CN112557781A - 一种适用于校准器的宽频域信号测量方法 - Google Patents

一种适用于校准器的宽频域信号测量方法 Download PDF

Info

Publication number
CN112557781A
CN112557781A CN202011132074.2A CN202011132074A CN112557781A CN 112557781 A CN112557781 A CN 112557781A CN 202011132074 A CN202011132074 A CN 202011132074A CN 112557781 A CN112557781 A CN 112557781A
Authority
CN
China
Prior art keywords
signal
harmonic
frequency
spectral line
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011132074.2A
Other languages
English (en)
Inventor
阚骁骢
危国恩
蔡燕春
林杰
刘灏
毕天姝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
North China Electric Power University
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University, Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical North China Electric Power University
Priority to CN202011132074.2A priority Critical patent/CN112557781A/zh
Publication of CN112557781A publication Critical patent/CN112557781A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents

Abstract

本发明公开了一种适用于校准器的宽频域信号测量方法,首先对待测的电力信号提取时间窗长为T的数据;利用基于谱线拟合的谐波间谐波测量方法对提取数据进行计算,得到信号中各成分的幅值、相角、频率;再对前后1s谐波间谐波测量结果进行比较,对宽频信号进行静动态识别;若识别结果为静态,则提取更长时间窗T'的数据,再利用基于谱线拟合的谐波间谐波测量方法进行计算;若步骤三的识别结果为动态,则利用基于复序列带通滤波器的相量测量方法对所提数据进行重新计算,得到信号中各成分的幅值、相角、频率。利用该方法可以实现在含有多频率分量的复杂电力信号情况下,得到高精度的宽频测量结果,从而具有为宽频测量装置提供基准值的条件。

Description

一种适用于校准器的宽频域信号测量方法
技术领域
本发明涉及电力系统宽频信号测量技术领域,尤其涉及一种适用于校准器的宽频域信号测量方法。
背景技术
可再生能源大规模利用给电网注入了大量电力电子装备,使得电网中出现了大量的间谐波和高次谐波等宽频信号,这给应用于电网中的测量装置提出了监测范围要更迫切的需求。比相量测量单元(PMU)功能更全面的宽频测量装置亟需得以现场安装。同PMU装置需要通过PMU静动态测试系统进行严格的功能检测,为了保证宽频测量装置在投运后能够满足宽频信号的量测指标需求,有必要研发宽频装置测试系统,并针对宽频装置的量测精度进行全面和严格的测试。
现有的测试系统可以分为两类,一种是基于高精度信号源的测试系统,另一种是基于高精度校准器的测试系统。基于高精度信号源的测试系统对信号源的精度要求很高,而实际信号源存在功放延迟、硬件老化等问题。相比之下,基于高精度校准器的测试系统摆脱了对信号源的依赖性,校准器和待测装置会同时对发出的信号进行测量,因此这种测试系统的关键在于校准器的精度。为了实现对宽频测量装置实现测试校准,校准器需要具有一套高精度的宽频测量算法。
目前已有不少学者对谐波/间谐波测量方法进行了研究,现有算法在测量方法都存在一定的缺陷,没有一种能对静动态宽频信号进行高精度测量的方法。
发明目的
本发明的目的是提供一种适用于校准器的宽频域信号测量方法,利用该方法可以实现复杂的宽频域信号测量,计算出高精度的精准值,为宽频测量装置的测试校准提供基础。
发明内容
本发明提供了一种适用于校准器的宽频域信号测量方法,包括以下步骤:
步骤一、对待测的电力信号提取时间窗长为T的数据;
步骤二、利用基于谱线拟合的谐波间谐波测量方法对步骤一所提取的数据进行计算,得到电力信号中各成分的幅值、相角、频率;
步骤三、对前后1s谐波间谐波测量结果进行比较,对宽频信号进行静动态识别;
步骤四、若步骤三的识别结果为静态,则提取更长时间窗T'的数据,再利用基于谱线拟合的谐波间谐波测量方法进行计算;
步骤五、若步骤三的识别结果为动态,则利用基于复序列带通滤波器的相量测量方法对所提数据进行重新计算,得到信号中各成分的幅值、相角、频率。
进一步地,步骤一中所述时间窗长为T的数据指对于原始信号x(t)进行采样后,提取出窗长为T的采样序列,表示为:
Figure RE-GDA0002943697430000021
式中,X(tk)为窗长T内电力信号采样数据组成的序列,tk为时间窗窗中时刻, fs为采样率,N为窗长T/2对应的数据长度,x(tk)为当前时刻的采样值。
再进一步地,步骤二中所述基于谱线拟合的谐波间谐波测量方法具体为:
对采样序列进行快速傅里叶变换得到对应频谱图中的离散谱线,谱线之间的间隔Δf与数据窗长T的关系如下所示:
Figure RE-GDA0002943697430000022
通过对离散谱线进行曲线拟合,在确定频谱中的峰值位置后,用峰值结果来表示谐波间谐波的结果,谱线的曲线拟合表达式如下:
Figure RE-GDA0002943697430000031
式中,Xn'表示第n条谱线对应的幅值,[p0,p1,…,pk]T为多项式系数,在已知谱线幅值的基础上,通过最小二乘法求解出多项式系数,即可得到谱线幅值与频率的多项式表达式,通过求出多项式在整个频谱范围内的所有极大值点位置,即可得到信号中每个成分的幅值A和频率f。
再进一步地,电力信号中各成分的相角通过频率关系进行计算,如下所示:
Figure RE-GDA0002943697430000032
式中,fr和fl为分别为极大值右侧最近谱线和左侧最近谱线对应的频率,
Figure RE-GDA0002943697430000033
Figure RE-GDA0002943697430000034
为谱线对应的相角,
Figure RE-GDA0002943697430000035
的确定方法如下:
Figure RE-GDA0002943697430000036
更进一步地,步骤三中所述对信号进行静动态识别的具体方法为:对比前后1s的谱线拟合计算结果,如果前后1s的谐波间谐波幅值相差超过0.2%或者频率相差超过0.1Hz,则认为此刻时间窗T内的信号为动态信号,否则为静态信号。
再更进一步地,步骤五中所述基于复序列带通滤波器的相量测量方法具体为:
取实序列低通数字滤波器系数为hl(k),将其频域平移f Hz,得到复序列带通数字滤波器系数h(k)为:
h(k)=hl(k)e-j2πfT(k)0≤k≤2N,
式中,T(k)为时标打在窗中的时间相量,T(k)表达式为:
Figure RE-GDA0002943697430000037
利用复序列带通滤波器系数对采样序列X(tk)进行滤波,得到电力信号中频率为f的正频分量,如下所示:
Figure RE-GDA0002943697430000041
式中,
Figure RE-GDA0002943697430000042
表示频率为f的正频分量;
Figure RE-GDA0002943697430000043
的基础上获得相角相量如下所示:
Figure RE-GDA0002943697430000044
在求解出相角的基础上,通过最小二乘法求解出频率,具体为:
将步骤二中基于谱线拟合的谐波间谐波测量方法求解出的谐波间谐波频率作为初值,得到复序列带通滤波器系数后,滤波修正后的结果即相量,从而得到动态信号中各成分的幅值、相角、频率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例所提供一种适用于校准器的宽频域信号测量方法流程示意图;
图2为本发明实施例提供的宽频信号静动态识别方法示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面对本发明所提供的一种适用于校准器的宽频域信号测量方法进行详细描述。本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
如图1所示,一种适用于校准器的宽频域信号测量方法,可以包括以下步骤:
步骤一、对待测的电力信号提取时间窗长为T的数据;
步骤二、利用基于谱线拟合的谐波间谐波测量方法对提取数据进行计算,得到信号中各成分的幅值、相角、频率;
步骤三、对前后1s谐波间谐波测量结果进行比较,对宽频信号进行静动态识别;
步骤四、若步骤三的识别结果为静态,则提取更长时间窗T'的数据,再利用基于谱线拟合的谐波间谐波测量方法进行计算;
步骤五、若步骤三的识别结果为动态,则利用基于复序列带通滤波器的相量测量方法对所提数据进行重新计算,得到信号中各成分的幅值、相角、频率。
具体地,该适用于校准器的宽频域信号测量方法包括以下实施方案:
(1)步骤一中所述时间窗长为T的数据,具体来说:
对于原始信号x(t),对信号进行采样后,提取出窗长为T的采样序列可以表示如下
Figure RE-GDA0002943697430000051
式中,X(tk)为窗长T内电力信号采样数据组成的序列,tk为时间窗窗中时刻, fs为采样率,N为窗长T/2对应的数据长度,x(tk)为当前时刻的采样值。因此X(tk) 表示时标打在窗中的采样序列,在后续步骤中测量前后不会出现信号的相移。
(2)步骤二中所述基于谱线拟合的谐波间谐波测量方法,具体来说:
对采样序列进行快速傅里叶变换可以得到对应频谱图中的离散谱线,然而谱线之间的间隔Δf受到数据窗长T的影响,关系式如下
Figure RE-GDA0002943697430000061
因此,当间谐波的频率不是Δf的整数倍时,直接用快速傅里叶变换的计算结果误差较大。为了提高测量精度,可以通过对谱线进行曲线拟合,在确定频谱中的峰值位置后,可以用峰值结果来表示谐波间谐波的结果。谱线的曲线拟合表达式如下:
Figure RE-GDA0002943697430000062
式中,Xn'表示第n条谱线对应的幅值,[p0,p1,…,pk]T为多项式系数。在已知谱线幅值的基础上,可以通过最小二乘法求解出多项式系数。
在求解出多项式系数后,即可得到谱线幅值与频率的多项式表达式。通过求出多项式在整个频谱范围内的所有极大值点位置,即可得到信号中每个成分的幅值A和频率f。
信号中各成分的相角可以通过频率关系进行计算如下
Figure RE-GDA0002943697430000063
式中,fr和fl为分别为极大值右侧最近谱线和左侧最近谱线对应的频率,
Figure RE-GDA0002943697430000064
Figure RE-GDA0002943697430000065
为谱线对应的相角,
Figure RE-GDA0002943697430000066
的确定方法如下
Figure RE-GDA0002943697430000067
因此,通过谱线拟合的方法,可以求出信号中谐波间谐波的幅频、相角、频率。
(3)步骤三中所述对信号进行静动态识别,具体来说:
静动态识别的具体方法为对比前后1s的谱线拟合计算结果,如果前后1s的谐波间谐波幅值相差超过0.2%或者频率相差超过0.1Hz,则认为此刻时间窗T内的信号为动态信号,否则为静态信号。静动态识别的具体步骤可见图2。
(4)步骤五中所述基于复序列带通滤波器的相量测量方法,具体来说:
同步相量的计算可以通过先设计一组复序列带通滤波器,利用这种滤波器将电力信号中其他分量滤除,仅保留正频分量,这样可以实现相量的动态测量。可以看出基于复序列带通滤波器的相量测量方法能够对静动态信号进行有效测量,相比于基于谱线拟合的测量方法,有明显的优势,但计算量相对较大。
设计复序列带通数字滤波器可以通过对实序列低通数字滤波器在频域进行平移。取实序列低通数字滤波器系数为hl(k),为了滤出频率f的正频分量,需将滤波器在频域平移f Hz,得到的复序列带通数字滤波器系数h(k)为
h(k)=hl(k)e-j2πfT(k)0≤k≤2N
式中,T(k)为时标打在窗中的时间相量,T(k)表达式为
Figure RE-GDA0002943697430000071
利用复序列带通滤波器系数对采样序列X(tk)进行滤波,就可以得到电力信号中频率为f的正频分量,如下所示
Figure RE-GDA0002943697430000072
式中,
Figure RE-GDA0002943697430000073
表示频率为f的正频分量。在
Figure RE-GDA0002943697430000074
的基础上可以获得相量如下
Figure RE-GDA0002943697430000075
在求解出相角的基础上,可以通过最小二乘法求解出频率。
将步骤二中基于谱线拟合的谐波间谐波测量方法求解出的谐波间谐波频率作为初值,得到复序列带通滤波器系数后,滤波修正后的结果就是相量,因此基于复序列带通滤波器的相量测量方法可以得到动态信号中各成分的幅值、相角、频率。
因此上述一种适用于校准器的宽频域信号测量方法可以实现高精度的相量测量,可以通过实际需求调整时间窗长和滤波器特性来保证测量结果的精度。
为了更加清晰地展现出本发明所提供的技术方案及所产生的技术效果,下面以仿真测试实例对本发明所提供的一种适用于校准器的宽频域信号测量方法进行详细描述。
仿真测试实例
下面以仿真测试对所提宽频域信号测量方法的有效性进行验证,包括稳态测试、动态测试,具体可以包括以下内容:
1、稳态测试
先定义稳态测试信号参数如表1。仿真测试时取fs=10kHz,时间窗长T=1s,时间窗长T'=5s,滤波器阶数为10000阶。
表1稳态测试信号参数
Figure RE-GDA0002943697430000081
当信号如表1所示时,宽频信号的静动态识别结果为静态,因此会利用基于谱线拟合的谐波间谐波测量方法对窗长为5s宽频信号进行测量。测量误差如表2 所示
表2稳态信号测量误差
Figure RE-GDA0002943697430000082
Figure RE-GDA0002943697430000091
在表2中,现有的标准没有关于谐波间谐波的频率误差和相角误差要求。误差结果中,频率误差都在10-6数量级以上,幅值误差都低于0.001%,相角误差都低于0.0002°,可见所提算法在静态测试的精度较好。
2、动态测试
在实际的复杂电力信号中,通常会出现动态变化的情况,因此有必要进行宽频信号的动态测试。参考基波相量的动态测试中需要考虑幅值调制、相角调制和频率斜坡测试,同样地,对宽频信号展开测试。
对表1中的每个信号加入动态变化过程,则宽频信号的静动态识别结果为动态,会利用基于复序列滤波器的相量测量方法对宽频信号进行测量。测量误差如表3所示。
表3动态信号测量误差
Figure RE-GDA0002943697430000092
在表3中,取基波相量动态测试的误差标准作为谐波间谐波的误差标准。从误差结果可以看出,所提方法在动态信号的测量精度高出现有标准两个数量级。
综上所述,本发明提供的设计方法可以实现在含有多频率分量的复杂电力信号情况下,得到高精度的宽频测量结果,从而具有为宽频测量装置提供基准值的条件。利用本发明所述方法可以实现在含有多频率分量的复杂电力信号情况下,得到精度高于现有标准两个数量级以上的测量结果,从而具有为宽频测量装置提供基准值的条件。
本领域技术人员应该理解,以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (4)

1.一种适用于校准器的宽频域信号测量方法,其特征在于,包括以下步骤:
步骤一、对待测的电力信号提取时间窗长为T的数据;
步骤二、利用基于谱线拟合的谐波间谐波测量方法对步骤一所提取的数据进行计算,得到电力信号中各成分的幅值、相角、频率;
步骤三、对前后1s谐波间谐波测量结果进行比较,对宽频信号进行静动态识别;
步骤四、若步骤三的识别结果为静态,则提取更长时间窗T'的数据,再利用基于谱线拟合的谐波间谐波测量方法进行计算;
步骤五、若步骤三的识别结果为动态,则利用基于复序列带通滤波器的相量测量方法对所提数据进行重新计算,得到信号中各成分的幅值、相角、频率。
2.根据权利要求1所述的适用于校准器的宽频域信号测量方法,其特征在于,步骤一中所述时间窗长为T的数据指对于原始信号x(t)进行采样后,提取出窗长为T的采样序列,表示为:
Figure FDA0002735490680000011
式中,X(tk)为窗长T内电力信号采样数据组成的序列,tk为时间窗窗中时刻,fs为采样率,N为窗长T/2对应的数据长度,x(tk)为当前时刻的采样值。
3.根据权利要求2所述的适用于校准器的宽频域信号测量方法,其特征在于,步骤二中所述基于谱线拟合的谐波间谐波测量方法具体为:
对采样序列进行快速傅里叶变换得到对应频谱图中的离散谱线,谱线之间的间隔Δf与数据窗长T的关系如下所示:
Figure FDA0002735490680000021
通过对离散谱线进行曲线拟合,在确定频谱中的峰值位置后,用峰值结果来表示谐波间谐波的结果,谱线的曲线拟合表达式如下:
Figure FDA0002735490680000022
式中,Xn'表示第n条谱线对应的幅值,[p0,p1,…,pk]T为多项式系数,在已知谱线幅值的基础上,通过最小二乘法求解出多项式系数,即可得到谱线幅值与频率的多项式表达式,通过求出多项式在整个频谱范围内的所有极大值点位置,即可得到信号中每个成分的幅值A和频率f。
4.根据权利要求3所述的适用于校准器的宽频域信号测量方法,其特征在于,步骤三中所述对信号进行静动态识别的具体方法为:对比前后1s的谱线拟合计算结果,如果前后1s的谐波间谐波幅值相差超过0.2%或者频率相差超过0.1Hz,则认为此刻时间窗T内的信号为动态信号,否则为静态信号。
CN202011132074.2A 2020-10-21 2020-10-21 一种适用于校准器的宽频域信号测量方法 Pending CN112557781A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011132074.2A CN112557781A (zh) 2020-10-21 2020-10-21 一种适用于校准器的宽频域信号测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011132074.2A CN112557781A (zh) 2020-10-21 2020-10-21 一种适用于校准器的宽频域信号测量方法

Publications (1)

Publication Number Publication Date
CN112557781A true CN112557781A (zh) 2021-03-26

Family

ID=75041349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011132074.2A Pending CN112557781A (zh) 2020-10-21 2020-10-21 一种适用于校准器的宽频域信号测量方法

Country Status (1)

Country Link
CN (1) CN112557781A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079248A1 (en) * 2012-05-04 2014-03-20 Kaonyx Labs LLC Systems and Methods for Source Signal Separation
CN103809023A (zh) * 2014-01-26 2014-05-21 西南交通大学 基于二分搜索的电网同步谐波相量测量方法
CN107345984A (zh) * 2017-06-23 2017-11-14 华北电力大学 一种基于信号识别的自适应同步相量测量方法
CN108490257A (zh) * 2018-03-26 2018-09-04 华北电力大学 一种基于频谱曲线拟合的短时窗间谐波测量方法
CN110389312A (zh) * 2019-07-17 2019-10-29 华北电力大学 一种适用于现场pmu测试的校准器相量测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079248A1 (en) * 2012-05-04 2014-03-20 Kaonyx Labs LLC Systems and Methods for Source Signal Separation
CN103809023A (zh) * 2014-01-26 2014-05-21 西南交通大学 基于二分搜索的电网同步谐波相量测量方法
CN107345984A (zh) * 2017-06-23 2017-11-14 华北电力大学 一种基于信号识别的自适应同步相量测量方法
CN108490257A (zh) * 2018-03-26 2018-09-04 华北电力大学 一种基于频谱曲线拟合的短时窗间谐波测量方法
CN110389312A (zh) * 2019-07-17 2019-10-29 华北电力大学 一种适用于现场pmu测试的校准器相量测量方法

Similar Documents

Publication Publication Date Title
CN110161421B (zh) 一种在线重构设定频率范围内电池阻抗的方法
WO2016138764A1 (zh) 一种提升pmu同步相量测量精度的方法
Crotti et al. Frequency response of MV voltage transformer under actual waveforms
CN110389312B (zh) 一种适用于现场pmu测试的校准器相量测量方法
CN101701984A (zh) 基于三项系数Nuttall窗插值FFT的基波与谐波检测方法
CN110967658B (zh) 一种基于数字微差法的模拟量输入合并单元校验仪溯源的方法
CN102868402A (zh) 一种测试模数转换器主要性能指标的测试方法
CN108896944B (zh) 一种同步测量装置实验室校准仪及其同步相量测量方法
CN103983849A (zh) 一种实时高精度的电力谐波分析方法
US20050021254A1 (en) Method and apparatus for determining the complex impedance of an electrical component
Kitzig et al. Evaluation of power quality measurement system concept using an experimental setup
US6396287B1 (en) Process for measuring output harmonic relative to output fundamental with enhanced accuracy
CN112213560A (zh) 一种基于z-adaline的高精度电网宽频信号测量方法
CN112557781A (zh) 一种适用于校准器的宽频域信号测量方法
Rodrigues et al. Low-cost embedded measurement system for power quality frequency monitoring
KR101997633B1 (ko) Teo 및 desa를 이용한 자동 동기화 파라미터 측정 장치
CN111367157B (zh) 一种多路比相测量系统及方法
Meyur et al. A LabVIEW based test system to characterize phasor measurement units
Radil et al. Power quality detection and classification method for IEC 61000-4-30 Class A instruments
US9759751B1 (en) Line cycle correlated spectral analysis for power measurement systems
CN106872777B (zh) 一种谐波和间谐波分离分析方法
CN112068061A (zh) 一种电子式互感器误差测量装置及方法
Marais et al. Reduction of static electricity meter errors by broadband compensation of voltage and current channel differences
CN117169590B (zh) 一种基于软件变采样率的电力谐波分析的方法和装置
Liu et al. An approach to power system harmonic analysis based on triple-line interpolation discrete Fourier transform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination