CN112551495A - 一种磷酸生产过程的优化方法及优化装置 - Google Patents

一种磷酸生产过程的优化方法及优化装置 Download PDF

Info

Publication number
CN112551495A
CN112551495A CN202011577453.2A CN202011577453A CN112551495A CN 112551495 A CN112551495 A CN 112551495A CN 202011577453 A CN202011577453 A CN 202011577453A CN 112551495 A CN112551495 A CN 112551495A
Authority
CN
China
Prior art keywords
model
optimization
phosphoric acid
constraint
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011577453.2A
Other languages
English (en)
Inventor
肖炘
曾玉娇
杨刚
陆冬云
聂亚玲
朱闽
耿爱东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN202011577453.2A priority Critical patent/CN112551495A/zh
Publication of CN112551495A publication Critical patent/CN112551495A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • C01B25/222Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen
    • C01B25/228Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen one form of calcium sulfate being formed and then converted to another form
    • C01B25/229Hemihydrate-dihydrate process
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明提供一种磷酸生产过程的优化方法及优化装置,所述优化方法对半水反应过程、一次固液分离过程、晶型转化过程和二次固液分离过程各装置构建生产单元机理模型;以经济效益最大为优化目标,操作参数为决策变量,在约束条件下构建全流程生产操作优化模型;求解所述优化模型得到较优的决策变量,充分发挥现有生产流程的潜能,提高企业整体经济效益,对提升整个流程生产运行水平具有重要实际意义。

Description

一种磷酸生产过程的优化方法及优化装置
技术领域
本发明涉及磷酸生产技术领域,尤其涉及一种磷酸生产过程的优化方法及优化装置。
背景技术
磷酸是重要的化工原料,不仅是高浓度肥料的主要原料,也是制造多种精细磷酸盐产品的中间原料。磷酸生产工艺可分为湿法磷酸和热法磷酸。热法磷酸工艺由于能耗高、生产成本较大,为此国内外主要选择湿法磷酸工艺处理磷精矿。
湿法磷酸工艺又可分为半水法、二水法、半水-二水法和二水-半水法。其中二水法由于技术成熟、操作稳定可靠、对矿石的适应性强等优点,在我国湿法磷酸工艺中居于主导地位,约占总磷酸的80%。然而,二水法磷酸工艺依然存在能耗高、磷收率低、磷石膏综合利用困难等瓶颈问题。
近年来围绕节能减排,我国湿法磷酸生产企业相继引进或消化吸收半水-二水法,该工艺具有磷回收率高、所生产磷酸浓度高、能耗低、磷石膏质量好、污染排放少等诸多优点。
但是由于缺乏半水-二水再结晶过程中的酸解机制、结晶和水化相变规律的深入理解,当前整个流程的生产操作、控制与决策仍然很大程度依赖知识经验来完成,导致操作成本高、效率低、资源能源消耗大、产品质量不稳等问题,生产过程的模拟与优化操作是解决当前磷酸工业资源利用率低、控制难问题的核心。
当前,国内外对磷酸生产工艺的节能和优化主要集中于单体设备或单一工序,以解决局部优化与控制问题,如磷酸反应槽及结晶过程的模拟和设备优化为主,并未广泛实施统筹资源、能源利用及工艺参数的系统设定方法,这种仅考虑单一设备或工序得到的只是局部优化方案,难以保证全局的最优平衡效果,显然无法支撑企业实现生产成本最小,即经济效益最大的需求。
因此,需要建立一个能准确描述从原料到产品的半水-二水法磷酸生产过程全流程模型,实现磷酸生产全流程的协同优化控制与智能优化运行提供模型和方法基础,从而促进湿法磷酸工业的智能化发展。
发明内容
鉴于现有技术中存在的问题,本发明提供一种磷酸生产过程的优化方法及优化装置,所述优化方法实现了磷酸生产从原料到产品整个工艺流程的模拟与工艺操作参数的全局优化设定,充分发挥了现有生产流程的潜能,提高了企业整体经济效益,能够为提高整个流程生产运行水平提供重要参考依据。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供一种磷酸生产过程的优化方法,所述优化方法包括如下步骤:
(1)根据磷酸生产中的工艺数据,对机理模型中的经验参数进行校正;所述磷酸生产包括半水反应过程、一次固液分离过程、晶型转化过程和二次固液分离过程;
(2)根据校正后的机理模型,构建具有约束条件,以优化目标为导向,对决策变量进行优化的优化模型,并对所述优化模型求解;所述优化目标包括经济效益;所述决策变量包括操作参数。
本发明提供的磷酸生产过程的优化方法以已有实际生产中的工艺数据为基础,对机理模型进行校正,从而得到更优的机理模型中的经验参数,使机理模型能够更加准确的反应磷酸生产过程中的物质变化;并以经济效益为优化目标,构建优化模型,从而基于整体流程对磷酸生产过程中的决策变量进行优化,提高磷酸生产的经济效益,为实际生产提供指导数据。
优选地,步骤(1)中所述工艺数据包括历史运行数据。
本发明所述工艺数据可以是已有的历史运行数据,也可以是为了本优化模型的建立而新运行的数据。
更进一步地,可对所述工艺数据进行预处理后再用于校正机理模型。
优选地,步骤(1)中所述工艺数据包括原料数据、设备参数、工艺控制指标、操作参数和产品参数。
优选地,所述原料数据包括原料流量、原料组成和原料性质。
优选地,所述原料组成包括硫酸组成和磷矿组成。
优选地,所述硫酸组成包括硫酸浓度。
优选地,所述磷矿组成包括磷矿中P2O5含量、CaO含量和SiO2含量。
本发明所述磷矿组成还可包括磷矿中F含量。
优选地,所述原料性质包括磷矿粒径和磷矿密度。
优选地,所述设备参数包括设备流程、设备结构和设备特性参数。
优选地,所述设备特性参数包括反应装置尺寸参数和搅拌装置尺寸参数。
优选地,所述工艺控制指标包括操作过程中物料组成和物料性质。
优选地,所述操作参数包括不同原料配比、循环流股流量占比、搅拌速度、操作温度、操作时间或操作压力中任意一种或至少两种的组合。
优选地,所述产品参数包括产品产量和产品组成。
优选地,所述产品产量包括成品磷酸产量。
优选地,所述产品组成包括成品磷酸组成和磷石膏组成。
优选地,所述成品磷酸组成包括成品磷酸中二氧化二磷浓度和成品磷酸中硫酸浓度。
优选地,所述磷石膏组成包括磷石膏中残磷含量、磷石膏中水溶磷含量和磷石膏中游离水含量。
优选地,步骤(1)中所述机理模型包括物料平衡模型、能量平衡模型、磷矿反应动力学模型和硫酸钙结晶动力学模型。
优选地,所述磷酸生产还包括一次真空闪蒸冷却和二次真空闪蒸冷却。
优选地,所述物料平衡模型包括半水反应过程物料平衡模型、一次固液分离过程物料平衡模型、晶型转化过程物料平衡模型和二次固液分离过程物料平衡模型。
优选地,所述物料平衡模型还包括真空闪蒸冷却物料平衡模型。
优选地,所述能量平衡模型包括半水反应过程能量平衡模型和晶型转化过程能量平衡模型。
优选地,所述能量平衡模型还包括真空闪蒸冷却能量平衡模型。
优选地,步骤(1)中所述经验参数包括磷矿反应动力学模型中料浆液相密度函数的拟合系数。
优选地,所述经验参数包括磷矿反应动力学模型中粘度函数的拟合系数。
优选地,所述经验参数包括硫酸钙结晶动力学模型中硫酸钙溶解度模型的回归系数。
优选地,步骤(1)中所述校正包括:以工艺指标预测值与实际值差的平方最小为目标,对机理模型优化求解,获得校正后的机理模型经验参数。
优选地,所述工艺指标包括转化率和反应料浆中晶体含量。
优选地,所述优化采用差分进化算法进行优化求解。
优选地,步骤(2)中所述约束条件包括机理模型约束、工艺控制指标约束、产品流量约束、产品组成约束、装置负荷约束和决策变量的边界条件约束。
优选地,所述工艺控制指标包括生产中料浆的组成约束、料浆的温度约束和真空闪蒸冷却的温度降约束。
优选地,所述料浆的组成约束包括料浆中P2O5浓度约束、H2SO4浓度约束、CaO浓度约束和含固量约束。
优选地,所述产品组成约束包括成品磷酸组成约束和磷石膏组成约束。
优选地,所述成品磷酸组成约束包括成品磷酸中P2O5浓度约束和H2SO4浓度约束。
优选地,所述磷石膏组成约束包括磷石膏中P2O5浓度约束、H2SO4浓度约束和固含量约束。
优选地,步骤(2)中所述优化模型为单目标多约束模型。
优选地,所述优化求解的算法包括差分进化算法。
优选地,所述优化求解包括:将单目标多约束模型转化为双目标无约束模型,采用多目标差分进化算法进行优化求解。
作为本发明优选地技术方案,所述优化方法包括如下步骤:
(1’)获取湿法磷酸生产中的工艺数据;
(2’)构建湿法磷酸各生产过程的机理模型;所述磷酸生产包括半水反应过程、一次固液分离过程、晶型转化过程和二次固液分离过程;
(3’)根据磷酸生产中的工艺数据,对机理模型中的经验参数进行校正;
(4’)根据校正后的机理模型,确定约束条件、优化目标和决策变量,构建优化模型;所述优化目标包括经济效益;所述决策变量包括操作参数
(5’)求解优化模型,得到优化后的决策变量。
作为本发明优选地技术方案,所述优化方法包括如下步骤:
(1’)获取湿法磷酸生产中的工艺数据;
所述生产工艺数据包括原料数据、设备参数、工艺控制指标、操作参数和产品参数;所述原料数据包括原料流量、原料组成和原料性质;所述原料组成包括磷矿组成和硫酸浓度;所述磷矿组成包括P2O5含量、CaO含量、F含量和SiO2含量等;所述原料性质包括磷矿粒径和磷矿密度;所述设备参数包括设备流程、设备结构和设备特性参数;所述设备特性参数包括反应装置尺寸参数和搅拌装置尺寸参数;具体地,所述反应装置尺寸参数包括反应槽(或反应室)容积合直径;搅拌装置尺寸参数包括搅拌器直径;所述操作参数包括不同原料配比(磷矿与硫酸投料比)、循环流股流量占比(循环料浆比和返酸配比)、搅拌速度、操作温度、操作压力和操作时间;所述工艺控制指标包括操作过程中物料组成(料浆液相硫酸根含量、料浆液相P2O5含量、料浆液相CaO含量以及料浆含固量)和操作过程中物料性质(料浆液相密度);所述产品参数包括产品产量和产品组成,所述产品产量包括成品磷酸产量,产品组成包括成品磷酸组成和磷石膏组成,成品磷酸组成包括成品磷酸中二氧化二磷浓度和成品磷酸中硫酸浓度,磷石膏组成包括磷石膏中残磷含量、磷石膏中水溶磷含量和磷石膏中游离水含量;
(2’)构建湿法磷酸各生产过程的机理模型;所述磷酸生产包括半水反应过程、一次固液分离过程、晶型转化过程和二次固液分离过程;所述磷酸生产还包括一次真空闪蒸冷却和二次真空闪蒸冷却;具体地,机理模型构建如下:
(2.1)物料衡算模型
半水反应过程物料衡算模型中第i反应单元物料衡算模型如式(1)~(7)所示:
Fin,i=Fout,i-1+Fsa,i+Fra,i+Frs,i (1)
Fout,i=Fpr,i+Fim,i+Fsl,i+Fout,i×Bi (2)
Figure BDA0002864365220000031
Figure BDA0002864365220000032
Figure BDA0002864365220000033
Figure BDA0002864365220000034
Figure BDA0002864365220000041
式(1)~(7)中,F表示质量流量;下标pr,im和sl分别表示反应单元料浆中的未分解磷矿、不溶物和液相部分;下标sa,ra和rs分别表示进入反应单元的硫酸、返酸和循环料浆;X表示反应料浆液相的各组分的质量百分含量;M表示物质的摩尔质量;下标PA、SA、P、CS和G分别表示磷酸、硫酸、五氧化二磷、硫酸钙和其结晶体(半水或二水硫酸钙);下标i表示第i反应单元;全文相同,Bi表示反应料浆中结晶部分的质量百分含量;
Figure BDA0002864365220000043
表示第i反应单元的转化率;αSA,αCS分别表示磷矿酸解反应过程中浓硫酸消耗定额和相应硫酸钙生成定额。
一次真空闪蒸冷却物料平衡模型如式(8)~(13)所示:
Fout,vc1=Fin,vc1out,vc1×Vout,vc1 (8)
Fout,vc=Fout,pr,vc+Fout,im,vc+Fout,vc×Bout,vc+Fout,sl,vc (9)
Fout,pr,vc=Fin,pr,vc (10)
Fout,im,vc=Fin,im,vc (11)
Fout,vc×Bout,vc=Fin,vc×Bin,vc (12)
Fout,sl,vc×Xout,j,sl,vc=Fin,sl,vc×Xout,j,sl,vc (13)
式(8)~式(13)中,下标in表示入口料浆,out表示出口料浆,下标vc表示真空闪蒸冷却器,全文相同,Fin,vc和Fout,vc分别表示真空冷却器入口料浆的质量流量和出口料浆的质量流量;Vout,vc和ρout,vc分别表示从真空冷却器排出尾气的体积和密度;Fout,pr,vc,Fout,im,vc和Fout,sl,vc分别表示流出真空冷却器料浆中的未分解磷矿的质量流量、不溶物的质量流量和液相部分的质量流量;Bout,vc表示真空冷却器料浆中晶体含量;下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙,Xout,j,sl,vc表示真空冷却器料浆中各组分的质量分数;
一次固液分离过程物料平衡模型包括一次过滤物料平衡模型、二次过滤物料平衡模型、回磷酸槽物料平衡模型和三次过滤物料平衡模型。
其中,一次过滤物料平衡模型如式(14)~(17)所示:
Figure BDA0002864365220000042
Fout,HR=FC,1+Fpra+Fra,f1 (15)
Fout,sl,HR=FLC,1+Fpra+Fra,f1 (16)
Fout,sl,HR×Xout,j,sl,HR=Xj,pra×(FLC,1+Fpra+Fra,f1) (17)
式(14)~(17)中,Fout,HR和Fout,sl,HR分别表示进入一次过滤工序的物料浆的质量流量和物料浆液相的质量流量;FC,1和FLC,1分别表示一次过滤后滤饼和液相部分的质量流量;Fpra表示一次过滤得到的成品磷酸的质量流量;Fra,f1表示一次滤液返回半水反应过程作淡磷酸用的质量流量;XL,1表示一次过滤后滤饼的含液质量分数;Xout,j,sl,HR表示进入一次过滤工序的物料浆液相中组分j的质量分数;Xj,pra表示一次过滤得到的成品磷酸中组分j的质量分数,下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙。
二次过滤物料平衡模型如式(18)~(22)所示:
Figure BDA0002864365220000051
FFC,3+FC,1=FC,2+FFC,2 (19)
FFC,3+FLC,1=FLC,2+FFC,2 (20)
FFC,3×Xj,FC,3+FLC,1×Xj,pa=FLC,2×Xj,LC2+FFC,2×Xj,FC,2 (21)
λf2×FLC,1×Xj,LC1+(FFC,2f2×FLC,1)×Xj,FC,3=FFC,2×Xj,FC,2 (22)
式(18)~(22)中,FC,2、FLC,2、FFC,2分别表示一次过滤后滤饼经一次洗涤后获得的滤饼、滤饼液相部分及洗液的质量流量;XL,2表示一次洗涤后滤饼的含液质量分数;FFC,3表示一次洗涤时所用洗涤液的质量流量;Xj,FC,3表示一次洗涤时所用洗涤液中组分j的质量分数;Xj,LC2表示一次洗涤后获得的滤饼液相中组分j的质量分数;Xj,FC,2表示一次洗涤后获得洗液中组分j的质量分数;λf2表示一次洗涤效率,下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙。
返回半水反应过程的平衡模型如式(23)~(24)所示:
Fra=Fra,f1+FFC,2 (23)
Fra×Xj,ra=Fra,f1×Xj,ra,f1+FFC,2×Xj,FC,2 (24)
式(23)~(24)中,Fra、Xj,ra分别表示返回半水反应过程的淡磷酸流量和组分j的质量分数,下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙。
三次过滤物料平衡模型如式(25)~(29)所示:
Figure BDA0002864365220000052
Fwa+FC,2=FC,3+FFC,3 (26)
Fwa+FLC,2=FLC,3+FFC,3 (27)
Fwa×Xj,wa+FLC,2×Xj,LC,2=FLC,3×Xj,LC,3+FFC,3×Xj,FC,3 (28)
λf3×FLC,2×Xj,LC,2+(FFC,3f3×FLC,3)×Xj,wa,3=FFC,3×Xj,FC,3 (29)
式(25)~(29)中,FC,3、FLC,3、FFC,3分别表示一次洗涤后滤饼经二次洗涤后获得的滤饼、滤饼液相部分及洗液的质量流量;XL,3表示二次洗涤后滤饼的含液质量分数;Fwa表示二次洗涤时所用的洗涤液的质量流量;Xj,wa表示一次洗涤时所用的洗涤液中组分j的质量分数;Xj,LC,3表示二次洗涤后获得的滤饼液相中组分j的质量分数;Xj,FC,3表示二次洗涤后获得洗液中组分j的质量分数;λf3表示二次洗涤效率,下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙。
晶型转化过程物料平衡模型如式(30)~(36)所示:
FC,3+Fsa,d+Fpa,d+Fs,vc2=(1+βd)×Fout,d (30)
Fout,d=Fpr,d+Fim,d+Fout,d×Bd+Fsl,d (31)
Figure BDA0002864365220000053
Figure BDA0002864365220000054
Figure BDA0002864365220000061
Figure BDA0002864365220000062
Figure BDA0002864365220000063
式(30)~(36)中,Fout,d,Fpr,d,Fim,d,Fsl,d分别表示反应出口二水物料浆质量流量和二水物料浆中未分解磷矿、二水物料浆中不溶物和二水物料浆中液相部分的质量流量;XPA,d,XSA,d和XCS,d分别表示二水料浆液相中的磷酸、硫酸和硫酸钙浓度;Fsa,d,Fpa,d分别表示进入晶型转化过程的硫酸、淡磷酸的质量流量;Fpr,HR,Fpr,vc2分别表示来自三次过滤滤饼中的未分解磷矿和来自真空冷却器料浆的质量流量;Bd表示二水料浆中结晶含量;
Figure BDA0002864365220000064
表示晶型转化过程的转化率,βd为晶型转化过程的料浆循环倍率。
二次真空闪蒸冷却器的物料平衡如式(37)~(42)所示:
Fout,vc2=βd×Fsl,dout,vc2×Vout,vc2 (37)
Fout,vc2=Fout,pr,vc2+Fout,im,vc2+Fout,vc2×Bout,vc2+Fout,sl,vc2 (38)
Fout,pr,vc2=βd×Fpr,d (39)
Fout,im,vc2=βd×Fim,d (40)
Fout,vc2×Bout,vc2=βd×Fout,d×Bd (41)
Fout,sl,vc2×Xout,j,sl,vc2=βd×Fsl,d×Xj,d (42)
式(37)~(42)中,Fin,vc2和Fout,vc2分别表示真空冷却器流入和流出料浆的质量流量;Vout,vc2和ρout,vc2表示从真空冷却器排出尾气的体积和密度;Fout,pr,vc2,Fout,im,vc2,Fout,sl,vc2分别表示流出真空冷却器料浆中的未分解磷矿、不溶物和液相部分的质量流量;Bout,vc2表示真空冷却器料浆中结晶质量分数。
二次固液分离过程的质量平衡模型,由于固液分离过程的质量平衡模型基本相同,本发明中二次固液分离过程的质量平衡模型与一次固液分离过程的质量平衡模型类似,不再赘述。
(2.2)能量平衡模型
半水反应过程中第i反应单元能量平衡模型如式(43)~(46)所示:
Figure BDA0002864365220000065
Cph,l(XPA,i)=0.980-0.796×XPA,i (44)
ΔHr=128.70-0.659Ti (45)
ΔHd=211.044×(XSA,be 2-XSA,af 2) (46)
式(43)~(46)中,Cph,pr、Cph,SA和Cph,GH分别表示磷矿、硫酸和生成的半水硫酸钙晶体的比热容;Ti-1、Tsa、Tra和Trs,i分别表示进入第i反应器的主料浆、硫酸、返酸和循环料浆的温度;T0表示当前环境温度;Ti表示反应单元i的出口料浆温度;Cph,l(XpA,i)表示第i反应单元反应料浆液相比热容计算函数;ΔHd表示硫酸稀释到料浆液相中产生的稀释热;XSA,be和XSA,af分别表示稀释前后硫酸浓度;ΔHr表示磷矿酸解反应热。
一次真空闪蒸冷却器能量平衡模型如式(47)所示:
Figure BDA0002864365220000071
式(47)中,Tin,vc和Tout,vc分别表示真空冷却器入口和出口料浆温度;ΔHv表示真空冷却器的汽化热。
晶型转化过程中的能量平衡模型如式(48)~(50)所示:
Figure BDA0002864365220000072
ΔHr,d=172.872-1.080Td (49)
ΔHh=26.768+0.065Td (50)
式(48)~(50)中,Cph,DG生成的二水硫酸钙结晶产物的比热容;TD表示晶型转化过程中料浆温度;ΔHh表示半水硫酸钙转化成二水硫酸钙的反应热;ΔHr,d表示磷矿在晶型转化过程中的酸解反应热;
二次真空闪蒸冷却器能量平衡模型如式(51)所示:
Figure BDA0002864365220000073
式(51)中,Tin,vc2和Tout,vc2分别表示真空冷却器入口和出口料浆温度;ΔHv表示真空闪蒸冷却器的汽化热。
(2.3)磷矿酸解动力学模型:
磷矿颗粒酸解模型如式(52)~(56)所示:
Figure BDA0002864365220000074
Figure BDA0002864365220000075
CTA(i)=CSA(i)+CPA(i) (54)
Figure BDA0002864365220000076
Figure BDA0002864365220000081
式(52)~(56)中,φM表示磷矿颗粒形状因素,ρM表示磷矿密度,αSA表示与磷矿酸解反应的硫酸消耗定额;KL表示液相反应物硫酸通过液膜的传质系数;DI表示搅拌浆直径,DR表示反应器直径,
Figure BDA00028643652200000810
表示搅拌速度;De表示液相反应物硫酸在磷矿颗粒表面的有效扩散系数;r为反应过程中磷矿颗粒未反应芯半径;R为反应前磷矿初始颗粒半径;t表示磷矿颗粒在反应器内的溶解时间;CSA,CPA和CTA分别表示反应料浆中的硫酸、硫酸和总酸体积浓度;Re和Sc分别表示反应器内流体流动的雷诺数和史密特数;ρsl表示反应料浆液相密度;μsl表示反应料浆液相粘度。
假设磷矿颗粒为球形,则单个磷矿颗粒转化率的计算如式(57)所示:
Figure BDA0002864365220000082
磷矿颗粒在反应器i内的停留时间分布密度函数如式(58)所示:
Figure BDA0002864365220000083
Figure BDA0002864365220000084
则磷矿颗粒的粒径大小分布函数如式(60)所示:
Figure BDA0002864365220000085
第i个反应单元出口的平均转化率:
Figure BDA0002864365220000086
联立(57)~(61)可得:
Figure BDA0002864365220000087
式(62)中:
Figure BDA0002864365220000088
式(57)~(63)中,X表示单个磷矿颗粒的转化率;r为反应过程中磷矿颗粒未反应芯半径;R为反应前磷矿初始颗粒半径;Ej(t)表示磷矿颗粒在反应器内的停留时间分布函数,tavg表示料浆在反应器中的平均停留时间;VR表示反应器体积,Win表示进入反应槽物料的总质量流量;fi-1表示磷矿颗粒进入反应器i-1时的粒径大小分布函数,f0(R)表示磷矿颗粒进入反应器时的初始粒径大小分布函数;Rmin和Rmax分别表示磷矿颗粒进入反应器的初始最小粒径和最大粒径;
Figure BDA0002864365220000089
表示反应器i出口的平均转化率。
其中,反应中料浆液相密度和粘度计算分别如式(64)和式(65)所示:
Figure BDA0002864365220000091
Figure BDA0002864365220000092
式(64)~(65)中,T表示操作温度,fρ和fμ分别表示料浆液相密度和粘度拟合函数,料浆液相密度计算模型的回归参数为a0,a1,a2,a3,a4和a5、料浆液相粘度计算模型的回归系数为b0,b1,b2,b3,b4和b5;XPA,XSA,XCS分别表示反应料浆液相中磷酸质量分数、硫酸质量分数和硫酸钙质量分数。
(2.4)硫酸钙结晶动力学模型
晶体的质量生长速率计算如式(66)所示:
νe=KL×S (66)
硫酸钙过饱和度计算如式(67)所示:
Figure BDA00028643652200000910
晶体线性生长速率计算如式(68)所示:
Figure BDA0002864365220000093
晶体粒数密度计算如式(69)所示:
Figure BDA0002864365220000094
晶核粒数密度经验公式如式(70)所示:
Figure BDA00028643652200000911
具体举例:第1反应单元的晶体粒数密度计算如式(71)所示:
Figure BDA0002864365220000095
其中,硫酸钙晶体含量计算如式(72)所示:
Figure BDA0002864365220000096
式(66)~(72)中,νe表示晶体的质量生长速率;S表示硫酸钙的过饱和度;
Figure BDA0002864365220000097
为硫酸钙在料浆环境内的饱和浓度;νL表示晶体的线性生长速率;L表示晶体特征长度;ρG表示生成的硫酸钙结晶体的密度;φG表示硫酸钙晶体形状因素;ψi
Figure BDA0002864365220000098
分别表示反应槽i的晶体粒数密度和晶核粒数密度;
硫酸钙在料浆环境内的饱和浓度计算如式(73)所示:
Figure BDA0002864365220000099
式(73)中,HG和DG分别代表半水硫酸钙(CaSO4·0.5H2O)和二水硫酸钙(CaSO4·2H2O)结晶体,α,β,γ,λ和ν为硫酸钙溶解度计算模型的回归系数。
(3’)根据磷酸生产中的工艺数据,对机理模型中的经验参数进行校正;
基于选取的磷矿酸解动力学模型和硫酸钙结晶动力学模型和各反应单元内的物料和能量衡算模型,分别选取反应器出口的转化率和出口料浆中晶体含量的机理模型预测值和实际值差的平方最小为目标,将动力模型参数校正问题转化为两个单目标无约束优化问题。所述优化问题表达为如式(74)所示:
Figure BDA0002864365220000101
其中,优化变量U1包括:有效扩散系数De、料浆液相密度计算模型的回归参数a0,a1,a2,a3,a4和a5、料浆液相粘度计算模型的回归系数b0,b1,b2,b3,b4和b5;优化变量U2包括硫酸钙溶解度计算模型的回归系数α,β,γ,λ和ν。变量
Figure BDA0002864365220000102
分别表示反应器转化率的实际值和预测值,
Figure BDA0002864365220000103
分别表示料浆中结晶含量的实际值与预测值。
根据步骤(1’)中所采集的实际工艺数据,采用差分进化算法对所建两个单目标无约束优化问题进行优化求解,获得机理模型参数的优化估值,实现机理模型的校正;
(4’)根据校正后的机理模型,确定约束条件、优化目标和决策变量,构建优化模型;所述优化目标包括经济效益;所述决策变量包括操作参数;
优化目标:以磷酸生产过程经济效益最大化为优化目标,如式(75)所示:
Figure BDA0002864365220000104
式(75)中,CPA为成品磷酸的产品价格,Cphr为磷矿的单位成本,CSA为浓硫酸的单位成本;Fpra,Fphr,Fsa,i分别为成品磷酸流量、原料磷矿流量和浓硫酸流量。
决策变量:各股硫酸流量、原料磷矿流量、返酸流量、石膏洗涤水流量、循环料浆比和真空闪蒸冷却器真空度。
约束条件包括:磷酸生产过程机理模型(包括物料平衡模型、能量平衡模型、磷矿酸解动力学模型和硫酸钙结晶动力模型)、工艺控制指标(包括各反应过程料浆液相P2O5浓度、H2SO4浓度和CaO浓度、料浆含固量、料浆温度和真空闪蒸冷却的温度降)约束、产品流量约束(成品磷酸流量约束)、产品组成约束(包括成品磷酸中P2O5浓度和H2SO4浓度,磷石膏中P2O5浓度、H2SO4浓度和固含量)、装置负荷约束和决策变量的边界条件作为优化模型的约束条件。具体如下:
(4.1)工艺控制指标约束
料浆液相P2O5浓度约束:
Figure BDA0002864365220000105
料浆液相H2SO4浓度约束:
Figure BDA0002864365220000106
料浆液相CaO浓度约束:
Figure BDA0002864365220000107
料浆的固含量约束:
Figure BDA0002864365220000108
其中
Figure BDA0002864365220000109
料浆的温度约束:
Figure BDA00028643652200001010
真空闪蒸冷却的温度降约束:
Figure BDA00028643652200001011
(4.2)产品组成约束
成品磷酸中P2O5浓度约束:
Figure BDA0002864365220000111
成品磷酸中H2SO4浓度约束:
Figure BDA0002864365220000112
磷石膏中水溶性P2O5浓度约束:
Figure BDA0002864365220000113
磷石膏中H2SO4浓度约束:
Figure BDA0002864365220000114
磷石膏中固含量约束:
Figure BDA0002864365220000115
(4.3)产品流量约束:
Figure BDA0002864365220000116
(4.4)装置进负荷约束:
料浆进料流量约束:
Figure BDA0002864365220000117
硫酸进料流量约束:
Figure BDA0002864365220000118
返回磷酸进料流量约束:
Figure BDA0002864365220000119
出口料浆流量约束:
Figure BDA00028643652200001110
(4.5)决策变量的边界约束
磷矿投入量约束:
Figure BDA00028643652200001111
硫酸给定量约束:
Figure BDA00028643652200001112
料浆循环倍率约束:
Figure BDA00028643652200001113
真空闪蒸冷却器的真空度约束:
Figure BDA00028643652200001114
(5’)求解优化模型,得到优化后的决策变量,具体如下:
将步骤(4’)模型中的单目标多约束优化问题转化成两个目标的多目标无约束优化问题,其数学表达式可描述为如(76)所示:
Figure BDA00028643652200001115
式(76)中,D为决策向量
Figure BDA00028643652200001116
的整个搜索空间;
Figure BDA00028643652200001117
表示为该问题的两个目标函数;其中,目标函数
Figure BDA00028643652200001118
的数学表达式为
Figure BDA00028643652200001119
目标函数
Figure BDA00028643652200001120
的数学表达式为
Figure BDA00028643652200001121
其中,
Figure BDA00028643652200001122
式(77)为整个磷酸生产生产过程中的约束破坏程序;i为约束条件的索引号,m为所有约束条件的数量,q为其中的等式约束条件的数量;
Figure BDA00028643652200001123
表示单一约束条件违反程度;ri表示预先设定的约束条件违反惩罚因子;
Figure BDA00028643652200001124
表示不等式约束,
Figure BDA00028643652200001125
表示等式约束,γ表示等式约束条件的容许误差。
采用基于Pareto最优的多目标差分进化算法对式(76)和式(77)中两目标无约束优化问题进行优化求解。
优选地,所述优化求解的方法包括差分进化算法。
优选地,所述差分进化算法包括如下步骤:
步骤a,获取决策向量搜索空间,并设定参数;
步骤b,初始化种群;
步骤c,计算各个个体的目标函数值;
步骤d,进行变异操作和交叉操作,以生成新个体;
步骤e,进行选择操作:将交叉变异后新产生的种群与初始种群混合,基于Pareto支配关系的排序方法进行排序,选择出N个最佳的个体进入下一代种群中;
步骤f,判断是否满足终止条件,若是,则执行下一步骤,否则返回执行步骤c;
步骤g,输出整个过程的最优决策变量和最优化目标值。
具体的,步骤a中获取实际磷酸生产过程中各操作参数调节范围,包括进料负荷范围、循环料浆倍比范围和闪蒸冷却器真空度调节范围,定义决策向量的搜索空间D。在此基础上,设置差分进化算法参数,包括种群大小、最大进化代数、变异参数和交叉参数。
步骤b中:在决策向量的整个搜索空间内,随机生成N(N为种群规模)个个体组成的初始化种群。
步骤c中:将种群中每个个体作为系统变量输入全流程模拟计算模型,计算系统的运行成本与约束违反惩罚项作为个体适应度值。
由以上可以看出,磷酸生产的整体流程复杂,约束条件非常多,本发明通过将单目标多约束模型修改为双目标无约束模型,简化了求解步骤,且与差分进化算法相组合,显著降低大规模约束条件带来的庞大计算量,可以迅速获得最优生产工艺操作参数设定方案,实现生产全过程的集成协调与优化分配,最大化发挥现有生产流程的潜能,提高企业整体经济效益。
第二方面,本发明提供一种磷酸生产过程的优化装置,所述优化装置包括如下模块:数据模块、机理模型模块、模型校正模块以及决策变量优化模块;
所述数据模块用于获取磷酸生产的工艺数据;
所述机理模型模块用于构建和/或调用磷酸生产的机理模型;
所述模型校正模块利用数据模块中的工艺数据对所述机理模型进行校正;
所述决策变量优化模块根据机理模型,构建具有约束条件,以优化目标为导向,对决策变量进行优化的优化模型,并对所述优化模型求解。
本发明所述磷酸生产过程的优化装置能够执行第一方面所述的磷酸生产过程的优化方法,用于实际生产中能够实现磷酸生产过程中数据的获取、生产过程参数的监控以及决策变量的优化调整,应用前景广阔。
优选地,所述优化装置还包括用于将优化后决策变量运用至磷酸生产中的方案执行模块。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明提供的磷酸生产过程的优化方法能够发挥现有生产流程的潜能,提高企业整体经济效益,为提高整个流程生产运行水平提供指导;
(2)本发明提供的磷酸生产过程的优化方法构建生产过程机理模型,能够准确表征磷酸生产从原料到产品整个生产过程的运行状态,能够针对磷酸生产整体流程的模拟和计算,从而能够实现全流程参数的统一优化和计算,更有利于提高经济效益;
(3)本发明提供的磷酸生产过程的优化方法综合考虑了磷酸生产过程机理、工艺控制条件及影响生产成本各因素,同时考虑了工艺控制指标、产品需求约束、产品物性要求等各种约束条件,保证了优化操作方案的可执行性;建立以经济效益为目标构建全流程生产操作优化模型;
(4)本发明提供的磷酸生产过程的优化方法提出将单目标优化转化成双目标无约束优化问题,并采用差分多目标优化算法进行优化求解,显著降低大规模约束条件带来的庞大计算量,可以迅速获得最优生产工艺操作参数设定方案,实现生产全过程的集成协调与优化分配,最大化发挥现有生产流程的潜能,提高企业整体经济效益。
附图说明
图1是本发明提供的磷酸生产过程的整体流程图。
图2是本发明提供的磷酸生产过程的优化方法流程图。
图中:11、第一半水反应器;12、第二半水反应器;13、第三半水反应器;14、第四半水反应器;15、第五半水反应器;16、第一真空闪蒸冷却器;17、尾气洗涤塔;21、第一过滤器;22、第二过滤器;23、第三过滤器;24、第一滤液槽;25、第二滤液槽;31、第一晶型转化反应器;32、第二晶型转化反应器;33、第二真空闪蒸冷却器;41、第四过滤器;42、第五过滤器;43、第六过滤器;44、第三滤液槽;45、第四滤液槽。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
下面对本发明进一步详细说明。但下述的实例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
本发明中磷酸生产过程的流程图如图1所示,从图1可以看出,所述磷酸生产过程包括如下步骤:
(1)半水反应过程:含磷矿的磷矿浆经流量计和密度计测定后,通入第一半水反应器11,硫酸同样经计量后分流通入第一半水反应器11、第二半水反应器12和第三半水反应器13进行反应,第三半水反应器13反应后流股通入第四半水反应器14中继续进行反应,其中,第一半水反应器11、第二半水反应器12、第三半水反应器13和第四半水反应器14中产生的尾气均送入尾气洗涤塔17中进行尾气处理;第四半水反应器14中反应后浆料部分送入第一真空闪蒸冷却器16中进行冷却,冷却浆料循环至第三半水反应器13中继续反应,第四半水反应器14中反应后浆料部分继续通入第五半水反应器15中反应,第五半水反应器15中反应后浆料分为两股流股,其中一股以循环料浆的形式返回至第一半水反应器11中;第二流股送入一次固液分离流程中;
(2)一次固液分离过程:第五半水反应器15反应后浆料的第二流股送入第一过滤器21中进行一次过滤,滤液送入第一滤液槽24中,得到成品磷酸;第一滤液槽24中部分滤液送入第二滤液槽25中;一次过滤后滤饼送入第二过滤器22中进行二次过滤,并加入洗水(第三过滤器23中的二段洗水)进行洗涤,产生的洗水进入第二滤液槽25中,分三股作为循环到半水反应的返酸分别循环至第一半水反应器11、第二半水反应器12和第三半水反应器13中;经二次过滤后的滤饼送入第三过滤器23中,并加入洗水(来自二次固液分离的洗水)进行洗涤和过滤,洗涤后滤饼送入晶型转化流程中;洗涤后洗水作为二段洗水循环至第二过滤器22中;
(3)晶型转化过程:一次固液分离洗涤后的滤饼即为半水石膏,进入第一晶型转化反应器31中,加入硫酸进行反应,反应后浆料送入第二晶型转化反应器32中继续反应;反应后产生的气体经第二真空闪蒸冷却器33冷却后液相循环至第一晶型转化反应器31中重复利用,气体排出;所述第二晶型转化反应器32产生的晶型转化料浆送至二次固液分离流程中;
(4)二次固液分离过程:来自第二晶型转化反应器32的晶型转化料浆送入第四过滤器41进行过滤,滤液送入第三滤液槽44,并以循环洗水循环至一次固液分离的第三过滤器23中;第四过滤器41过滤产生的滤饼送入第五过滤器42中,并加入二段洗水进行洗涤,第五过滤器42产生的滤液送入第四滤液槽45中并循环至第二晶型转化反应器32中作为到晶型转化工序的淡酸使用,所述第五过滤器42产生的滤饼送入第六过滤器43中,并加入洗涤水进行洗涤,第六过滤器43的滤液作为二段洗水循环至第四过滤器41中,滤饼作为磷石膏产品产出。
本发明提供的磷酸生产过程的优化方法流程图如图2所示,其具体包括如下步骤:
(1’)获取湿法磷酸生产中的工艺数据;
(2’)构建湿法磷酸各生产过程的机理模型;所述磷酸生产包括半水反应过程、一次固液分离过程、晶型转化过程和二次固液分离过程;
(3’)根据磷酸生产中的工艺数据,对机理模型中的经验参数进行校正;
(4’)根据校正后的机理模型,确定约束条件、优化目标和决策变量,构建优化模型;所述优化目标包括经济效益;所述决策变量包括操作参数,建立磷酸生产过程的全流程优化模型;
(5’)采用多目标约束处理策略和多目标差分进化算法对优化模型进行优化求解,得到优化后的决策变量及优化后经济指标,优化结束。
一、实施例
实施例1
本实施例提供一种磷酸生产过程的优化方法,所述优化方法包括如下步骤:
(1’)获取湿法磷酸生产中的工艺数据;
所述生产工艺数据包括原料数据、设备参数、工艺控制指标、操作参数和产品参数;所述原料数据包括原料流量、原料组成和原料性质;所述原料组成包括磷矿组成和硫酸浓度;所述磷矿组成包括P2O5含量、CaO含量、F含量和SiO2含量等;所述原料性质包括磷矿粒径和磷矿密度;所述设备参数包括设备流程、设备结构和设备特性参数;所述设备特性参数包括反应装置尺寸参数和搅拌装置尺寸参数;具体地,所述反应装置尺寸参数包括反应槽(或反应室)容积合直径;搅拌装置尺寸参数包括搅拌器直径;所述操作参数包括不同原料配比(磷矿与硫酸投料比)、循环流股流量占比(循环料浆比和返酸配比)、搅拌速度、操作温度、操作压力和操作时间;所述工艺控制指标包括操作过程中物料组成(料浆液相硫酸根含量、料浆液相P2O5含量、料浆液相CaO含量以及料浆含固量)和操作过程中物料性质(料浆液相密度);所述产品参数包括产品产量和产品组成,所述产品产量包括成品磷酸产量,产品组成包括成品磷酸组成和磷石膏组成,成品磷酸组成包括成品磷酸中二氧化二磷浓度和成品磷酸中硫酸浓度,磷石膏组成包括磷石膏中残磷含量、磷石膏中水溶磷含量和磷石膏中游离水含量;
(2’)构建湿法磷酸各生产过程的机理模型;所述磷酸生产包括半水反应过程、一次固液分离过程、晶型转化过程和二次固液分离过程;所述磷酸生产还包括一次真空闪蒸冷却和二次真空闪蒸冷却;具体地,机理模型构建如下:
(2.1)物料衡算模型
半水反应过程物料衡算模型中第i反应单元物料衡算模型如式(1)~(7)所示:
Fin,i=Fout,i-1+Fsa,i+Fra,i+Frs,i (1)
Fout,i=Fpr,i+Fim,i+Fsl,i+Fout,i×Bi (2)
Figure BDA0002864365220000141
Figure BDA0002864365220000142
Figure BDA0002864365220000143
Figure BDA0002864365220000144
Figure BDA0002864365220000151
式(1)~(7)中,F表示质量流量;下标pr,im和sl分别表示反应单元料浆中的未分解磷矿、不溶物和液相部分;下标sa,ra和rs分别表示进入反应单元的硫酸、返酸和循环料浆;X表示反应料浆液相的各组分的质量百分含量;M表示物质的摩尔质量;下标PA、SA、P、CS和G分别表示磷酸、硫酸、五氧化二磷、硫酸钙和其结晶体(半水或二水硫酸钙);下标i表示第i反应单元;全文相同,Bi表示反应料浆中结晶部分的质量百分含量;
Figure BDA0002864365220000152
表示第i反应单元的转化率;αSA,αCS分别表示磷矿酸解反应过程中浓硫酸消耗定额和相应硫酸钙生成定额;
一次真空闪蒸冷却物料平衡模型如式(8)~(13)所示:
Fout,vc1=Fin,vc1out,vc1×Vout,vc1 (8)
Fout,vc=Fout,pr,vc+Fout,im,vc+Fout,vc×Bout,vc+Fout,sl,vc (9)
Fout,pr,vc=Fin,pr,vc (10)
Fout,im,vc=Fin,im,vc (11)
Fout,vc×Bout,vc=Fin,vc×Bin,vc (12)
Fout,sl,vc×Xout,j,sl,vc=Fin,sl,vc×Xout,j,sl,vc (13)
式(8)~式(13)中,下标in表示入口料浆,out表示出口料浆,下标vc表示真空闪蒸冷却器,全文相同,Fin,vc和Fout,vc分别表示真空冷却器入口料浆的质量流量和出口料浆的质量流量;Vout,vc和ρout,vc分别表示从真空冷却器排出尾气的体积和密度;Fout,pr,vc,Fout,im,vc和Fout,sl,vc分别表示流出真空冷却器料浆中的未分解磷矿的质量流量、不溶物的质量流量和液相部分的质量流量;Bout,vc表示真空冷却器料浆中晶体含量;下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙,Xout,j,sl,vc表示真空冷却器料浆中各组分的质量分数;
一次固液分离过程物料平衡模型包括一次过滤物料平衡模型、二次过滤物料平衡模型、回磷酸槽物料平衡模型和三次过滤物料平衡模型。
其中,一次过滤物料平衡模型如式(14)~(17)所示:
Figure BDA0002864365220000153
Fout,HR=FC,1+Fpra+Fra,f1 (15)
Fout,sl,HR=FLC,1+Fpra+Fra,f1 (16)
Fout,sl,HR×Xout,j,sl,HR=Xj,pra×(FLC,1+Fpra+Fra,f1) (17)
式(14)~(17)中,Fout,HR和Fout,sl,HR分别表示进入一次过滤工序的物料浆的质量流量和物料浆液相的质量流量;FC,1和FLC,1分别表示一次过滤后滤饼和液相部分的质量流量;Fpra表示一次过滤得到的成品磷酸的质量流量;Fra,f1表示一次滤液返回半水反应过程作淡磷酸用的质量流量;XL,1表示一次过滤后滤饼的含液质量分数;Xout,j,sl,HR表示进入一次过滤工序的物料浆液相中组分j的质量分数;Xj,pra表示一次过滤得到的成品磷酸中组分j的质量分数,下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙。
二次过滤物料平衡模型如式(18)~(22)所示:
Figure BDA0002864365220000161
FFC,3+FC,1=FC,2+FFC,2 (19)
FFC,3+FLC,1=FLC,2+FFC,2 (20)
FFC,3×Xj,FC,3+FLC,1×Xj,pa=FLC,2×Xj,LC2+FFC,2×Xj,FC,2 (21)
λf2×FLC,1×Xj,LC1+(FFC,2f2×FLC,1)×Xj,FC,3=FFC,2×Xj,FC,2 (22)
式(18)~(22)中,FC,2、FLC,2、FFC,2分别表示一次过滤后滤饼经一次洗涤后获得的滤饼、滤饼液相部分及洗液的质量流量;XL,2表示一次洗涤后滤饼的含液质量分数;FFC,3表示一次洗涤时所用洗涤液的质量流量;Xj,FC,3表示一次洗涤时所用洗涤液中组分j的质量分数;Xj,LC2表示一次洗涤后获得的滤饼液相中组分j的质量分数;Xj,FC,2表示一次洗涤后获得洗液中组分j的质量分数;λf2表示一次洗涤效率,下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙。
返回半水反应过程的平衡模型如式(23)~(24)所示:
Fra=Fra,f1+FFC,2 (23)
Fra×Xj,ra=Fra,f1×Xj,ra,f1+FFC,2×Xj,FC,2 (24)
式(23)~(24)中,Fra、Xj,ra分别表示返回半水反应过程的淡磷酸流量和组分j的质量分数,下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙。
三次过滤物料平衡模型如式(25)~(29)所示:
Figure BDA0002864365220000171
Fwa+FC,2=FC,3+FFC,3 (26)
Fwa+FLC,2=FLC,3+FFC,3 (27)
Fwa×Xj,wa+FLC,2×Xj,LC,2=FLC,3×Xj,LC,3+FFC,3×Xj,FC,3 (28)
λf3×FLC,2×Xj,LC,2+(FFC,3f3×FLC,3)×Xj,wa,3=FFC,3×Xj,FC,3 (29)
式(25)~(29)中,FC,3、FLC,3、FFC,3分别表示一次洗涤后滤饼经二次洗涤后获得的滤饼、滤饼液相部分及洗液的质量流量;XL,3表示二次洗涤后滤饼的含液质量分数;Fwa表示二次洗涤时所用的洗涤液的质量流量;Xj,wa表示一次洗涤时所用的洗涤液中组分j的质量分数;Xj,LC,3表示二次洗涤后获得的滤饼液相中组分j的质量分数;Xj,FC,3表示二次洗涤后获得洗液中组分j的质量分数;λf3表示二次洗涤效率,下标j表示PA,SA或CS,其中,PA,SA或CS分别表示磷酸、硫酸和硫酸钙。
晶型转化过程物料平衡模型如式(30)~(36)所示:
FC,3+Fsa,d+Fpa,d+Fs,vc2=(1+βd)×Fout,d (30)
Fout,d=Fpr,d+Fim,d+Fout,d×Bd+Fsl,d (31)
Figure BDA0002864365220000172
Figure BDA0002864365220000173
Figure BDA0002864365220000174
Figure BDA0002864365220000175
Figure BDA0002864365220000176
式(30)~(36)中,Fout,d,Fpr,d,Fim,d,Fsl,d分别表示反应出口二水物料浆质量流量和二水物料浆中未分解磷矿、二水物料浆中不溶物和二水物料浆中液相部分的质量流量;XPA,d,XSA,d和XCS,d分别表示二水料浆液相中的磷酸、硫酸和硫酸钙浓度;Fsa,d,Fpa,d分别表示进入晶型转化过程的硫酸、淡磷酸的质量流量;Fpr,HR,Fpr,vc2分别表示来自三次过滤滤饼中的未分解磷矿和来自真空冷却器料浆的质量流量;Bd表示二水料浆中结晶含量;
Figure BDA0002864365220000181
表示晶型转化过程的转化率,βd为晶型转化过程的料浆循环倍率。
二次真空闪蒸冷却器的物料平衡如式(37)~(42)所示:
Fout,vc2=βd×Fsl,dout,vc2×Vout,vc2 (37)
Fout,vc2=Fout,pr,vc2+Fout,im,vc2+Fout,vc2×Bout,vc2+Fout,sl,vc2 (38)
Fout,pr,vc2=βd×Fpr,d (39)
Fout,im,vc2=βd×Fim,d (40)
Fout,vc2×Bout,vc2=βd×Fout,d×Bd (41)
Fout,sl,vc2×Xout,j,sl,vc2=βd×Fsl,d×Xj,d (42)
式(37)~(42)中,Fin,vc2和Fout,vc2分别表示真空冷却器流入和流出料浆的质量流量;Vout,vc2和ρout,vc2表示从真空冷却器排出尾气的体积和密度;Fout,pr,vc2,Fout,im,vc2,Fout,sl,vc2分别表示流出真空冷却器料浆中的未分解磷矿、不溶物和液相部分的质量流量;Bout,vc2表示真空冷却器料浆中结晶质量分数。
二次固液分离过程的质量平衡模型,由于固液分离过程的质量平衡模型基本相同,本发明中二次固液分离过程的质量平衡模型与一次固液分离过程的质量平衡模型类似,不再赘述。
(2.2)能量平衡模型
半水反应过程中第i反应单元能量平衡模型如式(43)~(46)所示:
Figure BDA0002864365220000182
Cph,l(XPA,i)=0.980-0.796×XPA,i (44)
ΔHr=128.70-0.659Ti (45)
ΔHd=211.044×(XSA,be 2-XSA,af 2) (46)
式(43)~(46)中,Cph,pr、Cph,SA和Cph,GH分别表示磷矿、硫酸和生成的半水硫酸钙晶体的比热容;Ti-1、Tsa、Tra和Trs,i分别表示进入第i反应器的主料浆、硫酸、返酸和循环料浆的温度;T0表示当前环境温度;Ti表示反应单元i的出口料浆温度;Cph,l(XpA,i)表示第i反应单元反应料浆液相比热容计算函数;ΔHd表示硫酸稀释到料浆液相中产生的稀释热;XSA,be和XSA,af分别表示稀释前后硫酸浓度;ΔHr表示磷矿酸解反应热。
一次真空闪蒸冷却器能量平衡模型如式(47)所示:
Figure BDA0002864365220000191
式(47)中,Tin,vc和Tout,vc分别表示真空冷却器入口和出口料浆温度;ΔHv表示真空冷却器的汽化热。
晶型转化过程中的能量平衡模型如式(48)~(50)所示:
Figure BDA0002864365220000192
ΔHr,d=172.872-1.080Td (49)
ΔHh=26.768+0.065Td (50)
式(48)~(50)中,Cph,DG生成的二水硫酸钙结晶产物的比热容;TD表示晶型转化过程中料浆温度;ΔHh表示半水硫酸钙转化成二水硫酸钙的反应热;ΔHr,d表示磷矿在晶型转化过程中的酸解反应热;
二次真空闪蒸冷却器能量平衡模型如式(51)所示:
Figure BDA0002864365220000193
式(51)中,Tinvc2和Toutvc2分别表示真空冷却器入口和出口料浆温度;ΔHv表示真空闪蒸冷却器的汽化热。
(2.3)磷矿酸解动力学模型:
磷矿颗粒酸解模型如式(52)~(56)所示:
Figure BDA0002864365220000201
Figure BDA0002864365220000202
CTA(i)=CSA(i)+CPA(i) (54)
Figure BDA0002864365220000203
Figure BDA0002864365220000204
式(52)~(56)中,φM表示磷矿颗粒形状因素,ρM表示磷矿密度,αSA表示与磷矿酸解反应的硫酸消耗定额;KL表示液相反应物硫酸通过液膜的传质系数;DI表示搅拌浆直径,DR表示反应器直径,
Figure BDA0002864365220000209
表示搅拌速度;De表示液相反应物硫酸在磷矿颗粒表面的有效扩散系数;r为反应过程中磷矿颗粒未反应芯半径;R为反应前磷矿初始颗粒半径;t表示磷矿颗粒在反应器内的溶解时间;CSA,CPA和CTA分别表示反应料浆中的硫酸、硫酸和总酸体积浓度;Re和Sc分别表示反应器内流体流动的雷诺数和史密特数;ρsl表示反应料浆液相密度;μsl表示反应料浆液相粘度。
假设磷矿颗粒为球形,则单个磷矿颗粒转化率的计算如式(57)所示:
Figure BDA0002864365220000205
磷矿颗粒在反应器i内的停留时间分布密度函数如式(58)所示:
Figure BDA0002864365220000206
Figure BDA0002864365220000207
则磷矿颗粒的粒径大小分布函数如式(60)所示:
Figure BDA0002864365220000208
第i个反应单元出口的平均转化率:
Figure BDA0002864365220000211
联立(57)~(61)可得:
Figure BDA0002864365220000212
式(62)中:
Figure BDA0002864365220000213
式(57)~(63)中,X表示单个磷矿颗粒的转化率;r为反应过程中磷矿颗粒未反应芯半径;R为反应前磷矿初始颗粒半径;Ej(t)表示磷矿颗粒在反应器内的停留时间分布函数,tavg表示料浆在反应器中的平均停留时间;VR表示反应器体积,Win表示进入反应槽物料的总质量流量;fi-1表示磷矿颗粒进入反应器i-1时的粒径大小分布函数,f0(R)表示磷矿颗粒进入反应器时的初始粒径大小分布函数;Rmin和Rmax分别表示磷矿颗粒进入反应器的初始最小粒径和最大粒径;
Figure BDA0002864365220000214
表示反应器i出口的平均转化率。
其中,反应中料浆液相密度和粘度计算分别如式(64)和式(65)所示:
Figure BDA0002864365220000215
Figure BDA0002864365220000216
式(64)~(65)中,T表示操作温度,fρ和fμ分别表示料浆液相密度和粘度拟合函数,料浆液相密度计算模型的回归参数为a0,a1,a2,a3,a4和a5、料浆液相粘度计算模型的回归系数为b0,b1,b2,b3,b4和b5;XPA,XSA,XCS分别表示反应料浆液相中磷酸质量分数、硫酸质量分数和硫酸钙质量分数。
(2.4)硫酸钙结晶动力学模型
晶体的质量生长速率计算如式(66)所示:
νe=KL×S (66)
硫酸钙过饱和度计算如式(67)所示:
Figure BDA0002864365220000221
晶体线性生长速率计算如式(68)所示:
Figure BDA0002864365220000222
晶体粒数密度计算如式(69)所示:
Figure BDA0002864365220000223
晶核粒数密度经验公式如式(70)所示:
ψi 0=2.15×1019×(VL)1.6 (70)
具体举例:第1反应单元的晶体粒数密度计算如式(71)所示:
Figure BDA0002864365220000224
其中,硫酸钙晶体含量计算如式(72)所示:
Figure BDA0002864365220000225
式(66)~(72)中,νe表示晶体的质量生长速率;S表示硫酸钙的过饱和度;
Figure BDA0002864365220000226
为硫酸钙在料浆环境内的饱和浓度;νL表示晶体的线性生长速率;L表示晶体特征长度;ρG表示生成的硫酸钙结晶体的密度;φG表示硫酸钙晶体形状因素;ψi
Figure BDA0002864365220000227
分别表示反应槽i的晶体粒数密度和晶核粒数密度;
硫酸钙在料浆环境内的饱和浓度计算如式(73)所示:
Figure BDA0002864365220000228
式(73)中,HG和DG分别代表半水硫酸钙(CaSO4·0.5H2O)和二水硫酸钙(CaSO4·2H2O)结晶体,α,β,γ,λ和ν为硫酸钙溶解度计算模型的回归系数。
(3’)根据磷酸生产中的工艺数据,对机理模型中的经验参数进行校正;
基于选取的磷矿酸解动力学模型和硫酸钙结晶动力学模型和各反应单元内的物料和能量衡算模型,分别选取反应器出口的转化率和出口料浆中晶体含量的机理模型预测值和实际值差的平方最小为目标,将动力模型参数校正问题转化为两个单目标无约束优化问题。所述优化问题表达为如式(74)所示:
Figure BDA0002864365220000231
其中,优化变量U1包括:有效扩散系数De、料浆液相密度计算模型的回归参数a0,a1,a2,a3,a4和a5、料浆液相粘度计算模型的回归系数b0,b1,b2,b3,b4和b5;优化变量U2包括硫酸钙溶解度计算模型的回归系数α,β,γ,λ和ν。变量
Figure BDA0002864365220000232
分别表示反应器转化率的实际值和预测值,
Figure BDA0002864365220000233
分别表示料浆中结晶含量的实际值与预测值。
根据步骤(1’)中所采集的实际工艺数据,采用差分进化算法对所建两个单目标无约束优化问题进行优化求解,获得机理模型参数的优化估值,实现机理模型的校正,其中求得的经验参数值如下:
料浆液相密度计算模型的回归参数a0,a1,a2,a3,a4和a5分别为1284、-0.56、11、9、-0.02和-0.02,料浆液相粘度计算模型的回归系数b0,b1,b2,b3,b4和b5分别为0.479、-0.0107、-1.183、2.66×10-3、3.24和-0.013。
硫酸钙溶解度计算模型的回归系数α,β,γ,λ和ν分别为2.8792、0.0139、-8.9429、5.9658和-0.01185;二水硫酸钙(CaSO4·2H2O)溶解度计算模型的回归系数α,β,γ,λ和ν分别为0.6333、0.00068、0.0025、-0.00031和0.00015。
(4’)根据校正后的机理模型,确定约束条件、优化目标和决策变量,构建优化模型;所述优化目标包括经济效益;所述决策变量包括操作参数;
优化目标:以磷酸生产过程经济效益最大化为优化目标,如式(75)所示:
Figure BDA0002864365220000234
式(75)中,CPA为成品磷酸的产品价格,Cphr为磷矿的单位成本,CSA为浓硫酸的单位成本;Fpra,Fphr,Fsa,i分别为成品磷酸流量、原料磷矿流量和浓硫酸流量。
决策变量:各股硫酸流量、原料磷矿流量、返酸流量、石膏洗涤水流量、循环料浆比和真空闪蒸冷却器真空度。
约束条件包括:磷酸生产过程机理模型(包括物料平衡模型、能量平衡模型、磷矿酸解动力学模型和硫酸钙结晶动力模型)、工艺控制指标(包括各反应过程料浆液相P2O5浓度、H2SO4浓度和CaO浓度、料浆含固量、料浆温度和真空闪蒸冷却的温度降)约束、产品流量约束(成品磷酸流量约束)、产品组成约束(包括成品磷酸中P2O5浓度和H2SO4浓度,磷石膏中P2O5浓度、H2SO4浓度和固含量)、装置负荷约束和决策变量的边界条件作为优化模型的约束条件。具体如下:
(4.1)工艺控制指标约束
料浆液相P2O5浓度约束:
Figure BDA0002864365220000235
料浆液相H2SO4浓度约束:
Figure BDA0002864365220000236
料浆液相CaO浓度约束:
Figure BDA0002864365220000241
料浆的固含量约束:
Figure BDA0002864365220000242
其中
Figure BDA0002864365220000243
料浆的温度约束:
Figure BDA0002864365220000244
真空闪蒸冷却的温度降约束:
Figure BDA00028643652200002420
(4.2)产品组成约束
成品磷酸中P2O5浓度约束:
Figure BDA0002864365220000245
成品磷酸中H2SO4浓度约束:
Figure BDA0002864365220000246
磷石膏中水溶性P2O5浓度约束:
Figure BDA0002864365220000247
磷石膏中H2SO4浓度约束:
Figure BDA0002864365220000248
磷石膏中固含量约束:
Figure BDA0002864365220000249
(4.3)产品流量约束:
Figure BDA00028643652200002410
(4.4)装置进负荷约束:
料浆进料流量约束:
Figure BDA00028643652200002411
硫酸进料流量约束:
Figure BDA00028643652200002412
返回磷酸进料流量约束:
Figure BDA00028643652200002413
出口料浆流量约束:
Figure BDA00028643652200002414
(4.5)决策变量的边界约束
磷矿投入量约束:
Figure BDA00028643652200002415
硫酸给定量约束:
Figure BDA00028643652200002416
料浆循环倍率约束:
Figure BDA00028643652200002417
真空闪蒸冷却器的真空度约束:
Figure BDA00028643652200002418
(5’)求解优化模型,得到优化后的决策变量,具体如下:
将步骤(4’)模型中的单目标多约束优化问题转化成两个目标的多目标无约束优化问题,其数学表达式可描述为如(76)所示:
Figure BDA00028643652200002419
式(76)中,D为决策向量
Figure BDA00028643652200002510
的整个搜索空间;
Figure BDA0002864365220000251
表示为该问题的两个目标函数;其中,目标函数
Figure BDA0002864365220000252
的数学表达式为
Figure BDA0002864365220000253
目标函数
Figure BDA0002864365220000254
的数学表达式为
Figure BDA0002864365220000255
其中,
Figure BDA0002864365220000256
式(77)为整个磷酸生产生产过程中的约束破坏程序;i为约束条件的索引号,m为所有约束条件的数量,q为其中的等式约束条件的数量;
Figure BDA0002864365220000257
表示单一约束条件违反程度;ri表示预先设定的约束条件违反惩罚因子;
Figure BDA0002864365220000258
表示不等式约束,
Figure BDA0002864365220000259
表示等式约束,γ表示等式约束条件的容许误差。
采用基于Pareto最优的多目标差分进化算法对式(76)和式(77)中两目标无约束优化问题进行优化求解。
所述差分进化算法包括如下步骤:
步骤a,获取决策向量搜索空间,并设定参数;
步骤b,初始化种群;
步骤c,计算各个个体的目标函数值;
步骤d,进行变异操作和交叉操作,以生成新个体;
步骤e,进行选择操作:将交叉变异后新产生的种群与初始种群混合,基于Pareto支配关系的排序方法进行排序,选择出N个最佳的个体进入下一代种群中;
步骤f,判断是否满足终止条件,若是,则执行下一步骤,否则返回执行步骤c;
步骤g,输出整个过程的最优决策变量和最优化目标值。
具体的,步骤a中获取实际磷酸生产过程中各操作参数调节范围,包括进料负荷范围、循环料浆倍比范围和闪蒸冷却器真空度调节范围,定义决策向量的搜索空间D。在此基础上,设置差分进化算法参数,包括种群大小、最大进化代数、变异参数和交叉参数。
步骤b中:在决策向量的整个搜索空间内,随机生成N(N为种群规模)个个体组成的初始化种群。
步骤c中:将种群中每个个体作为系统变量输入全流程模拟计算模型,计算系统的运行成本与约束违反惩罚项作为个体适应度值。
本实施例1中优化后的决策变量可直接应用于生产改进,优化后的经济效益显著高于优化前的经济效益,实际生产价值高。
实施例2
本实施例提供一种磷酸生产过程的优化装置,所述优化装置包括如下模块:数据模块、机理模型模块、模型校正模块以及决策变量优化模块;所述数据模块用于获取磷酸生产的工艺数据;所述机理模型模块用于构建和/或调用磷酸生产的机理模型;所述模型校正模块利用数据模块中的工艺数据对所述机理模型进行校正;所述决策变量优化模块根据机理模型,构建具有约束条件,以优化目标为导向,对决策变量进行优化的优化模型,并对所述优化模型求解;所述优化装置还包括用于将优化后决策变量运用至磷酸生产中的方案执行模块。
所述优化装置可执行实施例1中提供的优化方法,能够更大程度上挖掘磷酸生产过程的经济潜能,降低生产成本,提高经济效益。
综上所述,本发明提供的磷酸生产过程的优化方法对半水反应过程、一次固液分离过程、晶型转化过程和二次固液分离过程各装置构建生产单元机理模型;以经济效益最大为优化目标,充分发挥了现有生产流程的潜能,提高企业整体经济效益,对提升整个流程生产运行水平具有重要实际意义。
申请人声明,本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种磷酸生产过程的优化方法,其特征在于,所述优化方法包括如下步骤:
(1)根据磷酸生产中的工艺数据,对机理模型中的经验参数进行校正;所述磷酸生产包括半水反应过程、一次固液分离过程、晶型转化过程和二次固液分离过程;
(2)根据校正后的机理模型,构建具有约束条件,以优化目标为导向,对决策变量进行优化的优化模型,并对所述优化模型求解;所述优化目标包括经济效益;所述决策变量包括操作参数。
2.根据权利要求1所述的优化方法,其特征在于,步骤(1)中所述工艺数据包括原料数据、设备参数、工艺控制指标、操作参数和产品参数;
优选地,所述原料数据包括原料流量、原料组成和原料性质;
优选地,所述原料组成包括硫酸组成和磷矿组成;
优选地,所述硫酸组成包括硫酸浓度;
优选地,所述磷矿组成包括磷矿中P2O5含量、CaO含量和SiO2含量;
优选地,所述原料性质包括磷矿粒径和磷矿密度;
优选地,所述设备参数包括设备流程、设备结构和设备特性参数;
优选地,所述设备特性参数包括反应装置尺寸参数和搅拌装置尺寸参数;
优选地,所述操作参数包括不同原料配比、循环流股流量占比、搅拌速度、操作温度、操作时间或操作压力中任意一种或至少两种的组合;
优选地,所述产品参数包括产品产量和产品组成。
3.根据权利要求1或2所述的优化方法,其特征在于,步骤(1)中所述机理模型包括物料平衡模型、能量平衡模型、磷矿反应动力学模型和硫酸钙结晶动力学模型;
优选地,所述物料平衡模型包括半水反应过程物料平衡模型、一次固液分离过程物料平衡模型、晶型转化过程物料平衡模型和二次固液分离过程物料平衡模型;
优选地,所述物料平衡模型还包括真空闪蒸冷却物料平衡模型;
优选地,所述能量平衡模型包括半水反应过程能量平衡模型和晶型转化过程能量平衡模型;
优选地,所述能量平衡模型还包括真空闪蒸冷却能量平衡模型。
4.根据权利要求1~3任一项所述的优化方法,其特征在于,步骤(1)中所述经验参数包括磷矿反应动力学模型中料浆液相密度函数的拟合系数;
优选地,所述经验参数包括磷矿反应动力学模型中粘度函数的拟合系数;
优选地,所述经验参数包括硫酸钙结晶动力学模型中硫酸钙溶解度模型的回归系数。
5.根据权利要求1~4任一项所述的优化方法,其特征在于,步骤(1)中所述校正包括:以工艺指标预测值与实际值差的平方最小为目标,对机理模型优化求解,获得校正后的机理模型经验参数;
优选地,所述工艺指标包括转化率和反应料浆中晶体含量;
优选地,所述优化采用差分进化算法进行优化求解。
6.根据权利要求1~5任一项所述的优化方法,其特征在于,步骤(2)中所述约束条件包括机理模型约束、工艺控制指标约束、产品流量约束、产品组成约束、装置负荷约束和决策变量的边界条件约束;
优选地,所述工艺控制指标包括生产中料浆的组成约束、料浆的温度约束和真空闪蒸冷却的温度降约束;
优选地,所述料浆的组成约束包括料浆中P2O5浓度约束、H2SO4浓度约束、CaO浓度约束和含固量约束。
7.根据权利要求6所述的优化方法,其特征在于,所述产品组成约束包括成品磷酸组成约束和磷石膏组成约束;
优选地,所述成品磷酸组成约束包括成品磷酸中P2O5浓度约束和H2SO4浓度约束;
优选地,所述磷石膏组成约束包括磷石膏中P2O5浓度约束、H2SO4浓度约束和固含量约束。
8.根据权利要求1~7任一项所述的优化方法,其特征在于,步骤(2)中所述优化模型为单目标多约束模型;
优选地,所述优化求解的算法包括差分进化算法;
优选地,所述优化求解包括:将单目标多约束模型转化为双目标无约束模型,采用多目标差分进化算法进行优化求解。
9.一种磷酸生产过程的优化装置,其特征在于,所述优化装置包括如下模块:数据模块、机理模型模块、模型校正模块以及决策变量优化模块;
所述数据模块用于获取磷酸生产的工艺数据;
所述机理模型模块用于构建和/或调用磷酸生产的机理模型;
所述模型校正模块利用数据模块中的工艺数据对所述机理模型进行校正;
所述决策变量优化模块根据机理模型,构建具有约束条件,以优化目标为导向,对决策变量进行优化的优化模型,并对所述优化模型求解。
10.根据权利要求9所述的优化装置,其特征在于,所述优化装置还包括用于将优化后决策变量运用至磷酸生产中的方案执行模块。
CN202011577453.2A 2020-12-28 2020-12-28 一种磷酸生产过程的优化方法及优化装置 Pending CN112551495A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011577453.2A CN112551495A (zh) 2020-12-28 2020-12-28 一种磷酸生产过程的优化方法及优化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011577453.2A CN112551495A (zh) 2020-12-28 2020-12-28 一种磷酸生产过程的优化方法及优化装置

Publications (1)

Publication Number Publication Date
CN112551495A true CN112551495A (zh) 2021-03-26

Family

ID=75033889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011577453.2A Pending CN112551495A (zh) 2020-12-28 2020-12-28 一种磷酸生产过程的优化方法及优化装置

Country Status (1)

Country Link
CN (1) CN112551495A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066536A (zh) * 2021-04-19 2021-07-02 工数科技(广州)有限公司 二水湿法磷酸萃取生产优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674279A (zh) * 2012-06-08 2012-09-19 贵州川恒化工有限责任公司 半水工艺生产磷酸的方法
CN103443110A (zh) * 2011-01-04 2013-12-11 纳尔科公司 使用过滤后的磷酸的磷酸制备石膏过滤絮凝剂的预稀释(浓度降低)
CN107840317A (zh) * 2017-10-30 2018-03-27 安徽六国化工股份有限公司 一种一步法二水‑半水湿法磷酸生产工艺
CN209906348U (zh) * 2019-04-10 2020-01-07 中石化南京工程有限公司 一种半水-二水法磷酸生产装置
CN111807340A (zh) * 2019-04-10 2020-10-23 中石化南京工程有限公司 一种半水-二水法磷酸生产装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443110A (zh) * 2011-01-04 2013-12-11 纳尔科公司 使用过滤后的磷酸的磷酸制备石膏过滤絮凝剂的预稀释(浓度降低)
CN102674279A (zh) * 2012-06-08 2012-09-19 贵州川恒化工有限责任公司 半水工艺生产磷酸的方法
CN107840317A (zh) * 2017-10-30 2018-03-27 安徽六国化工股份有限公司 一种一步法二水‑半水湿法磷酸生产工艺
CN209906348U (zh) * 2019-04-10 2020-01-07 中石化南京工程有限公司 一种半水-二水法磷酸生产装置
CN111807340A (zh) * 2019-04-10 2020-10-23 中石化南京工程有限公司 一种半水-二水法磷酸生产装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066536A (zh) * 2021-04-19 2021-07-02 工数科技(广州)有限公司 二水湿法磷酸萃取生产优化方法

Similar Documents

Publication Publication Date Title
CN105502441B (zh) 连续化生产电池级碳酸锂的方法
CN105731690B (zh) 一种含磷废水中有机磷转化至无机磷的方法
CN103030129B (zh) 一种用湿法磷酸生产水溶性磷酸钾铵肥料的方法
CN105948009A (zh) 一种节能半水-二水湿法磷酸联产白石膏的方法
CN105502451B (zh) 一种生产氟化铝联产高分子比冰晶石的方法
CN105060317A (zh) 一种由氯化钾与硝酸铵复分解循环法生产高品质硝酸钾的方法
CN111977625A (zh) 一种二级二水法湿法磷酸生产工艺
CN112551495A (zh) 一种磷酸生产过程的优化方法及优化装置
CN108017077A (zh) 一种生产氟化铝联产高分子比冰晶石的方法
CN102424426B (zh) 利用黄磷副产磷铁渣制备氧化铁红和磷酸钠的方法
CN101823704B (zh) 一种连续化合成亚磷酸方法
CN114804030B (zh) 一种无水氟化氢的制备方法及装置
CN106650999A (zh) 一种啤酒生产调度优化方法
CN101514170A (zh) 苯胺基乙腈的制备方法
Gioia et al. Analysis, simulation, and optimization of the hemihydrate process for the production of phosphoric acid from calcareous phosphorites
CN101863482A (zh) 一种氟硅酸氨化连续制取白炭黑和氟化铵的方法
CN113066536A (zh) 二水湿法磷酸萃取生产优化方法
CN102060691B (zh) 一种柠檬酸氢钙的连续酸解工艺
CN102557077A (zh) 利用乳酸生产中产生的硫酸钙废渣生产硫酸铵的方法
Bouchkira et al. Multi-objective optimization of the digestion tank of an industrial phosphoric acid manufacturing process
CN116864014A (zh) 一种基于代理模型的湿法磷酸生产工艺全流程模拟与优化方法
CN103435069A (zh) 一种连续性生产氟化氢铵的方法
CN216093690U (zh) 氯乙酸生产装置
CN213865389U (zh) 利用水泥窑窑尾废气和磷石膏制备硫酸铵的系统
CN104692836B (zh) 单槽多桨搅拌熟化的过磷酸钙料浆制备方法及其生产设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination