CN112592552B - 一种提高透光率的塑料薄膜的制备方法及其产品 - Google Patents

一种提高透光率的塑料薄膜的制备方法及其产品 Download PDF

Info

Publication number
CN112592552B
CN112592552B CN202011613184.0A CN202011613184A CN112592552B CN 112592552 B CN112592552 B CN 112592552B CN 202011613184 A CN202011613184 A CN 202011613184A CN 112592552 B CN112592552 B CN 112592552B
Authority
CN
China
Prior art keywords
light transmittance
plastic film
graphene
film
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011613184.0A
Other languages
English (en)
Other versions
CN112592552A (zh
Inventor
崔大祥
陈超
林琳
王敬锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN202011613184.0A priority Critical patent/CN112592552B/zh
Publication of CN112592552A publication Critical patent/CN112592552A/zh
Application granted granted Critical
Publication of CN112592552B publication Critical patent/CN112592552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及一种提高透光率的塑料薄膜的制备方法及其产品,通过对石墨烯表面进行浸润处理,并使用橡胶成分使之与聚四氟乙烯进行更有效的复合,同时用辐照方式使氟塑料交联来达到提高透明度和耐高温的目的。所得薄膜具有较高的透明性,透光率大于65%,比起辐照前有明显提高,且耐高温,在马弗炉300℃下处理1小时,热重损失不超过3%,拉伸强度损失不超过5%。

Description

一种提高透光率的塑料薄膜的制备方法及其产品
技术领域
本发明属于复合材料技术领域,具体涉及一种提高透光率的塑料薄膜的制备方法及其产品。
背景技术
石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。
石墨烯的研究与应用开发持续升温,石墨和石墨烯有关的材料广泛应用在电池电极材料、半导体器件、透明显示屏、传感器、电容器、晶体管等方面。鉴于石墨烯材料优异的性能及其潜在的应用价值,在化学、材料、物理、生物、环境、能源等众多学科领域已取得了一系列重要进展。基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向,其在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出了优良性能,具有广阔的应用前景。目前石墨烯复合材料的研究主要集中在石墨烯聚合物复合材料和石墨烯基无机纳米复合材料上,而随着对石墨烯研究的深入, 石墨烯增强体在块体金属基复合材料中的应用也越来越受到人们的重视。石墨烯制成的多功能聚合物复合材料、高强度多孔陶瓷材料,增强了复合材料的许多特殊性能。
本发明旨在通过对石墨烯表面进行浸润处理,并使用橡胶成分使之与聚四氟乙烯进行更有效的复合,同时用辐照方式使氟塑料交联来达到提高透明度和耐高温的目的。
发明内容
本发明目的在于提供一种提高透光率的塑料薄膜的制备方法。
本发明的再一目的在于:提供一种上述方法制备得到的提高透光率的塑料薄膜产品。
本发明目的提供下述方案实现:一种提高透光率的塑料薄膜的制备方法,通过对石墨烯表面进行浸润处理,并使用橡胶成分使之与聚四氟乙烯进行更有效的复合,同时用辐照方式使氟塑料交联来达到提高透明度和耐高温的目的,该塑料薄膜配方如下:
聚偏氟乙烯(PVDF) 18~22份
N,N-二甲基甲酰胺(DMF) 100份
石墨烯 1~2份
聚四氟乙烯(PTFE) 53~66份
丁苯橡胶 46~55份
增强剂 1份;
制备过程:将聚偏氟乙烯、石墨烯和N,N-二甲基甲酰胺三种物料以配方中的质量比调成浆料,使聚偏氟乙烯充分溶解到N,N-二甲基甲酰胺中,溶解温度80℃~90℃;之后,
再按配方质量比加入聚四氟乙烯、丁苯橡胶和增强剂,继续充分搅拌得到糊状物;
将糊状物投入模具中进行热压,压力≥30MPa,烧结温度≤360℃,热压时间30~60分钟,薄膜离型后进入辐照箱,箱内为氮气气氛,温度≤350℃,辐照剂量达到150~200kGy区间后取出,得到提高透光率的塑料薄膜。
在上述方案基础上,所用的聚偏氟乙烯分子量范围为50万~60万。
在上述方案基础上,所用聚四氟乙烯粉的颗粒粒径≤10μm。
在上述方案基础上,所用的丁苯橡胶需要预先低温粉碎至200目以下。
在上述方案基础上,所用的增强剂为氯化石蜡和三氧化二锑中的混合物。
在上述方案基础上,本发明提供一种提高透光率的塑料薄膜,根据上述任一所述方法制备得到,所得薄膜具有较高的透明性,透光率大于65%,比起辐照前有明显提高,且耐高温,在马弗炉300℃下处理1小时,热重损失不超过3%,拉伸强度损失不超过5%。
目前石墨烯复合材料的研究主要集中在石墨烯聚合物复合材料和石墨烯基无机纳米复合材料上,而随着对石墨烯研究的深入,石墨烯增强体在块体金属基复合材料中的应用也越来越受到人们的重视。石墨烯制成的多功能聚合物复合材料、高强度多孔陶瓷材料,增强了复合材料的许多特殊性能。
本发明旨在通过对石墨烯表面进行浸润处理,并使用橡胶成分使之与聚四氟乙烯进行更有效的复合,同时用辐照方式使氟塑料交联来达到提高透明度和耐高温的目的。经测试本发明方法制备的薄膜辐照后透光率明显提高,热重损失小于3%,辐照后拉伸强度损失小于5%。
具体实施方式
本发明通过下面的具体实例进行详细描述,但本发明的保护范围不受限于这些实施例。
实施例1:
一种提高透光率的塑料薄膜,通过对石墨烯表面进行浸润处理,并使用橡胶成分使之与聚四氟乙烯进行更有效的复合,同时用辐照方式使氟塑料交联来达到提高透明度和耐高温的目的,该塑料薄膜配方如下:
聚偏氟乙烯(PVDF) 180g
N,N-二甲基甲酰胺(DMF) 1000g
石墨烯 10g
聚四氟乙烯(PTFE) 650g
丁苯橡胶 550g
增强剂 10g;
制膜过程:先将聚偏氟乙烯、石墨烯和N,N-二甲基甲酰胺三种物料加热搅拌调成浆料,使聚偏氟乙烯充分溶解到N,N-二甲基甲酰胺中,溶解温度82℃;
再按配方质量比加入聚四氟乙烯、丁苯橡胶和增强剂,继续充分搅拌得到糊状物;
将糊状物投入模具中进行热压,压力≥30MPa,烧结温度≤360℃,热压时间30~60分钟,薄膜离型后进入辐照箱,箱内为氮气气氛,温度≤350℃,辐照剂量达到150~200kGy区间后取出,得到提高透光率的塑料薄膜。
加入聚四氟乙烯、丁苯橡胶和增强剂继续搅拌至糊状,投入到模具中进行热压,压力30Mpa,加热温度352℃,保持30分钟,薄膜离型后取样,做对照测试,再进入辐照箱,氮气气氛,温度342℃,辐照剂量达到150kGy后取出,得到提高透光率的塑料薄膜样品,之后进行透光率和热重及力学测试,透光率分别测试辐照前和辐照后的薄膜样品,后两者测试方式为:将辐照后的样品板材放入马弗炉300℃恒温处理1小时,分别测量恒温前后样品的重量和拉伸强度,进行损失率计算。样品测试数据见表1。辐照后透光率达67,热重损失小于2.8%,辐照后拉伸强度损失小于3.8%。
实施例2:
一种提高透光率的塑料薄膜,按下述方法制备:
取聚偏氟乙烯200g、石墨烯15g加入到1000gN,N-二甲基甲酰胺中加热搅拌成浆料,加热温度85℃,待聚偏氟乙烯充分溶解;然后,
加入600g聚四氟乙烯、500g丁苯橡胶和10g增强剂继续搅拌至糊状物;
将糊状物投入到磨具中进行热压,压力32Mpa,加热温度353℃,保持40分钟,薄膜离型后取样(做对照测试)再进入辐照箱,氮气气氛,温度343℃,辐照剂量达到180kGy后取出,得到提高透光率的塑料薄膜样品。
进行透光率和热重及力学测试,透光率分别测试辐照前和辐照后的薄膜样品,后两者测试方式为:将辐照后的样品板材放入马弗炉300℃恒温处理1小时,分别测量恒温前后样品的重量和拉伸强度,进行损失率计算。
样品测试数据见表1。辐照后透光率达68,热重损失小于2.4%,辐照后拉伸强度损失小于4.6%。
实施例3:
一种提高透光率的塑料薄膜,按下述方法制备:
取聚偏氟乙烯220g、石墨烯20g加入到1000gN,N-二甲基甲酰胺中加热搅拌,加热温度89℃,待聚偏氟乙烯充分溶解,成浆料;然后,
加入530g聚四氟乙烯、460g丁苯橡胶和10g增强剂继续搅拌成糊状物;
将糊状物投入到模具中进行热压,压力32Mpa,加热温度351℃,保持60分钟,薄膜离型后取样(做对照测试)再进入辐照箱,氮气气氛,温度341℃,辐照剂量达到200kGy后取出,得到提高透光率的塑料薄膜样品。
对样品进行透光率和热重及力学测试,透光率分别测试辐照前和辐照后的薄膜样品,后两者测试方式为:将辐照后的样品板材放入马弗炉300℃恒温处理1小时,分别测量恒温前后样品的重量和拉伸强度,进行损失率计算。样品测试数据见表1。辐照后透光率达71,热重损失小于2.7%,辐照后拉伸强度损失小于4.7%:
Figure DEST_PATH_IMAGE001

Claims (5)

1.一种提高透光率的塑料薄膜的制备方法,其特征在于通过对石墨烯表面进行浸润处理,并使用橡胶成分使之与聚四氟乙烯进行更有效的复合,同时用辐照方式使氟塑料交联来达到提高透明度和耐高温的目的,该方法的配方如下:
聚偏氟乙烯(PVDF) 18~22份
N,N-二甲基甲酰胺(DMF) 100份
石墨烯 1~2份
聚四氟乙烯(PTFE) 53~66份
丁苯橡胶 46~55份
增强剂 1份;
薄膜制备过程包括:
将聚偏氟乙烯、石墨烯和N,N-二甲基甲酰胺三种物料以配方中的质量比调成浆料,使聚偏氟乙烯充分溶解到N,N-二甲基甲酰胺中,溶解温度80℃~90℃;之后,
再按配方质量比加入聚四氟乙烯、丁苯橡胶和增强剂,继续充分搅拌得到糊状物;
将糊状物投入模具中进行热压,压力≥30MPa,烧结温度≤360℃,热压时间30~60分钟,薄膜离型后进入辐照箱,箱内为氮气气氛,温度≤350℃,辐照剂量达到150~200kGy区间后取出,得到提高透光率的塑料薄膜。
2.根据权利要求1所述的一种提高透光率的塑料薄膜的制备方法,其特征在于所用的聚偏氟乙烯分子量范围为50万~60万。
3.根据权利要求1所述的一种提高透光率的塑料薄膜的制备方法,其特征在于所用聚四氟乙烯粉的颗粒粒径≤10μm。
4.根据权利要求1所述的一种提高透光率的塑料薄膜的制备方法,其特征在于所用的丁苯橡胶需要预先低温粉碎至200目以下。
5.一种提高透光率的塑料薄膜,其特征在于根据权利要求1-4任一所述方法制备得到,所得薄膜具有较高的透明性,透光率大于65%,比起辐照前有明显提高,且耐高温,在马弗炉300℃下处理1小时,热重损失不超过3%,拉伸强度损失不超过5%。
CN202011613184.0A 2020-12-30 2020-12-30 一种提高透光率的塑料薄膜的制备方法及其产品 Active CN112592552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011613184.0A CN112592552B (zh) 2020-12-30 2020-12-30 一种提高透光率的塑料薄膜的制备方法及其产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011613184.0A CN112592552B (zh) 2020-12-30 2020-12-30 一种提高透光率的塑料薄膜的制备方法及其产品

Publications (2)

Publication Number Publication Date
CN112592552A CN112592552A (zh) 2021-04-02
CN112592552B true CN112592552B (zh) 2022-09-02

Family

ID=75206222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011613184.0A Active CN112592552B (zh) 2020-12-30 2020-12-30 一种提高透光率的塑料薄膜的制备方法及其产品

Country Status (1)

Country Link
CN (1) CN112592552B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897304A (zh) * 2014-03-12 2014-07-02 复旦大学 一种石墨烯-纳米聚四氟乙烯复合填料及其制备方法和应用
CN109608793A (zh) * 2018-11-30 2019-04-12 朱莲华 一种石墨烯交联聚四氟乙烯疏水薄膜及其制备方法
WO2019073317A1 (en) * 2017-10-11 2019-04-18 Sabic Global Technologies B.V. GRAPHENE POLYMER-OXIDE TRIBOELECTRIC MATERIALS, METHODS OF MAKING THE SAME, AND USES THEREOF
CN109648818A (zh) * 2018-12-21 2019-04-19 成都新柯力化工科技有限公司 一种用于电子产品散热的石墨烯散热塑料膜及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897304A (zh) * 2014-03-12 2014-07-02 复旦大学 一种石墨烯-纳米聚四氟乙烯复合填料及其制备方法和应用
WO2019073317A1 (en) * 2017-10-11 2019-04-18 Sabic Global Technologies B.V. GRAPHENE POLYMER-OXIDE TRIBOELECTRIC MATERIALS, METHODS OF MAKING THE SAME, AND USES THEREOF
CN109608793A (zh) * 2018-11-30 2019-04-12 朱莲华 一种石墨烯交联聚四氟乙烯疏水薄膜及其制备方法
CN109648818A (zh) * 2018-12-21 2019-04-19 成都新柯力化工科技有限公司 一种用于电子产品散热的石墨烯散热塑料膜及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石墨烯/聚四氟乙烯复合密封材料的制备及性能研究;谢苏江 等;《润滑与密封》;20180930;第43卷(第9期);104-107,140 *

Also Published As

Publication number Publication date
CN112592552A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
Zhang et al. Fabrication of novel MXene (Ti 3 C 2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties
Li et al. Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers
Ma et al. Temperature-sensitive poly (N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior
Cai et al. Synthesis of highly conductive hydrogel with high strength and super toughness
Han et al. Enhanced thermal conductivity of commercial polystyrene filled with core-shell structured BN@ PS
Ghosh et al. Micro-computed tomography enhanced cross-linked carboxylated acrylonitrile butadiene rubber with the decoration of new generation conductive carbon black for high strain tolerant electromagnetic wave absorber
CN102181168B (zh) 聚合物基复合材料及其制造方法
CN109060198A (zh) Paa类双交联网络自愈合水凝胶电容式压力传感器
WO2015139517A1 (zh) 一种阻隔抗静电tpu复合材料薄膜及其制备方法
Hu et al. Improved dielectric properties of polypropylene-based nanocomposites via co-filling with zinc oxide and barium titanate
Xiong et al. The effect of surface modification of TiO2 with diblock copolymers on the properties of epoxy nanocomposites
Devikala et al. Conductivity and dielectric studies of PMMA composites
Tang et al. Remarkable microwave heating performance of MWCNTs/polypropylene composites verified by electromagnetic-thermal coupling experiment and simulation
Lv et al. Repeatable, room-temperature-processed baroplastic-carbon nanotube composites for electromagnetic interference shielding
Thomas et al. Effect of Sr 2 TiMnO 6 fillers on mechanical, dielectric and thermal behaviour of PMMA polymer
CN112592552B (zh) 一种提高透光率的塑料薄膜的制备方法及其产品
Guan et al. A facile one-pot route to transparent polymer nanocomposites with high ZnS nanophase contents via in situ bulk polymerization
Wang et al. Fabrications and dielectric performances of novel composites: Calcium copper titanate/Polyvinylidene fluoride
Yang et al. A hybrid polyvinyl alcohol/molybdenum disulfide nanosheet hydrogel with light-triggered rapid self-healing capability
Xia et al. A remote-activated shape memory polymer network employing vinyl-capped Fe3O4 nanoparticles as netpoints for durable performance
Li et al. Phytic acid-assist for self-healing nanocomposite hydrogels with surface functionalization of cellulose nanocrystals via SI-AGET ATRP
CN113150554B (zh) 一种pdms基柔性储能复合膜及其制备方法
Lu et al. Flexible Polypyrrole Nanotube–Polyethylene Glycol–Polyvinyl Alcohol Hydrogels for Enhanced Electromagnetic Shielding
Kulkarni et al. PVDF/RGO based piezoelectric nanocomposite films for enhanced mechanical and dielectric properties
CN105906846A (zh) 一种氰乙基纤维素基高介电纳米复合膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant