CN112582021A - 一种壳聚糖水解酶可逆抑制保护剂的筛选方法 - Google Patents

一种壳聚糖水解酶可逆抑制保护剂的筛选方法 Download PDF

Info

Publication number
CN112582021A
CN112582021A CN202011566935.8A CN202011566935A CN112582021A CN 112582021 A CN112582021 A CN 112582021A CN 202011566935 A CN202011566935 A CN 202011566935A CN 112582021 A CN112582021 A CN 112582021A
Authority
CN
China
Prior art keywords
screening
chitosan hydrolase
protective agent
reversible inhibition
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011566935.8A
Other languages
English (en)
Inventor
许向阳
宋在伟
殷允超
种法国
宋均营
黄家超
叶王立
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jienuo Enzyme Co ltd
Original Assignee
Jienuo Enzyme Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jienuo Enzyme Co ltd filed Critical Jienuo Enzyme Co ltd
Priority to CN202011566935.8A priority Critical patent/CN112582021A/zh
Publication of CN112582021A publication Critical patent/CN112582021A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B35/00ICT specially adapted for in silico combinatorial libraries of nucleic acids, proteins or peptides
    • G16B35/20Screening of libraries
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Library & Information Science (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Physiology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioethics (AREA)
  • Databases & Information Systems (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明要解决的技术问题是提供一种壳聚糖水解酶的可逆抑制保护剂的筛选方法,弥补现有技术存在的不足,适用于壳聚糖水解酶在工业酶制剂上的应用,提高其稳定性。本发明的设计思路如下:首先建立已知的可逆抑制保护剂训练集,根据已有的壳聚糖水解酶结构数据,进行分子对接并排序,并结合测试结果进行验证,确定方法的可靠性。后建立筛选规则和筛选模型,使用该规则和模型分别对小分子化合物数据库进行筛选、排序和打分,逐渐缩小范围,最终根据由上到下几次排序的结果,确定可以作为壳聚糖水解酶可逆抑制保护剂的化合物。

Description

一种壳聚糖水解酶可逆抑制保护剂的筛选方法
技术领域
本发明属于活性物质筛选技术领域,具体涉及一种壳聚糖水解酶可逆抑制保护剂的筛选方法。
背景技术
酶的特点是用量少、催化效率高、专一性强。酶制剂产业在经历了半个多世纪的迅猛发展后,现已经形成一个富有活力的高技术产业,在食品、纺织、洗涤、造纸、饲料和生物能源等行业都有广泛应用。目前,液体酶制剂技术相比同类产品生产制造过程节约用水约30%~50%、节能50%以上,更符合低碳经济的发展需要;毫无疑问,高活性、高纯度、液体酶将成为今后酶制剂的发展方向。
酶的活性功能决定于其分子结构的完整和严格的构象,环境因素的变化极易导致酶的空间结构破坏,从而丧失其原有的生物活性。一些小分子的物质,可以与酶活中心的氨基酸残基相互作用并进行锁定,对酶的构象进行空间限位,使酶进入休眠的状态。之后在某种激活条件下,小分子物质与酶活性中心的作用力变弱,从而解除下来,活性中心的功能基团重新获得自由伸展,酶的活性得到恢复,这是酶可逆抑制剂作用的基本原理。20世纪60年代初,Umezawa最早提出了酶抑制的概念,发展至今,主要用于药物筛选领域。
工业用酶可逆抑制剂没有现成的专一筛选模型和可参考的结构信息数据库,一直以来都是研究领域的难点问题,国内还未能有所突破。而在壳聚糖酶可逆抑制保护剂筛选技术领域还没有有效的方法。
发明内容
本发明的目的是提供一种壳聚糖水解酶的可逆抑制保护剂的筛选方法,筛选的可逆抑制保护剂可提高壳聚糖水解酶的稳定性;从而弥补现有技术存在的不足。
本发明首先建立已知的可逆抑制保护剂训练集,根据已有的壳聚糖水解酶结构数据,进行分子对接并排序,并结合测试结果进行验证,确定方法的可靠性。后建立筛选规则和筛选模型,使用该规则和模型分别对小分子化合物数据库进行筛选、排序和打分,逐渐缩小范围,最终根据由上到下几次排序的结果,确定可以作为壳聚糖水解酶可逆抑制保护剂的化合物,并进行进一步的实验验证。
本发明所提供的壳聚糖水解酶的可逆抑制保护剂的筛选方法,包括以下步骤:
1)根据已知于壳聚糖水解酶的结构数据,确定可逆抑制保护剂的类别及对壳聚糖水解酶的抑制常数,确定训练集的化合物;
2)将步骤1)所述的训练集中的化合物与壳聚糖水解酶进行分子对接,并使用步骤1)中的可逆抑制保护剂对壳聚糖水解酶活性的抑制常数进行修正;
3)根据步骤2)获得的训练集中的化合物与壳聚糖水解酶的结合自由能和可逆抑制常数,结合步骤1)训练集中的化合物筛选结果,制定筛选规则,建立筛选模型;
4)根据步骤3)制定的筛选规则和建立的筛选模型进行筛选。
进一步,所述的步骤1)进入训练集的组成化合物有2,4-二硝基苯甲醚(2,4-dinitro-1-fluorbenzene),2-羟-5硝基苄溴(2-Hydroxy-5-nitrobenzyl bromide),乙酸钠(Sodium acetate),苯扎氯铵(benzalkonium chloride),乙酰亚胺酸乙酯(ethylacetimidate),乙二胺四乙酸二钠(EDTA),葡糖胺(glucosamine),盐酸胍(guanidiniumhydrochloride),半胱氨酸(cysteine),碘乙酸(monoiodoacetate);这些化合物均是壳聚糖水解酶的抑制剂,包括可逆抑制剂和不可逆抑制剂,与蛋白的结合程度不同
进一步,所述的步骤2)中的分子对接方法为:利用REDUCE、Autodock Tools和Autodoc4共同完成,首先为壳聚糖水解酶和抑制剂添加氢键和Gaussian电荷,再采用分子和壳聚糖水解酶活性位点区域完全柔性的对接方法;
进一步,筛选的规则-6.000≤Ei≤-5.000,50≤Ki≤200,以此作为筛选规则。
进一步,所述的建立的筛选模型是一个有效的药效团模型,该模型具有2个疏水中心,以及3个氢键受体和5个给体;按照Xscore打分,低于5.0分的被排除;
进一步,所述的筛选的方法为按照步骤3)制定的筛选规则从小分子数据库中筛选的化合物组成化合物池A,并进行排序打分,
将化合物池A中的化合物按照理论结合自由能和理论可逆抑制常数重新排序,取排在前2000位的分子使用X-score打分函数联合打分,计算与靶蛋白的亲和力,取打分值大于5.0的化合物再组成化合物池B;
获取化合物池B后,使用筛选模型进行拟合排序。
本发明所建立的壳聚糖水解酶的可逆抑制保护剂的筛选方法,具有以下优点:(1)筛选方法比较快速,可以迅速减少候选分子的数量,减少时间和试验材料的浪费;(2)方法可靠,因为筛选规则和模型的建立是在对已有抑制剂训练集的基础上进行的,最终的筛选结果也使用实验数据验证,理论与实验结果想互补充,可靠性高;(3)针对性好,该方法中使用的分子对接,是建立在壳聚糖水解酶已有结构数据模建基础上(Jun Sheng,XiaofengJi,Yuan Zheng,等.Improvement in the thermostability of chitosanase fromBacillus ehimensis by introducing artificial disulfide bonds[J].BiotechnologyLetters,2016.)的,针对性强。这种筛选方法,适用于壳聚糖水解酶在工业液体酶制剂上的应用。
附图说明
图1:壳聚糖水解酶结构模型图;
图2:壳聚糖水解酶与抑制保护剂结合后模建结构模型图。
具体实施方式
本发明用下列实施例来进一步说明本发明,但本发明保护范围并非限于下列实施例。
壳聚糖水解酶抑制常数的计算方法:
壳聚糖水解酶催化的米氏常数(Km)使用Lineweaver–Burk双倒数作图法完成,抑制常数Ki值通过Dixon作图法得到。Lineweaver–Burk方程可以写作:
Figure BDA0002861921070000041
二次求导后得到:
Figure BDA0002861921070000042
从中可以求得抑制常数Ki
实施例1壳聚糖水解酶的可逆抑制保护剂的筛选方法
壳聚糖水解酶的可逆抑制保护剂的筛选方法,包括以下步骤:
(1)根据已知壳聚糖水解酶的序列结构、抑制保护剂的结构数据,以及酶与小分子化合物反应的试验数据(表1),抑制剂包含有乙酸钠(Sodium acetate),苯扎氯铵(benzalkonium chloride),乙酰亚胺酸乙酯(ethyl acetimidate),乙二胺四乙酸二钠(EDTA),葡糖胺(glucosamine),盐酸胍(guanidinium hydrochloride),半胱氨酸(cysteine),碘乙酸(monoiodoacetate);
表1:壳聚糖水解酶抑制剂反应的抑制常数表
Figure BDA0002861921070000043
Figure BDA0002861921070000051
抑制常数(Ki)可以反映出化合物与酶结合的能力大小,在这18种化合物中,与壳聚糖水解酶的结合能力太强(Ki<0.3),容易导致酶分子完全变性,被排除掉,其余进入可逆抑制保护剂训练集。
(2)将训练集中的化合物与壳聚糖水解酶进行分子对接
使用的分子对接方法为:利用REDUCE、Autodock Tools和Autodoc4来完成。首先通过REDUCE程序添加氢键,然后用Autodock Tools脚本添加Gaussian电荷。选取以坐标点(12.403,-20.749,24.022)为中心,
Figure BDA0002861921070000053
的范围内的空间区域为对接的格点区,利用AutoGrid来划定格点。采用抑制剂和酶活性位点区域完全柔性的对接方法,利用Autodock4来进行对接。打分采用Autodock4自带打分和Xscore打分相结合的方法。
对接后的结果如表2所示。
表2:训练集分子对接后的理论结合自由能(E)和理论可逆抑制常数(Ki)
Figure BDA0002861921070000052
(3)筛选规则和筛选模型的建立及完善;
获取训练集中的化合物与壳聚糖水解酶的理论结合自由能(Ei,kcal/mol)和可逆抑制常数(Ki,μM)后,参考表1的实验结果数据,这些化合物对接能量值和理论可逆抑制常数(Ki)需要满足选择条件(-6.000≤Ei≤-5.000,50≤Ki≤200),因此以此作为筛选规则,在这个范围内的,可逆抑制结果为阳性。
据此建立的筛选模型是一个有效的药效团模型,该模型具有该模型具有2个疏水中心,以及3个氢键受体和5个给体;按照Xscore打分,低于5.0分的被排除;
(4)筛选,
首先使用获得的筛选规则(-6.000≤Ei≤-5.000,50≤Ki≤200)对ZINC数据库中大约1900万个小分子化合物进行初步筛选,获得了13000种化合物,组成化合物池A。
将化合物池A中的化合物按照理论结合自由能(Ei,)和理论可逆抑制常数(Ki)重新排序,取排在前2000位的分子使用X-score打分函数联合打分,计算与靶蛋白的亲和力,取打分值大于5.0的,共计283种化合物再组成化合物池B。
获取化合物池B后,进行筛选模型的拟合。使用以上获得的筛选模型对283种化合物进行匹配,其中与模型中的集团不匹配的或者比模型分子集团的数量多了2倍以上的被去除,最终获得了排名在前3位的结构最为匹配的化合物(表3):
表3:十种与筛选模型匹配的化合物
Figure BDA0002861921070000061
这些化合物可以作为壳聚糖水解酶的可逆抑制保护剂的化合物分子。
实施例2化合物ZINC01006243与壳聚糖水解酶的对接模拟
选取打分值第一的化合物5,7-Diphenyl-1,7-dihydro-pyrrolo[2,3-d]pyrimidine-2,4-dithione进行研究,将其溶解在乙醇中配置成1mM溶液,按照25μM的量加入到浓缩壳聚糖水解酶溶液(8000u/ml)中,酶活收到抑制,保留活性18.76%。40℃保存30d后,按照1:10倍稀释后检测,结果活性为652u/ml,活性得到恢复,相对酶活超过80%。
上述结果表明本发明所建立的筛选方法的理论与实验结果想互补充,可靠性高。

Claims (8)

1.一种用于壳聚糖水解酶的可逆抑制保护剂的筛选模型,其特征在于,所述的筛选模型的建立方法如下:
1)根据已知于壳聚糖水解酶的结构数据,确定可逆抑制保护剂的类别及对壳聚糖水解酶的抑制常数,确定训练集的化合物;
2)将步骤1)所述的训练集中的化合物与壳聚糖水解酶进行分子对接,并使用步骤1)中的可逆抑制保护剂对壳聚糖水解酶活性的抑制常数进行修正;
3)根据步骤2)获得的训练集中的化合物与壳聚糖水解酶的结合自由能和可逆抑制常数,结合步骤1)训练集中的化合物筛选结果制定筛选规则,建立筛选模型。
2.如权利要求1所述的筛选模型,其特征在于,所述的步骤1)进入训练集的组成化合物包含有2,4-二硝基苯甲醚(2,4-dinitro-1-fluorbenzene)、2-羟-5硝基苄溴(2-Hydroxy-5-nitrobenzyl bromide)、乙酸钠(Sodium acetate)、苯扎氯铵(benzalkoniumchloride)、乙酰亚胺酸乙酯(ethyl acetimidate)、乙二胺四乙酸二钠(EDTA)、葡糖胺(glucosamine)、盐酸胍(guanidinium hydrochloride)、半胱氨酸(cysteine)和碘乙酸(monoiodoacetate)。
3.如权利要求1所述的筛选模型,其特征在于,所述的步骤2)中的分子对接方法为利用REDUCE、Autodock Tools和Autodoc4共同完成。
4.如权利要求3所述的筛选模型,其特征在于,所述的步骤2)中的分子对接方法,首先为壳聚糖水解酶和抑制剂添加氢键和Gaussian电荷,再采用分子和壳聚糖水解酶活性位点区域完全柔性的对接方法。
5.如权利要求1所述的筛选模型,其特征在于,所述的步骤3)中筛选的规则如下:-6.000≤Ei≤-5.000,50≤Ki≤200。
6.如权利要求1所述的筛选模型,其特征在于,所述的筛选模型是一个有效的药效团模型,该模型具有2个疏水中心,以及3个氢键受体和5个给体。
7.一种筛选壳聚糖水解酶的可逆抑制保护剂的方法,其特征在于,所述的方法是使用权利要求1-6任一项所述的筛选模型来进行筛选。
8.如权利要求7所述的筛选方法,其特征在于,所述的方法是按照权利要求1-6任一项所述的筛选模型所制定的筛选规则对待筛选的化合物组成化合物池A,并进行排序打分,将化合物池A中的化合物按照理论结合自由能和理论可逆抑制常数重新排序,取排在前2000位的分子使用X-score打分函数联合打分,计算与靶蛋白的亲和力,取打分值大于5.0的化合物再组成化合物池B;获取化合物池B后,使用筛选模型进行拟合排序,筛选出壳聚糖水解酶的可逆抑制保护剂。
CN202011566935.8A 2020-12-25 2020-12-25 一种壳聚糖水解酶可逆抑制保护剂的筛选方法 Withdrawn CN112582021A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011566935.8A CN112582021A (zh) 2020-12-25 2020-12-25 一种壳聚糖水解酶可逆抑制保护剂的筛选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011566935.8A CN112582021A (zh) 2020-12-25 2020-12-25 一种壳聚糖水解酶可逆抑制保护剂的筛选方法

Publications (1)

Publication Number Publication Date
CN112582021A true CN112582021A (zh) 2021-03-30

Family

ID=75140656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011566935.8A Withdrawn CN112582021A (zh) 2020-12-25 2020-12-25 一种壳聚糖水解酶可逆抑制保护剂的筛选方法

Country Status (1)

Country Link
CN (1) CN112582021A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752653A (zh) * 2022-04-09 2022-07-15 翌圣生物科技(上海)股份有限公司 筛选酶分子稳定剂的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100240727A1 (en) * 2008-10-15 2010-09-23 Mahfouz Tarek M Model for Glutamate Racemase Inhibitors and Glutamate Racemase Antibacterial Agents
CN103646191A (zh) * 2013-12-24 2014-03-19 中国水产科学研究院黄海水产研究所 黄杆菌ys-80-122碱性金属蛋白酶小分子可逆抑制剂的虚拟筛选方法
CN108830041A (zh) * 2018-06-20 2018-11-16 安徽工程大学 一种α-葡萄糖苷酶抑制剂的虚拟筛选方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100240727A1 (en) * 2008-10-15 2010-09-23 Mahfouz Tarek M Model for Glutamate Racemase Inhibitors and Glutamate Racemase Antibacterial Agents
CN103646191A (zh) * 2013-12-24 2014-03-19 中国水产科学研究院黄海水产研究所 黄杆菌ys-80-122碱性金属蛋白酶小分子可逆抑制剂的虚拟筛选方法
CN108830041A (zh) * 2018-06-20 2018-11-16 安徽工程大学 一种α-葡萄糖苷酶抑制剂的虚拟筛选方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOFENG JI 等: "Virtual screening of novel reversible inhibitors for marine alkaline protease MP", 《ELSEVIER》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752653A (zh) * 2022-04-09 2022-07-15 翌圣生物科技(上海)股份有限公司 筛选酶分子稳定剂的方法

Similar Documents

Publication Publication Date Title
Kreger-van Rij The yeasts: a taxonomic study
Bezerra et al. Enzymatic kinetic of cellulose hydrolysis: inhibition by ethanol and cellobiose
WO2021108717A3 (en) Systems and methods for evaluating cas9-independent off-target editing of nucleic acids
Goldstein et al. The inhibition of enzymes by tannins
Aleshin et al. Refined crystal structures of glucoamylase from Aspergillus awamori var. X100
Kreger-van Rij Yeasts
Campos-Olivas et al. NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism
Mizunaga et al. Purification and characterization of yeast protein disulfide isomerase
Elzinga et al. Yeast mitochondrial NAD+-dependent isocitrate dehydrogenase is an RNA-binding protein
Guého et al. Evolutionary affinities of heterobasidiomycetous yeasts estimated from 18S and 25S ribosomal RNA sequence divergence
Manitchotpisit et al. Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans
Jaiswal et al. α-Amylase immobilization on gelatin: Optimization of process variables
Fusek et al. Extracellular aspartic proteinases from Candida albicans, Candida tropicalis, and Candida parapsilosis yeasts differ substantially in their specificities
Radler et al. Killer toxin of Hanseniaspora uvarum
CN112582021A (zh) 一种壳聚糖水解酶可逆抑制保护剂的筛选方法
WO2020088393A1 (zh) 一种生产具有蛋白酶抗性的洗涤用酶的方法
EP3484293B1 (en) Lactonase enzymes and methods of using same
Bailey et al. Gene duplication in salmonid fishes: evolution of a lactate dehydrogenase with an altered function
WO2023034870A3 (en) Compounds and methods for reducing dmpk expression
Gochenaur Fungi of a Long Island oak-birch forest II. Population dynamics and hydrolase patterns for the soil penicillia
Šuchová et al. Yeast GH30 xylanase from sugiyamaella lignohabitans is a glucuronoxylanase with auxiliary xylobiohydrolase activity
Kondo et al. Cloning and sequence analysis of the arginine deiminase gene from Mycoplasma arginini
CN105602934A (zh) 酿酒酵母染色体的转移方法
CN104614459B (zh) 一种快速酶解糖化白蛋白的方法
Chiba et al. Common sites for recombination and cleavage mediated by bacteriophage T4 DNA topoisomerase in vitro

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210330