比例5的量子点材料相比,制备方法更加简单,更适合批量化生产;实施例2和实施例3提供的量子点材料的发光效率分别为91%和90%,与对比例2(85%)、对比例4(85%)和对比例6(87%)相比,发光效率提高了3~7%,且制备工艺更加简单,适合工业化批量化生产。
申请人声明,本发明通过上述实施例来说明一种量子点材料及其制备方法和应用的工艺方法,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种量子点材料,其特征在于,所述量子点材料为核壳结构,所述核壳结构依次包括核心、过渡层和壳层;
所述过渡层的材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种,所述壳层的材料包括ZnS;
或所述过渡层的材料包括ZnSe,所述壳层的材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种。
2.根据权利要求1所述的量子点材料,其特征在于,所述量子点材料的直径为4~10nm;
优选地,所述核心的直径为2~5nm;
优选地,所述过渡层的厚度为1~2.5nm;
优选地,所述壳层的厚度为1~2.5nm。
3.根据权利要求1或2所述的量子点材料,其特征在于,所述核心的材料包括InP、CdSe、ZnTe、ZnSe、CdS或AgS中的任意一种,优选为InP或CdSe;
优选地,所述稀土元素硫化物、稀土元素硒化物、稀土元素碲化物中的稀土元素为Ce、Eu或Nd。
4.一种如权利要求1~3任一项所述量子点材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)核心阳离子前驱体和核心阴离子前驱体进行反应,得到核心材料;
(2)步骤(1)得到的核心材料、过渡层阳离子前驱体与过渡层阴离子前驱体进行反应,得到核心/过渡层材料;
(3)步骤(2)得到的核心/过渡层材料、壳层阳离子前驱体与壳层阴离子前驱体进行反应,得到所述量子点材料;
所述过渡层材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种,所述壳层材料包括ZnS;
或所述过渡层材料包括ZnSe,所述壳层材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)所述核心阳离子前驱体包括核心阳离子源和溶剂的组合;
优选地,步骤(1)所述核心阴离子前驱体包括核心阴离子源和溶剂的组合;
优选地,所述核心阴离子源包括单质硒,所述核心阳离子源包括CdO;
优选地,所述核心阴离子源包括三(二甲胺基)膦和/或三(二乙胺基)膦,所述核心阳离子源包括InCl3、InBr3或InI3中的任意一种或至少两种的组合。
6.根据权利要求4或5所述的制备方法,其特征在于,步骤(2)所述过渡层阳离子前驱体包括过渡层阳离子源和溶剂的组合;
优选地,步骤(2)所述过渡层阴离子前驱体包括过渡层阴离子源和溶剂的组合;
优选地,步骤(3)所述壳层阳离子前驱体包括壳层阳离子源和溶剂的组合;
优选地,步骤(3)所述壳层阴离子前驱体包括壳层阴离子源和溶剂的组合;
优选地,所述过渡层阳离子源包括Mn源、Mg源、Ce源、Eu源、Nd源或Al源,所述过渡层阴离子源包括S源,所述壳层阳离子源包括Zn源,所述壳层阴离子源包括S源;
优选地,所述过渡层阳离子源包括Zn源,所述过渡层阴离子源包括单质硒,所述壳层阳离子源包括Mn源、Mg源、Ce源、Eu源、Nd源或Al源,所述壳层阴离子源包括S源;
优选地,所述Mn源各自独立地包括MnO2、MnCl2、醋酸锰、油酸锰、硬脂酸锰、四氟合锰酸钾、N-氨基甲酰-L-谷氨酸锰络合物、MnI2或MnBr2中的任意一种或至少两种的组合;
优选地,所述Mg源各自独立地包括MgO、MgCl2、MgI2或MgBr2中的任意一种或至少两种的组合;
优选地,所述Ce源包括CeO2
优选地,所述Eu源各自独立地包括Eu2O3、EuCl3、EuI3或EuBr3中的任意一种或至少两种的组合;
优选地,所述Nd源各自独立地包括Nd2O3、NdCl3、NdI3或NdBr3中的任意一种或至少两种的组合;
优选地,所述Al源各自独立地包括Al2O3、AlCl3、AlI3或AlBr3中的任意一种或至少两种的组合;
优选地,所述S源各自独立地包括单质硫、十二硫醇或硫脲中的任意一种或至少两种的组合;
优选地,所述Zn源各自独立地包括硬脂酸锌、ZnCl2、ZnBr2或ZnI2中的任意一种或至少两种的组合;
优选地,所述溶剂各自独立地包括液体石蜡、油胺、十四胺、十六胺、十八烯、三辛基膦、月桂酸、肉豆蔻酸、软脂酸或油酸中的任意一种或至少两种的组合;
优选地,所述核心阳离子前驱体、核心阴离子前驱体、过渡层阳离子前驱体、过渡层阴离子前驱体、壳层阳离子前驱体与壳层阴离子前驱体中,以所述溶剂为1L计,所述核心阳离子源、核心阴离子源、过渡层阳离子源、过渡层阴离子源、壳层阳离子源和壳层阴离子源的摩尔质量各自独立地为0.2~2mol。
7.根据权利要求4~6任一项所述的制备方法,其特征在于,步骤(1)所述反应的温度为150~250℃;
优选地,步骤(1)所述反应的时间为2~60min。
8.根据权利要求4~7任一项所述的制备方法,其特征在于,步骤(2)和步骤(3)所述反应的温度各自独立地为200~350℃;
优选地,步骤(2)和步骤(3)所述反应的时间各自独立地为5~60min。
9.根据权利要求4~8任一项所述的制备方法,其特征在于,所述制备方法具体包括如下步骤:
(1)核心阳离子前驱体和核心阴离子前驱体在150~250℃条件下反应2~60min,得到核心材料;所述核心阳离子前驱体包括核心阳离子源和溶剂的组合;所述核心阴离子前驱体包括核心阴离子源和溶剂的组合;
(2)步骤(1)得到的核心材料、过渡层阳离子前驱体与过渡层阴离子前驱体在200~350℃条件下反应5~60min,得到核心/过渡层材料;
(3)步骤(2)得到的核心/过渡层材料、壳层阳离子前驱体与壳层阴离子前驱体在200~350℃条件下反应5~60min,得到所述量子点材料;
所述核心材料包括InP或CdSe;
所述过渡层材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种,所述壳层材料包括ZnS;
或所述过渡层材料包括ZnSe,所述壳层材料包括稀土元素硫化物、稀土元素硒化物、稀土元素碲化物、MnS、MgS、Al2S3中的任意一种。
10.一种如权利要求1~3任一项所述的量子点材料在发光器件、荧光探针或荧光检测器中的应用。
CN202011528467.5A 2020-12-22 2020-12-22 一种量子点材料及其制备方法和应用 Active CN112592713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011528467.5A CN112592713B (zh) 2020-12-22 2020-12-22 一种量子点材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011528467.5A CN112592713B (zh) 2020-12-22 2020-12-22 一种量子点材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112592713A true CN112592713A (zh) 2021-04-02
CN112592713B CN112592713B (zh) 2023-10-13

Family

ID=75200192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011528467.5A Active CN112592713B (zh) 2020-12-22 2020-12-22 一种量子点材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112592713B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017264A1 (en) * 2001-07-20 2003-01-23 Treadway Joseph A. Luminescent nanoparticles and methods for their preparation
US20050129947A1 (en) * 2003-01-22 2005-06-16 Xiaogang Peng Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
CN1986731A (zh) * 2006-12-12 2007-06-27 天津理工大学 Mn(1-X)S:AX/ZnS核/壳结构量子点及其制备方法
CN101815774A (zh) * 2007-09-28 2010-08-25 纳米技术有限公司 核壳纳米粒子及其制备方法
CN108929691A (zh) * 2018-08-31 2018-12-04 嘉兴纳鼎光电科技有限公司 一种量子点及其合成方法与应用
CN109097051A (zh) * 2018-09-30 2018-12-28 嘉兴纳鼎光电科技有限公司 一种核壳纳米晶及其制备方法
CN109575913A (zh) * 2019-01-22 2019-04-05 深圳扑浪创新科技有限公司 一种具有核壳结构的磷化铟量子点及其制备方法和用途
CN110964504A (zh) * 2018-09-30 2020-04-07 Tcl集团股份有限公司 量子点及其制备方法
WO2020217649A1 (ja) * 2019-04-26 2020-10-29 信越化学工業株式会社 量子ドット、波長変換材料、バックライトユニット、画像表示装置及び量子ドットの製造方法
US20200362240A1 (en) * 2019-05-16 2020-11-19 Hongik University Industry-Academia Cooperation Foundation II-VI BASED NON-Cd QUANTUM DOTS, MANUFACTURING METHOD THEREOF AND QLED USING THE SAME

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017264A1 (en) * 2001-07-20 2003-01-23 Treadway Joseph A. Luminescent nanoparticles and methods for their preparation
US20050129947A1 (en) * 2003-01-22 2005-06-16 Xiaogang Peng Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
CN1986731A (zh) * 2006-12-12 2007-06-27 天津理工大学 Mn(1-X)S:AX/ZnS核/壳结构量子点及其制备方法
CN101815774A (zh) * 2007-09-28 2010-08-25 纳米技术有限公司 核壳纳米粒子及其制备方法
CN108929691A (zh) * 2018-08-31 2018-12-04 嘉兴纳鼎光电科技有限公司 一种量子点及其合成方法与应用
CN109097051A (zh) * 2018-09-30 2018-12-28 嘉兴纳鼎光电科技有限公司 一种核壳纳米晶及其制备方法
CN110964504A (zh) * 2018-09-30 2020-04-07 Tcl集团股份有限公司 量子点及其制备方法
CN109575913A (zh) * 2019-01-22 2019-04-05 深圳扑浪创新科技有限公司 一种具有核壳结构的磷化铟量子点及其制备方法和用途
WO2020217649A1 (ja) * 2019-04-26 2020-10-29 信越化学工業株式会社 量子ドット、波長変換材料、バックライトユニット、画像表示装置及び量子ドットの製造方法
US20200362240A1 (en) * 2019-05-16 2020-11-19 Hongik University Industry-Academia Cooperation Foundation II-VI BASED NON-Cd QUANTUM DOTS, MANUFACTURING METHOD THEREOF AND QLED USING THE SAME

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. PISKORSKA-HOMMEL ET AL.: "Atomic ordering in CdSe/ZnSe/MgS quantum dots studied by EXAFS", 《AMERICAN INSTITUTE OF PHYSICS》 *
W. ZHANG ET AL.: "High Quantum Yield InP/ZnMnS/ZnS Quantum Dots", 《DIGEST》 *

Also Published As

Publication number Publication date
CN112592713B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
CN108546553B (zh) 一种ii-ii-vi合金量子点、其制备方法及其应用
CN111348674B (zh) Cs3Cu2X5(X=Cl、Br、I)纳米晶的制备方法及产物
JP2011194562A (ja) 量子ドットの製造方法
WO2015057944A1 (en) Quantum dot for emitting light and method for synthesizing same
KR101712037B1 (ko) 세슘 리드 할라이드 나노크리스탈의 가역적 할라이드 교환 방법
Lu et al. Synthesis and structure design of I–III–VI quantum dots for white light-emitting diodes
Li et al. Chemical synthesis and applications of colloidal metal phosphide nanocrystals
US20110062430A1 (en) Blue light emitting nanomaterials and synthesis thereof
WO2020029780A1 (zh) 绿色量子点、其制备方法及其应用
CN112824478B (zh) 核壳量子点、其制备方法、及含其的光电器件和量子点组合物
CN102703084B (zh) 碲化锌包覆Cu掺杂ZnSe量子点的水相制备方法
US9376616B2 (en) Nanoparticle phosphor and method for manufacturing the same, semiconductor nanoparticle phosphor and light emitting element containing semiconductor nanoparticle phosphor, wavelength converter and light emitting device
Zhang et al. Phosphine-free synthesis of ZnSe: Mn and ZnSe: Mn/ZnS doped quantum dots using new Se and S precursors
WO2020073927A1 (zh) 核壳结构纳米晶的制备方法
Zhang et al. Bright violet-to-aqua-emitting cadmium-free Ag-doped Zn–Ga–S quantum dots with high stability
Rathee et al. Time controlled growth of CdSe QDs for applications in white light emitting diodes
Kaur et al. Cd-free Cu-doped ZnInS/ZnS core/shell nanocrystals: Controlled synthesis and photophysical properties
CN112592713B (zh) 一种量子点材料及其制备方法和应用
Kuang et al. Optical properties of ultraviolet quantum dot light-emitting devices using ZnO-cores with a MgO-shell
Vasan et al. All inorganic quantum dot light emitting devices with solution processed metal oxide transport layers
Zhang et al. Bright Alloy CdZnSe/ZnSe QDs with Nonquenching Photoluminescence at High Temperature and Their Application to Light‐Emitting Diodes
Mondal et al. Electronic structure study of dual-doped II–VI semiconductor quantum dots towards single-source white light emission
Thomas et al. Europium doping of cadmium selenide (CdSe) quantum dots via rapid microwave synthesis for optoelectronic applications
CN109929545A (zh) 一种量子点组合物及其制备方法
Bhatt et al. Temporal evolution of white light emitting CdS core and Cd1-xZnxS graded shell quantum dots fabricated using single step non-injection technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant