CN112563880A - Green light source based on multifunctional fluorescent ceramic - Google Patents

Green light source based on multifunctional fluorescent ceramic Download PDF

Info

Publication number
CN112563880A
CN112563880A CN202011561206.3A CN202011561206A CN112563880A CN 112563880 A CN112563880 A CN 112563880A CN 202011561206 A CN202011561206 A CN 202011561206A CN 112563880 A CN112563880 A CN 112563880A
Authority
CN
China
Prior art keywords
fluorescent ceramic
green light
light source
ceramic
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011561206.3A
Other languages
Chinese (zh)
Other versions
CN112563880B (en
Inventor
陈浩
康健
邵岑
申冰磊
张永丽
罗泽
邱凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Original Assignee
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd filed Critical Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority to CN202011561206.3A priority Critical patent/CN112563880B/en
Publication of CN112563880A publication Critical patent/CN112563880A/en
Application granted granted Critical
Publication of CN112563880B publication Critical patent/CN112563880B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • H01S5/0609Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch acting on an absorbing region, e.g. wavelength convertors
    • H01S5/0611Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch acting on an absorbing region, e.g. wavelength convertors wavelength convertors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0057Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0267Integrated focusing lens
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The invention discloses a green light source based on multifunctional fluorescent ceramic, which comprises a laser, a heat dissipation substrate, a lens, an optical fiber, fluorescent ceramic and a shell. Blue light emitted by the laser enters the optical fiber through the lens in a coupling mode, the blue light is transmitted to the surface of the fluorescent ceramic through the optical fiber, the fluorescent ceramic is excited to become green light, and then the green light source with high brightness is output through shaping of the fluorescent ceramic. The fluorescent ceramic is in a plano-convex lens shape, integrates light emitting and shaping, saves lighting elements and has higher brightness.

Description

Green light source based on multifunctional fluorescent ceramic
Technical Field
The invention relates to the field of laser illumination, in particular to a green light source based on a multifunctional fluorescent ceramic material.
Background
Green light has wide applications in biology, industry, printing, medical treatment, storage, display, military and the like. To obtain a high brightness green light source, there are generally two schemes: the laser device adopts a green light semiconductor laser or combines the green light semiconductor laser and adopts a blue light laser excitation light conversion material. Both relate to the field of laser lighting.
In the first technical scheme, excellent laser spectrum and beam characteristics can be obtained, and high-energy green light output can be obtained. However, green lasers require a higher indium fraction than blue lasers; the main physical changes are induced, so that the lattice constant changes and the band gap is shortened, the light output power is reduced, and the price is high. If the optical output power is improved by adopting the scheme of combining optical fibers, the price and the cost are also improved, and the cost performance is not high. Meanwhile, the green light is laser, can only be used for laser medical treatment or laser projection after expanding the beam, and is not suitable for being applied to the general illumination field.
The second solution has significant advantages. The cost is low, and the process is simple; on the premise of keeping the stable luminescence of the light conversion material, the higher brightness can be obtained only by increasing the power of the blue laser. In recent years, domestic scholars develop the blue-light semiconductor laser following the world trend, the mass production is realized at present, and the cost is further reduced; meanwhile, the research on the light conversion materials in China is continuously expanded, and the mass production can be realized from fluorescent powder to fluorescent glass and then to fluorescent ceramic.
One of the fluorescence conversion schemes is to focus blue light with a lens for transmission to the surface of the fluorescent ceramic and then excite the fluorescent ceramic; the other is that the optical fiber conducts the blue laser light to the surface of the fluorescent ceramic, and then excites the fluorescent ceramic. Compared with the former, the scheme of conducting laser blue light by the optical fiber can separate the excitation source from the emission source, and carry out heat dissipation treatment independently; the relative position of the two can be adjusted at will, and the design flexibility is high. Meanwhile, the optical fiber directly guides out the blue light, and compared with a mode of focusing the blue light on the surface of the ceramic by adopting a lens, the system stability is better. However, the two schemes for fluorescence conversion have the following problems: 1) the optical system is still relatively complex; 2) aiming at the fluorescent ceramic, secondary optical design elements are also needed to be adopted to induce luminescence, and related heat dissipation devices are designed to stabilize the operation of devices. Therefore, the fluorescence conversion green light source needs to be further designed and extended to obtain a high-brightness green light source.
Disclosure of Invention
Aiming at the problems in the prior art, the invention provides a green light source for laser illumination based on multifunctional fluorescent ceramic, and the composition of a laser illumination light source system is simplified.
In order to achieve the purpose, the invention adopts the following technical scheme:
a green light source based on multifunctional fluorescent ceramic comprises a laser, a heat dissipation substrate, a lens, an optical fiber, fluorescent ceramic and a shell.
The fluorescent ceramic is in a plano-convex lens shape and integrates light emitting and shaping into a whole; the blue light emitted by the laser enters the optical fiber through the lens in a coupling mode, the blue light is transmitted to the surface of the fluorescent ceramic through the optical fiber, the fluorescent ceramic is excited to become green light, and the generated green light is shaped by the fluorescent ceramic to become parallel light beams.
Preferably, the wavelength emitted by the laser is 450-465 nm;
preferably, the heat dissipation substrate is made of red copper or aluminum;
preferably, the lens is one of a spherical lens and a graded index lens;
preferably, the fluorescent ceramic is Ce: LuAG fluorescent ceramic; the Ce doping concentration is 0.05-1.0 at%.
Preferably, the manufacturing method of the plano-convex lens type fluorescent ceramic is gel casting molding and vacuum sintering; namely the optical design is combined with the preparation process. The specific manufacturing steps are as follows:
proportioning according to the stoichiometric ratio of LuAG fluorescent ceramic with Ce doping concentration of 0.05-1.0 at%, and weighing Al2O3、Lu2O3、CeO2Adding absolute ethyl alcohol, an Isobam104 solution, ammonium citrate and a Polyethyleneimine (PEI) solution for ball milling; the ball milling medium is Al2O3And (3) performing ball milling for 2 hours at a ball milling rotation speed of 160-200 r/min to obtain mixed slurry. Wherein the absolute ethyl alcohol accounts for 1-1.5 times of the total mass of the raw material powder; the Isobam104 solution is 0.025-0.06 time of the total mass of the raw material powder; the ammonium citrate is 0.02-0.05 time of the total mass of the raw material powder.
And (5) gel injection molding. Pouring the slurry into a mold to obtain a ceramic biscuit; the mold is in the shape of a plano-convex lens.
And (3) drying: the temperature is 25-50 ℃, and the heat preservation time is 30 min.
Pre-burning: the temperature is 750-800 ℃, and the heat preservation time is 8 h.
And (3) vacuum sintering: the temperature is 1800-1820 ℃, and the heat preservation time is 8 h.
Annealing: the temperature is 1400-1450 ℃, and the heat preservation time is 12 h.
Polishing: the surface roughness Ra is 0.05-0.10.
The diameter phi of the finally obtained multifunctional fluorescent ceramic is 20-50 mm; the focal length f = 30-50 mm.
Preferably, the transmittance of the fluorescent ceramic at 555 nm is 80.0-84.8%.
Preferably, the shell is made of metal.
Compared with the prior art, the invention has the following beneficial effects:
1. by combining optical design with material preparation process, the ceramic material is designed into a device integrating multiple functions of fluorescence conversion, lens and beam shaping. The innovation is a combination process of the preparation process of the ceramic and the back-end application, and is a combination process of materials science and optics. In addition, the design greatly simplifies the constitution of the laser illumination light source system; after the optical fiber emits light, laser is excited by a point, and the generated green fluorescence can be directly used for illumination, so that the loss caused by the use of an optical device is greatly reduced.
2. Under the excitation of the blue light with small light spots, the high-transmittance fluorescent ceramic device has higher transmittance than a translucent or opaque fluorescent conversion device, and the scattering effect is correspondingly weakened, so that the light-emitting area of a light source is smaller, a light source with higher brightness is generated, and the shaping is easy.
3. The fluorescent ceramic has higher heat conductivity, and the surrounding ceramic can be used as a heat dissipation element for conducting heat generated by the luminous point, so that the metal heat sink design of the ceramic is omitted.
Drawings
FIGS. 1-2 are schematic diagrams of a green light source based on multifunctional fluorescent ceramics;
in the figure: 1 laser, 2 heat dissipation substrate, 3 lens, 4 optical fiber, 5 fluorescent ceramic and 6 shell.
Detailed Description
Example 1:
a laser display green light source based on multifunctional fluorescent ceramic is shown in figures 1 and 2 and comprises a laser 1, a heat dissipation substrate 2, a lens 3, an optical fiber 4, fluorescent ceramic 5 and a shell 6.
The wavelength emitted by the laser 1 is 450 nm; the heat dissipation substrate 2 is made of red copper; the lens 3 is a spherical lens; the fluorescent ceramic 5 is Ce-LuAG fluorescent ceramic, and the doping concentration of Ce is 0.05 at%; the housing 6 is a metal housing.
The fluorescent ceramic is in a plano-convex lens shape, and the manufacturing method is 'gel casting molding + vacuum sintering'; the preparation method comprises the following specific steps:
(1) proportioning according to the stoichiometric ratio of LuAG fluorescent ceramic with Ce doping concentration of 0.05 at%, and weighing Al2O3、Lu2O3、CeO2Adding absolute ethyl alcohol, an Isobam104 solution, ammonium citrate and a Polyethyleneimine (PEI) solution for ball milling; the ball milling medium is Al2O3And (4) performing ball milling for 2 hours at the ball milling rotating speed of 160 r/min to obtain mixed slurry. Wherein the absolute ethyl alcohol is taken as the total mass of the raw material powder1 time the amount; the Isobam104 solution is 0.025 times of the total mass of the raw material powder; the ammonium citrate is 0.02 time of the total mass of the raw material powder.
(2) Gel casting: pouring the slurry into a mold to obtain a ceramic biscuit; the mold is in the shape of a plano-convex lens.
(3) And (3) drying: the temperature is 25 ℃, and the heat preservation time is 30 min.
(4) Pre-burning: the temperature is 750 ℃, and the heat preservation time is 8 h.
(5) And (4) vacuum sintering. The temperature is 1800 ℃ and the heat preservation time is 8 h.
(6) Annealing: the temperature is 1400 ℃, and the heat preservation time is 12 h.
(7) Polishing: the surface roughness Ra was 0.05.
The diameter phi of the finally obtained lens type fluorescent ceramic is 20 mm; focal length f =30 mm; the transmittance at 555 nm is 80.0 percent, and the product meets the requirement of a lens type fluorescent ceramic device. Blue light emitted by the laser 1 is coupled into the optical fiber 4 through the lens 3, the blue light is transmitted to the surface of the fluorescent ceramic 5 through the optical fiber 4, the fluorescent ceramic 5 is excited to become green light, and the generated green light forms a high-brightness light spot at a position of 30 mm through the shaping of the fluorescent ceramic 5.
Example 2:
a laser display green light source based on multifunctional fluorescent ceramic comprises a laser, a heat dissipation substrate, a lens, an optical fiber, fluorescent ceramic and a shell.
The wavelength emitted by the laser is 465 nm; the heat dissipation substrate is made of aluminum; the lens is a graded index lens; the fluorescent ceramic is Ce: LuAG fluorescent ceramic; the doping concentration of Ce is 1.0 at%; the shell is a metal shell.
The fluorescent ceramic is in a plano-convex lens shape, and the manufacturing method is 'gel casting molding + vacuum sintering'; the preparation method comprises the following specific steps:
(1) proportioning according to the stoichiometric ratio of LuAG fluorescent ceramics with the Ce doping concentration of 1.0 at percent, and weighing Al2O3、Lu2O3、CeO2Adding absolute ethyl alcohol, an Isobam104 solution, ammonium citrate and a Polyethyleneimine (PEI) solution for ball milling; the ball milling medium is Al2O3The ball is a ball with a ball-shaped inner surface,the ball milling speed is 200 r/min, and the ball milling time is 2h, so that the mixed slurry is obtained. Wherein the absolute ethyl alcohol accounts for 1.5 times of the total mass of the raw material powder; the Isobam104 solution is 0.06 time of the total mass of the raw material powder; the ammonium citrate is 0.05 time of the total mass of the raw material powder.
(2) And (5) gel injection molding. Pouring the slurry into a mold to obtain a ceramic biscuit; the mold is in the shape of a plano-convex lens.
(3) And (3) drying: the temperature is 50 ℃, and the heat preservation time is 30 min.
(4) Pre-burning: the temperature is 800 ℃, and the heat preservation time is 8 h.
(4) And (3) vacuum sintering: the temperature is 1820 ℃, and the heat preservation time is 8 h.
(6) Annealing: the temperature is 1450 ℃, and the heat preservation time is 12 h.
(6) Polishing: the surface roughness Ra was 0.10.
The diameter phi of the finally obtained multifunctional fluorescent ceramic is 50 mm; focal length f =50 mm; a transmittance at 555 nm of 84.8%; satisfies the requirement of a lens type fluorescent ceramic device. Blue light emitted by the laser enters the optical fiber through the lens in a coupling mode, the blue light is transmitted to the surface of the fluorescent ceramic through the optical fiber, the fluorescent ceramic is excited to become green light, and the generated green light forms high-brightness light spots at the position of 50 mm through the shaping of the fluorescent ceramic.
Example 3:
a laser display green light source based on multifunctional fluorescent ceramic comprises a laser, a heat dissipation substrate, a lens, an optical fiber, fluorescent ceramic and a shell.
The wavelength emitted by the laser is 460 nm; the heat dissipation substrate is made of aluminum; the lens is a spherical lens; the fluorescent ceramic is Ce: LuAG fluorescent ceramic; the doping concentration of Ce is 0.1 at%; the shell is a metal shell.
The fluorescent ceramic is in a plano-convex lens shape, and the manufacturing method is 'gel casting molding + vacuum sintering'; the preparation method comprises the following specific steps:
(1) proportioning according to the stoichiometric ratio of LuAG fluorescent ceramics with Ce doping concentration of 0.1 at%, and weighing Al2O3、Lu2O3、CeO2Adding absolute ethyl alcohol, Isobam104 solution,Carrying out ball milling on ammonium citrate and Polyethyleneimine (PEI) solution; the ball milling medium is Al2O3And (4) performing ball milling for 2 hours at the ball milling rotating speed of 180 r/min to obtain mixed slurry. Wherein the absolute ethyl alcohol accounts for 1.2 times of the total mass of the raw material powder; the Isobam104 solution is 0.01 time of the total mass of the raw material powder; the ammonium citrate is 0.01 time of the total mass of the raw material powder.
(2) And (5) gel injection molding. Pouring the slurry into a mold to obtain a ceramic biscuit; the mold is in the shape of a plano-convex lens.
(3) And (3) drying: the temperature is 40 ℃, and the heat preservation time is 30 min.
(4) Pre-burning: the temperature is 780 ℃ and the heat preservation time is 8 h.
(4) And (3) vacuum sintering: the temperature is 1810 ℃ and the heat preservation time is 8 h.
(6) Annealing: the temperature is 1425 ℃, and the holding time is 12 h.
(6) Polishing: the surface roughness Ra was 0.07.
The diameter phi of the finally obtained multifunctional fluorescent ceramic is 40 mm; focal length f =40 mm; a transmittance at 555 nm of 84.8%; satisfies the requirement of a lens type fluorescent ceramic device. Blue light emitted by the laser enters the optical fiber through the lens in a coupling mode, the blue light is transmitted to the surface of the fluorescent ceramic through the optical fiber, the fluorescent ceramic is excited to become green light, and the generated green light forms high-brightness light spots at the position of 40 mm through shaping of the fluorescent ceramic.
Example 4:
a laser display green light source based on multifunctional fluorescent ceramic comprises a laser, a heat dissipation substrate, a lens, an optical fiber, fluorescent ceramic and a shell.
The wavelength emitted by the laser is 450 nm; the heat dissipation substrate is made of aluminum; the lens is a graded index lens; the fluorescent ceramic is Ce: LuAG fluorescent ceramic; the doping concentration of Ce is 1.0 at%; the shell is a metal shell.
The fluorescent ceramic is in a plano-convex lens shape, and the manufacturing method is 'gel casting molding + vacuum sintering'; the preparation method comprises the following specific steps:
(1) proportioning according to the stoichiometric ratio of LuAG fluorescent ceramics with the Ce doping concentration of 1.0 at percent, and weighing Al2O3、Lu2O3、CeO2Adding absolute ethyl alcohol, an Isobam104 solution, ammonium citrate and a Polyethyleneimine (PEI) solution for ball milling; the ball milling medium is Al2O3And (4) performing ball milling for 2 hours at the ball milling rotating speed of 200 r/min to obtain mixed slurry. Wherein the absolute ethyl alcohol accounts for 1.5 times of the total mass of the raw material powder; the Isobam104 solution is 0.01 time of the total mass of the raw material powder; the ammonium citrate is 0.06 time of the total mass of the raw material powder.
(2) Gel casting: pouring the slurry into a mold to obtain a ceramic biscuit; the mold is in the shape of a plano-convex lens.
(3) And (3) drying: the temperature is 50 ℃, and the heat preservation time is 30 min.
(4) Pre-burning: the temperature is 800 ℃, and the heat preservation time is 8 h.
(4) And (3) vacuum sintering: the temperature is 1790 ℃, and the heat preservation time is 8 h.
(6) Annealing: the temperature is 1450 ℃, and the heat preservation time is 12 h.
(6) And (6) polishing. The surface roughness Ra was 0.10.
The diameter phi of the finally obtained multifunctional fluorescent ceramic is 50 mm; focal length f =50 mm; the transmittance at 555 nm is 60%, which does not satisfy the requirement of a lens type fluorescent ceramic device. The main reason is that the content of ammonium citrate as a dispersant is too high, the activity of the powder is very strong, but the sintering temperature is too low, so that the optical quality of the ceramic is not high, and the lens type fluorescent ceramic device cannot be successfully prepared.
Blue light emitted by the laser enters the optical fiber through the lens in a coupling mode, the blue light is transmitted to the surface of the fluorescent ceramic through the optical fiber, the fluorescent ceramic is excited to become green light, the generated green light is diffused at a position of 50 mm through the shaping of the fluorescent ceramic, the convergence function is not realized, and high-brightness light spots cannot be obtained.

Claims (9)

1. A green light source based on multifunctional fluorescent ceramic is characterized by comprising a laser (1), a heat dissipation substrate (2), a lens (3), an optical fiber (4), fluorescent ceramic (5) and a shell (6);
the fluorescent ceramic (5) is in a plano-convex lens shape and integrates light emitting and shaping into a whole; blue light emitted by the laser (1) is coupled into the optical fiber (4) through the lens (3), the blue light is transmitted to the surface of the fluorescent ceramic (5) through the optical fiber (4), the fluorescent ceramic (5) is excited to become green light, and then the high-brightness green light source is obtained through shaping of the fluorescent ceramic (5).
2. The green light source based on multifunctional fluorescent ceramic as claimed in claim 1, characterized in that the wavelength emitted by the laser (1) is 450-465 nm.
3. The green light source based on multifunctional fluorescent ceramic as claimed in claim 1, wherein the heat dissipation substrate (2) is made of red copper or aluminum.
4. The multifunctional fluorescent ceramic-based green light source of claim 1, wherein the lens (3) is one of a spherical lens and a graded index lens.
5. The green light source based on multifunctional fluorescent ceramic according to claim 1, wherein the fluorescent ceramic (5) is a Ce: LuAG fluorescent ceramic; the Ce doping concentration is 0.05-1.0 at%.
6. The green light source based on multifunctional fluorescent ceramic of claim 5, characterized in that the fluorescent ceramic (5) is prepared by the following steps:
(1) weighing Al in stoichiometric ratio2O3、Lu2O3、CeO2Adding absolute ethyl alcohol, an Isobam104 solution, ammonium citrate and a polyethyleneimine solution for ball milling; the ball milling medium is Al2O3Ball milling is carried out for 2 hours at the ball milling rotation speed of 160-200 r/min, so as to obtain mixed slurry; wherein the absolute ethyl alcohol accounts for 1-1.5 times of the total mass of the raw material powder; the Isobam104 solution is 0.025-0.06 time of the total mass of the raw material powder; ammonium citrate is 0.02-0.05 times of the total mass of the raw material powder;
(2) gel casting: pouring the slurry into a mold to obtain a ceramic biscuit; the mould is in a plano-convex lens shape;
(3) and (3) drying: the temperature is 25-50 ℃, and the heat preservation time is 30 min;
(4) pre-burning: the temperature is 750-800 ℃, and the heat preservation time is 8 h;
(5) and (3) vacuum sintering: the temperature is 1800-1820 ℃, and the heat preservation time is 8 h;
(6) annealing: the temperature is 1400-1450 ℃, and the heat preservation time is 12 h;
(7) polishing: the surface roughness Ra is 0.05-0.10, and the fluorescent ceramic (5) is obtained.
7. The green light source based on multifunctional fluorescent ceramic of claim 1, wherein the diameter Φ of the fluorescent ceramic (5) is 20-50 mm; the focal length f = 30-50 mm.
8. The green light source based on the multifunctional fluorescent ceramic of claim 1, wherein the fluorescent ceramic (5) has a transmittance of 80.0-84.8% at 555 nm.
9. The green light source based on multifunctional fluorescent ceramic of claim 1, characterized in that the housing (6) is made of metal.
CN202011561206.3A 2020-12-25 2020-12-25 Green light source based on multifunctional fluorescent ceramic Active CN112563880B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011561206.3A CN112563880B (en) 2020-12-25 2020-12-25 Green light source based on multifunctional fluorescent ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011561206.3A CN112563880B (en) 2020-12-25 2020-12-25 Green light source based on multifunctional fluorescent ceramic

Publications (2)

Publication Number Publication Date
CN112563880A true CN112563880A (en) 2021-03-26
CN112563880B CN112563880B (en) 2022-08-26

Family

ID=75032651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011561206.3A Active CN112563880B (en) 2020-12-25 2020-12-25 Green light source based on multifunctional fluorescent ceramic

Country Status (1)

Country Link
CN (1) CN112563880B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751630A (en) * 2022-05-21 2022-07-15 南通大学 Fluorescent glass preparation method based on gel casting technology
CN116332646A (en) * 2023-04-11 2023-06-27 江苏师范大学 High-light-efficiency fluorescent composite ceramic for laser illumination and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202423281U (en) * 2011-09-22 2012-09-05 华南师范大学 Fluorescence transparent ceramic lens packaged white light LED
CN107298582A (en) * 2017-06-30 2017-10-27 深圳市点睛创视技术有限公司 A kind of ceramic material and preparation method thereof and fluorescence ceramics device
CN108395222A (en) * 2018-03-15 2018-08-14 江苏瓷光光电有限公司 A kind of reflective laser, which is shown, uses up conversion, heat-radiating integrated ceramic material and preparation method thereof
CN108516818A (en) * 2018-05-25 2018-09-11 江苏师范大学 A method of YAG crystalline ceramics is prepared based on improved Isobam gel rubber systems
CN110911960A (en) * 2019-12-02 2020-03-24 江苏师范大学 Laser lighting and display device based on fluorescent ceramic rod
CN111253153A (en) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 Method for preparing toughened large-size ultrathin YAG transparent ceramic biscuit based on Isodam gel system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202423281U (en) * 2011-09-22 2012-09-05 华南师范大学 Fluorescence transparent ceramic lens packaged white light LED
CN107298582A (en) * 2017-06-30 2017-10-27 深圳市点睛创视技术有限公司 A kind of ceramic material and preparation method thereof and fluorescence ceramics device
CN108395222A (en) * 2018-03-15 2018-08-14 江苏瓷光光电有限公司 A kind of reflective laser, which is shown, uses up conversion, heat-radiating integrated ceramic material and preparation method thereof
CN108516818A (en) * 2018-05-25 2018-09-11 江苏师范大学 A method of YAG crystalline ceramics is prepared based on improved Isobam gel rubber systems
CN110911960A (en) * 2019-12-02 2020-03-24 江苏师范大学 Laser lighting and display device based on fluorescent ceramic rod
CN111253153A (en) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 Method for preparing toughened large-size ultrathin YAG transparent ceramic biscuit based on Isodam gel system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751630A (en) * 2022-05-21 2022-07-15 南通大学 Fluorescent glass preparation method based on gel casting technology
CN114751630B (en) * 2022-05-21 2023-12-22 南通大学 Fluorescent glass preparation method based on gel casting technology
CN116332646A (en) * 2023-04-11 2023-06-27 江苏师范大学 High-light-efficiency fluorescent composite ceramic for laser illumination and preparation method thereof

Also Published As

Publication number Publication date
CN112563880B (en) 2022-08-26

Similar Documents

Publication Publication Date Title
CN112563880B (en) Green light source based on multifunctional fluorescent ceramic
CN112759396A (en) Rod-shaped fluorescent ceramic and preparation method and application thereof
CN108689712B (en) Integrated composite ceramic phosphor and preparation method thereof
US20070012887A1 (en) Solid-state light source
Yang et al. Recent progress on garnet phosphor ceramics for high power solid-state lighting
WO2017211135A1 (en) Light-emitting ceramic
CN109896853B (en) Ceramic composite with lower expansion coefficient, preparation method and light source device
Zhang et al. High lumen density of Al2O3‐LuAG: Ce composite ceramic for high‐brightness display
CN110395910A (en) A kind of fluorescent glass and preparation method thereof for laser lighting
JP2008231218A (en) Phosphor material and white light-emitting diode
CN103395997A (en) Rare earth doped transparent glass ceramic for white-light LED (Light-emitting Diode) and preparation method thereof
CN106986626B (en) Hydroxyapatite-based fluorescent ceramic material and preparation method thereof
CN110911960A (en) Laser lighting and display device based on fluorescent ceramic rod
CN109923446A (en) Light wavelength conversion component and light emitting device
US20160139300A1 (en) Method for producing a low temperature glass phosphor lens and a lens produced by the same
CN108395222B (en) Light conversion and heat dissipation integrated ceramic material for reflective laser display and preparation method thereof
JP6591951B2 (en) Light wavelength conversion member and light emitting device
JP4916469B2 (en) Phosphor
CN107689554A (en) A kind of Wavelength converter and preparation method thereof, light-emitting device and projection arrangement
CN107065066B (en) A kind of structure of more clad silica fibers
WO2014188847A1 (en) Broadband emission material and white light emission material
CN109987932A (en) Complex phase fluorescence ceramics, preparation method and light supply apparatus for white-light illuminating
CN110989278A (en) Optical fiber conduction green light source and all-fiber laser backlight source device
CN115925409A (en) High-luminous-efficiency high-color-rendering-index composite fluorescent ceramic optical fiber and preparation method thereof
JP5509997B2 (en) Method for producing ceramic composite for light conversion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant