CN112538518B - 一种基于纳米酶检测组蛋白乙酰转移酶的方法 - Google Patents

一种基于纳米酶检测组蛋白乙酰转移酶的方法 Download PDF

Info

Publication number
CN112538518B
CN112538518B CN202011487460.3A CN202011487460A CN112538518B CN 112538518 B CN112538518 B CN 112538518B CN 202011487460 A CN202011487460 A CN 202011487460A CN 112538518 B CN112538518 B CN 112538518B
Authority
CN
China
Prior art keywords
solution
hat
absorbance
cubi
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011487460.3A
Other languages
English (en)
Other versions
CN112538518A (zh
Inventor
王光丽
陈彦如
孙冬雪
董玉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202011487460.3A priority Critical patent/CN112538518B/zh
Publication of CN112538518A publication Critical patent/CN112538518A/zh
Application granted granted Critical
Publication of CN112538518B publication Critical patent/CN112538518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/91045Acyltransferases (2.3)
    • G01N2333/91051Acyltransferases other than aminoacyltransferases (general) (2.3.1)
    • G01N2333/91057Acyltransferases other than aminoacyltransferases (general) (2.3.1) with definite EC number (2.3.1.-)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/916Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)
    • G01N2333/922Ribonucleases (RNAses); Deoxyribonucleases (DNAses)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种基于纳米酶检测组蛋白乙酰转移酶的方法,属于纳米生物分析检测领域。本发明通过CuBi2O4与K4[Fe(CN)6]原位反应生成具有模拟过氧化物酶活性的CuBi2O4/Bi4[Fe(CN)6]3,进行HAT p300的检测。本发明方法能灵敏检测0.3‑200 nmol/L范围内的HAT p300,检测限低达0.09 nmol/L,具有非常优异的应用前景。

Description

一种基于纳米酶检测组蛋白乙酰转移酶的方法
技术领域
本发明属于纳米生物分析检测领域,具体涉及一种基于纳米酶检测组蛋白乙酰转移酶的方法。
背景技术
组蛋白乙酰化是调节基因转录的关键因素之一,并参与真核基因表达和其他重要的生命过程以及其它翻译后修饰的过程[Peterson C.L.;Laniel M.A.Curr.Biol.2004,14,R546–R551]。而组蛋白乙酰转移酶(HAT)充当组蛋白乙酰化的催化酶,使用乙酰辅酶A作为乙酰基供体,将乙酰基转移至底物肽,同时产生大量副产物辅酶A。已有证据表明,组蛋白乙酰转移酶水平与多种人类疾病的发生有密切关系,例如癌症,白血病,老年痴呆症,艾滋病和心血管疾病等[Han Y.;Li H.Anal.Chem.2015,87,9179-9185]。因此开发简单、快速、灵敏和选择性检测组蛋白乙酰转移酶的方法具有重要意义。到目前为止,已报道一些用于组蛋白乙酰转移酶检测的方法,包括放射性同位素标记[Turlais F.;HardcastleA.Anal.Biochem.2001,298,62-68],电化学发光[Chen H.;Liu X.BiosensBioelectron.2019,126,535-542],酶联免疫吸附测定(ELISA)[Kuninger D.;LundbladJ.J.Biotechnol.2007,131,253-260],比色法[Zhen Z.;Tang L.J.Anal.Chem.2012,84,3614-3620]荧光法[Ghadiali J.E.;Lowe S.B.Angew.Chem.Int.Ed.2011,50,3417-3420]等。然而,传统的放射性同位素标记方法具有放射性危害,费时且标记过程成本高等不足。对于ELISA和比色法等基于抗体的识别技术来说,存在不同批次的抗体之间的差异,抗体标记成本高以及探针制备过程复杂等缺点。而荧光法则需要昂贵的仪器和复杂的荧光标记过程。因此,迫切需要开发一种低成本,高效且灵敏的组蛋白乙酰转移酶检测方法。
近年来,基于纳米材料的分析方法具有快速、灵敏以及易微型化等诸多优点引起了广泛的关注。纳米酶是一类具有酶活性的纳米材料,由于其稳定性好,酶活性高且容易调节、成本低等特点同样受到了研究人员的密切关注[Wei H.;Wang E.Chem.Soc.Rev.2013,42,6060–6093;Lin Y.H.;Ren J.S.Acc.Chem.Res.2014,47,1097–1105]。目前基于纳米材料的纳米酶在生物传感[Anjani P.Nagvenkar.;Aharon Gedanken.ACSAppl.Mater.Interfaces.2016,8,22301-22308;Jeonghyo Kim.ACSAppl.Mater.Interfaces.2018,10,12534-12543],疾病诊断和治疗[Mu X.Y.;WangJ.Y.ACS Nano,2019,13,1870-1884]以及污染物降解[Li S.Q.;Hou Y.J.ACSAppl.Mater.Interfaces.2020,12,2581–2590]等领域得到了越来越多的应用。但是,其在组蛋白乙酰转移酶的检测方面的应用尚未报道。
发明内容
本发明发现了一种新型的CuBi2O4/Bi4[Fe(CN)6]3纳米酶,并首次将纳米酶用于组蛋白乙酰转移酶(HAT p300)的比色法测定。
本发明利用纳米酶检测组蛋白乙酰转移酶的方法,基于CuBi2O4与K4[Fe(CN)6]原位反应生成具有模拟过氧化物酶活性的CuBi2O4/Bi4[Fe(CN)6]3复合物,在H2O2存在下,可以催化氧化显色底物3,3’,5,5’-四甲基联苯胺变为蓝色,输出比色信号。当无目标物HATp300存在时,辅酶A适配体(一段单链DNA)被限制性核酸外切酶I水解,产生的产物dNMP,会优先吸附到CuBi2O4表面,抑制了CuBi2O4与K4[Fe(CN)6]的反应产生CuBi2O4/Bi4[Fe(CN)6]3复合物,导致体系不表现模拟酶活性;当有目标物HAT p300存在时,HAT p300催化乙酰辅酶A将乙酰基转移至底物肽的赖氨酸的残基上,并产生大量辅酶A,使得辅酶A与体系中的辅酶A适配体进行特异性结合,以保护辅酶A适配体不被限制性核酸外切酶I水解,不产生产物dNMP,而CuBi2O4与K4[Fe(CN)6]的反应得以顺利进行产生CuBi2O4/Bi4[Fe(CN)6]3,从而输出比色信号,达到快速、灵敏检测HAT p300的效果。
本发明的目的是提供一种基于CuBi2O4/Bi4[Fe(CN)6]3纳米材料模拟过氧化物酶的组蛋白乙酰转移酶的检测方法,在HAT p300的酶催化反应下,产生的辅酶A与辅酶A适配体特异性结合后,辅酶A适配体无法被限制性核酸外切酶I水解产生dNMP,CuBi2O4与K4[Fe(CN)6]的反应得以顺利进行产生CuBi2O4/Bi4[Fe(CN)6]3,从而输出比色信号,构建了一种便捷、灵敏、无标记的比色法检测HAT p300的方法。
具体方案如下:
一种基于纳米酶检测组蛋白乙酰转移酶的方法,所述方法包括如下步骤:
(1)将不同浓度的HAT p300与乙酰辅酶A、底物肽混合,孵育;孵育结束后,加入辅酶A适配体,继续进行孵育;孵育结束后,再加入限制性核酸外切酶I,继续进行孵育,孵育结束后,获得混合溶液;
(2)向所得混合溶液中加入CuBi2O4溶液,孵育;向混合溶液中分别加入K4[Fe(CN)6]、特征显色底物3,3’,5,5’―四甲基联苯胺、缓冲溶液和H2O2,孵育;孵育结束后,使用酶标仪进行光谱扫描,获得不同浓度相应的吸光度值A;同时,测定HAT p300浓度为0时测得的吸光度值A0,计算二者差值得到不同浓度相应的吸光度增值(A-A0);
(3)利用HAT p300的浓度与吸光度增量构建线性关系,得到线性测定模型。
在本发明的一种实施方式中,所述方法还包括:按照步骤(1)和步骤(2),对待测样品进行孵育处理,测得相应的吸光度增量;然后通过步骤(3)的线性测定模型,计算得到待测样品中HAT p300的浓度含量。
在本发明的一种实施方式中,所述底物肽的组成为:RGKGGKGLGKGGAKA。
在本发明的一种实施方式中,步骤(1)是将20μL不同浓度的HAT p300,20μL1.0mmol/L的乙酰辅酶A,20μL 1.0mmol/L的底物肽混合,在20~40℃下孵育50-90min。
在本发明的一种实施方式中,步骤(1)是加入20μL 0.1mmol/L辅酶A适配体溶液,在20~40℃下孵育6-12h。
在本发明的一种实施方式中,步骤(1)是加入20μL 5.0U/mL限制性核酸外切酶I溶液,在30~40℃下孵育30-90min。
在本发明的一种实施方式中,步骤(2)中CuBi2O4可通过如下方法制得:
将铋盐分散在含浓硝酸的水中,获得澄清溶液,然后向其中滴入铜盐溶液,最后加入碱液,混匀形成含蓝绿色沉淀的混合体系;将混合体系转移至高压釜中进行反应;反应结束后,洗涤、干燥,得到棕色粉末CuBi2O4产物。
在本发明的一种实施方式中,铜盐与铋盐的摩尔比为1:(1-5)。
在本发明的一种实施方式中,所述的铋盐选自氯化铋或硝酸铋。
在本发明的一种实施方式中,所述的铜盐选自硝酸铜或硫酸铜。
在本发明的一种实施方式中,所述铋盐的物质的量为1.0-3.0mmol。
在本发明的一种实施方式中,所述反应的温度为100-180℃;反应的时间为14-24h。
在本发明的一种实施方式中,CuBi2O4的制备方法具体包括如下过程:
CuBi2O4纳米材料的合成:将一定物质的量的铋盐分散在20mL含有0.7mL浓硝酸的水溶液中以形成澄清溶液,然后向其中滴入10mL 0.05mol/L铜盐溶液,最后加入15mL1.0mol/L的NaOH溶液,直至溶液变成蓝绿色沉淀;将混合物转移到聚四氟乙烯内衬的不锈钢高压釜中,然后在一定温度下加热一定时间;将所得产物用水和乙醇洗涤直至pH达到7.0,然后在60℃下干燥过夜,最终得到棕色粉末产物。
在本发明的一种实施方式中,组蛋白乙酰转移酶的测定方法具体如下:
(1)将20μL不同浓度的HAT p300,20μL 1.0mmol/L的乙酰辅酶A,20μL 1.0mmol/L的底物肽混合,并在30℃下孵育80min,孵育结束后再向其中加入20μL 0.1mmol/L辅酶A适配体溶液,室温下孵育过夜,孵育结束后再向其中加入20μL 5.0U/mL限制性核酸外切酶I溶液,继续37℃下孵育60min;
(2)孵育结束后,向上述混合溶液中加入20μL 1.0mg/mL的CuBi2O4,孵育5min,最后向混合溶液中加入20μL 0.1mmol/L的K4[Fe(CN)6]、20μL 5.0mmol/L的纳米材料模拟酶的特征显色底物3,3’,5,5’―四甲基联苯胺、38μL 0.4mol/L的NaAc/HAc缓冲溶液(pH=4.0)以及20μL 1.0mmol/L H2O2,在35℃下孵育15min后,使用酶标仪进行光谱扫描,获得不同浓度相应的吸光度值A;同时,测定HAT p300浓度为0时测得的吸光度值A0,计算二者差值得到不同浓度相应的吸光度增值(A-A0);
(3)利用HAT p300的浓度与相应的吸光度增值构建线性关系,得到线性测定模型。
本发明有益效果:
本发明提供了一种新型CuBi2O4/Bi4[Fe(CN)6]3纳米酶简单、无标记的比色检测HATp300的方法,该方法能检测0.3-200nmol/L范围内的HAT p300,检测限低达0.09nmol/L。基于单链DNA水解产物dNMP对生成CuBi2O4/Bi4[Fe(CN)6]3纳米酶的抑制作用,以及利用HATp300的催化反应,产生的辅酶A与辅酶A适配体进行特异性识别,使辅酶A适配体无法被限制性核酸外切酶I水解,并顺利生成CuBi2O4/Bi4[Fe(CN)6]3纳米酶,氧化典型的显色底物3,3',5,5'-四甲基联苯胺,输出比色信号,并且操作简单、响应速度快、可视化观察、成本低。
附图说明
图1为实施例1中制备得到的CuBi2O4纳米材料的透射电镜图。
图2为实施例1中不同物质的吸收光谱图:a)CuBi2O4;b)CuBi2O4+H2O2;c)K4[Fe(CN)6+H2O2;d)CuBi2O4+K4[Fe(CN)6];e)CuBi2O4+K4[Fe(CN)6]+H2O2。3,3’,5,5’-四甲基联苯胺的浓度为5×10-4mol/L。
图3为实施例1中不同浓度HAT p300(0,0.3,1.0,3.0,10,30,100,150,200,300,500nmol/L)存在下体系的吸收图谱。
图4为实施例1中吸光度的增量与HAT p300浓度的对数值之间的线性关系图。
具体实施方式
实施例1:
a、CuBi2O4纳米材料的合成:将1.0mmol Bi(NO3)3·5H2O分散在20mL含有0.7mL浓硝酸的水溶液中,搅拌2h直至溶液澄清透明;在搅拌状态下将10mL Cu(NO3)2·3H2O(0.05mol/L)水溶液加入上述澄清溶液中;随后在持续搅拌下逐滴加入15mL NaOH水溶液(1.0mol/L),直至溶液变成蓝绿色沉淀。将最终的混合物转移到特氟龙内衬的不锈钢高压釜中并在140℃下加热14h。产物用乙醇和水交替洗涤六次,并在60℃下真空干燥过夜,最终得到的产物为棕色粉末;
b、HAT p300的测定:将20μL不同浓度的HAT p300(0,0.3,1.0,3.0,10,30,100,150,200,300,500nmol/L)、20μL 1.0mmol/L的乙酰辅酶A和20μL 1.0mmol/L的底物肽(RGKGGKGLGKGGAKA)混合并在30℃下孵育80min。孵育结束后向其中加入20μL 0.1mmol/L的辅酶A适配体溶液,室温下孵育过夜;孵育结束后再向其中加入20μL 5.0U/mL的限制性核酸外切酶I溶液,37℃下孵育60min;孵育结束后向混合溶液中加入20μL 1.0mg/mL的CuBi2O4溶液,孵育5min;最后,向混合溶液中分别加入20μL 0.1mmol/L的K4[Fe(CN)6]、20μL 5.0mmol/L的纳米材料模拟酶的特征显色底物3,3',5,5'-四甲基联苯胺、38μL 0.4mol/L的NaAc/HAc缓冲溶液(pH=4.0)以及20μL 1.0mmol/L H2O2,在35℃下孵育15min后,使用酶标仪进行光谱扫描(如图3所示),获得不同浓度样品在特征吸收(最大波长=652nm)处的吸光度值,计算得到不同浓度下的吸光度增值(A-A0),其中A为该浓度下的吸光度值;A0为浓度为0时的吸光度值;
c、构建线性测定模型:利用HAT p300的浓度与吸光度增值A-A0构建线性关系,得到测定模型。
结果如图4所示,线性模型为:y=0.2760Log[HAT p300]+0.1944;相关性系数R2为:0.9947;线性范围为:0.3-200nmol/L;检出限低达0.09nmol/L。
实施例2:
a、CuBi2O4纳米材料的合成:将1.0mmol BiCl3分散在20mL含有0.7mL浓硝酸的水溶液中,搅拌2h直至溶液澄清透明;在搅拌状态下将10mL Cu(SO4)2·5H2O(0.05mol/L)水溶液加入上述澄清溶液中;随后在持续搅拌下逐滴加入15mL NaOH水溶液(1.0mol/L),直至溶液变成蓝绿色沉淀。将最终的混合物转移到特氟龙内衬的不锈钢高压釜中并在160℃下加热16h。产物用乙醇和水交替洗涤六次,并在60℃下真空干燥过夜,最终得到的产物为棕色粉末;
b、HAT p300的测定:将20μL不同浓度的HAT p300(0,0.3,1.0,3.0,10,30,100,150,200,300,500nmol/L)、20μL 1.0mmol/L的乙酰辅酶A和20μL 1.0mmol/L的底物肽(RGKGGKGLGKGGAKA)混合并在30℃下孵育80min。孵育结束后向其中加入20μL 0.1mmol/L的辅酶A适配体溶液,室温下孵育过夜;孵育结束后再向其中加入20μL 5.0U/mL的限制性核酸外切酶I溶液,37℃下孵育60min;孵育结束后向混合溶液中加入20μL 1.0mg/mL的CuBi2O4溶液,孵育5min;最后,向混合溶液中分别加入20μL 0.1mmol/L的K4[Fe(CN)6]、20μL 5.0mmol/L的纳米材料模拟酶的特征显色底物3,3',5,5'-四甲基联苯胺、38μL 0.4mol/L的NaAc/HAc缓冲溶液(pH=4.0)以及20μL 1.0mmol/L H2O2,在35℃下孵育15min后,使用酶标仪进行光谱扫描,获得不同浓度样品在特征吸收(最大波长=652nm)处的吸光度值,计算得到不同浓度下的吸光度增值(A-A0),其中A为该浓度下的吸光度值;A0为浓度为0时的吸光度值。
c、构建线性测定模型:利用HAT p300的浓度与吸光度增值A-A0构建线性关系,得到测定模型。

Claims (2)

1.一种基于纳米酶检测组蛋白乙酰转移酶的方法,其特征在于,所述方法包括如下步骤:
a、CuBi2O4纳米材料的合成:将每1.0mmol Bi(NO3)3·5H2O分散在20mL含有0.7mL浓硝酸的水溶液中,搅拌2h直至溶液澄清透明;在搅拌状态下将10mL 0.05mol/L的Cu(NO3)2·3H2O水溶液加入上述澄清溶液中;随后在持续搅拌下逐滴加入15mL 1.0mol/L的NaOH水溶液,直至溶液变成蓝绿色沉淀;将最终的混合物转移到特氟龙内衬的不锈钢高压釜中并在140℃下加热14h;产物用乙醇和水交替洗涤六次,并在60℃下真空干燥过夜,最终得到的产物为棕色粉末;
b、HAT p300的测定:将每20μL不同浓度的HAT p300、20μL 1.0mmol/L的乙酰辅酶A和20μL 1.0mmol/L的底物肽RGKGGKGLGKGGAKA混合并在30℃下孵育80min;孵育结束后向其中加入20μL 0.1mmol/L的辅酶A适配体溶液,室温下孵育过夜;孵育结束后再向其中加入20μL5.0U/mL的限制性核酸外切酶I溶液,37℃下孵育60min;孵育结束后向混合溶液中加入20μL1.0mg/mL的CuBi2O4溶液,孵育5min;最后,向混合溶液中分别加入20μL 0.1mmol/L的K4[Fe(CN)6]、20μL 5.0mmol/L的纳米材料模拟酶的特征显色底物3,3',5,5'-四甲基联苯胺、38μL 0.4mol/L pH=4.0的NaAc/HAc缓冲溶液以及20μL 1.0mmol/L H2O2,在35℃下孵育15min后,使用酶标仪进行光谱扫描,获得不同浓度样品在最大波长652nm处的吸光度值,计算得到不同浓度下的吸光度增值A-A0,其中A为该浓度下的吸光度值;A0为浓度为0时的吸光度值;
c、构建线性测定模型:利用HAT p300的浓度与吸光度增值A-A0构建线性关系,得到测定模型。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:按照步骤b对待测样品进行孵育处理,测得相应的吸光度增量;然后通过步骤c的线性测定模型,计算得到待测样品中HAT p300的浓度含量。
CN202011487460.3A 2020-12-16 2020-12-16 一种基于纳米酶检测组蛋白乙酰转移酶的方法 Active CN112538518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011487460.3A CN112538518B (zh) 2020-12-16 2020-12-16 一种基于纳米酶检测组蛋白乙酰转移酶的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011487460.3A CN112538518B (zh) 2020-12-16 2020-12-16 一种基于纳米酶检测组蛋白乙酰转移酶的方法

Publications (2)

Publication Number Publication Date
CN112538518A CN112538518A (zh) 2021-03-23
CN112538518B true CN112538518B (zh) 2023-08-25

Family

ID=75018931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011487460.3A Active CN112538518B (zh) 2020-12-16 2020-12-16 一种基于纳米酶检测组蛋白乙酰转移酶的方法

Country Status (1)

Country Link
CN (1) CN112538518B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965618B (zh) * 2022-06-13 2023-10-17 潍坊学院 双模式生物传感器及其在dna甲基转移酶活性检测中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846379A (zh) * 2019-11-18 2020-02-28 南京市第二医院 一种检测组蛋白乙酰转移酶的传感器及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846379A (zh) * 2019-11-18 2020-02-28 南京市第二医院 一种检测组蛋白乙酰转移酶的传感器及制备方法

Also Published As

Publication number Publication date
CN112538518A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
Rao et al. Gold nanorod etching-based multicolorimetric sensors: strategies and applications
Chen et al. Fluorescence immunoassay based on the phosphate-triggered fluorescence turn-on detection of alkaline phosphatase
CN111458316A (zh) 基于新型纳米复合体系与酶催化反应的比率荧光乳酸探针的制备方法
Song et al. Phosphatase-like activity of single-atom CeNC nanozyme for rapid detection of Al3+
Lu et al. Dual-mode colorimetric-photothermal sensing platform of acetylcholinesterase activity based on the peroxidase-like activity of Fe–N–C nanozyme
Hur et al. Reagentless colorimetric biosensing platform based on nanoceria within an agarose gel matrix
CN109092364A (zh) 一种铜金属有机骨架模拟酶材料及其制备与应用
CN110455786B (zh) 一种基于CeO2@SnS2促进鲁米诺电致化学发光传感器的制备方法
CN113683092B (zh) 一种氮硫共掺杂Ti3C2-MXene纳米片及其制备方法与应用
Zhang et al. Integration and synergy in protein-nanomaterial hybrids for biosensing: Strategies and in-field detection applications
CN109806877A (zh) 基于过渡金属氧化物及其衍生物的高活性纳米酶及其获得方法和应用
CN112538518B (zh) 一种基于纳米酶检测组蛋白乙酰转移酶的方法
CN108046331B (zh) 一种硫化钼-铁氧体纳米酶、制备及应用
Wu et al. One-pot synthesized Cu/Au/Pt trimetallic nanoparticles as a novel enzyme mimic for biosensing applications
CN112014336A (zh) 一种基于级联反应检测α-葡萄糖苷酶活性的普适性方法
Rathinam et al. TiO2 Nanoparticles Based Peroxidase Mimics for Colorimetric Sensing of Cholesterol and Hydrogen Peroxide
Han et al. Aptazyme-induced cascade amplification integrated with a volumetric bar-chart chip for highly sensitive detection of aflatoxin B1 and adenosine triphosphate
Peng et al. Investigating the oxidase-like activity of a Co–Fe Prussian blue analogue nanocube prepared in situ and its applications in the colorimetric detection of ascorbic acid, alkaline phosphatase, α-glucosidase, and ascorbic acid oxidase
CN110082403A (zh) 基于金钯纳米花/石墨烯复合材料的组蛋白乙酰转移酶计时-电流传感器及其应用
Luo et al. Enzyme-nanozyme cascade-amplified ratiometric fluorescence immunoassay for the ultrasensitive detection of saxitoxin
CN109387508A (zh) 一种磁性碳管-二硫化钼纳米酶的制备方法及其用于检测过氧化氢、葡萄糖的方法
Wu et al. Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots
CN107748164A (zh) 一种基于负载型Pd/C类过氧化物酶的制备方法及其应用
CN116003818A (zh) 一种制备功能化多金属有机骨架纳米酶的方法及其过氧化物酶活性的应用
CN114436338B (zh) 一种铁钼双金属纳米酶及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant