CN112532104A - 一种基于双层压电膜的直线型驱动器 - Google Patents

一种基于双层压电膜的直线型驱动器 Download PDF

Info

Publication number
CN112532104A
CN112532104A CN202011344010.9A CN202011344010A CN112532104A CN 112532104 A CN112532104 A CN 112532104A CN 202011344010 A CN202011344010 A CN 202011344010A CN 112532104 A CN112532104 A CN 112532104A
Authority
CN
China
Prior art keywords
piezoelectric film
electrode
driving units
upper electrode
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011344010.9A
Other languages
English (en)
Inventor
秦风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Dukong Technology Co ltd
Original Assignee
Chengdu Dukong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Dukong Technology Co ltd filed Critical Chengdu Dukong Technology Co ltd
Priority to CN202011344010.9A priority Critical patent/CN112532104A/zh
Publication of CN112532104A publication Critical patent/CN112532104A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/08Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using travelling waves, i.e. Rayleigh surface waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/22Methods relating to manufacturing, e.g. assembling, calibration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本发明提出一种基于双层压电膜的直线型驱动器,通过薄膜沉积工艺在基底正表面依次沉积下电极、下压电膜、中间电极、上压电膜和上电极形成多层结构;利用刻蚀工艺对所述多层结构进行光刻及图形化,形成多根形状、尺寸相同的条形驱动单元;采用深刻蚀工艺对基底背部加深槽反应离子刻蚀和/或湿法腐蚀,将基底的厚度减薄至预设厚度以下,制备出背部腔体以及形成驱动振膜,获得基于双层压电膜的直线型驱动器。本发明每一层压电致动材料厚度可控制在百纳米至数微米范围,能有效降低器件整体厚度。此外,本发明的制备工艺与标准MEMS产线完全兼容,具备批量化生产能力。因此,本发明能解决压电直线型电机的小型化、薄型化和批量化问题。

Description

一种基于双层压电膜的直线型驱动器
技术领域
本发明涉及驱动器技术领域,特别是涉及一种基于双层压电膜的直线型驱动器。
背景技术
压电直线型驱动器是一类致动装置,可以为负载(滑块等)提供水平方向的摩擦推力,使负载实现平移运动。压电直线型驱动器具有较高的位移精度和较短的响应时间,加之它具备良好的电磁兼容能力,因此在电子学领域具有巨大应用潜力。
目前常见的压电直线型驱动器采用压电陶瓷块作为压电致动材料,根据器件工作模态,在特定位置设计上下电极,利用压电材料的逆压电效应实现不同形式的位移形变,并使与之接触的负载沿直线方向运动。
现有的压电直线型驱动器基于压电陶瓷制备,压电陶瓷一般具有几十毫米的厚度,要制备驱动器需要通过研磨、抛光等方式将材料的厚度减薄至百微米到毫米量级。同时由于驱动器工作时致动结构本身位移较小,一般需要额外的位移放大机构。因此常见的陶瓷型压电直线型驱动器很难实现小型化、薄型化。此外,陶瓷压电直线驱动器一般通过贴装等方式进行电极制备及机械结构组装,这类非标准生产工艺很难实现批量化,成本较高且器件一致性控制难度较大。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于双层压电膜的直线型驱动器,用于解决目前直线型电机的小型化、薄型化和批量化问题。
为实现上述目的及其他相关目的,本发明提供一种基于双层膜的直线型驱动器,包括有:基底、下电极、下压电膜、中间电极、上压电膜和上电极;
通过薄膜沉积工艺在基底正表面依次沉积下电极、下压电膜、中间电极、上压电膜和上电极形成多层结构;
利用刻蚀工艺对所述多层结构中的下电极、下压电膜、中间电极、上压电膜和上电极进行光刻及图形化,形成多根形状、尺寸相同的条形驱动单元;每根条形驱动单元均具备下电极、下压电膜、中间电极、上压电膜和上电极;
采用深刻蚀工艺对基底背部加深槽反应离子刻蚀和/或湿法腐蚀,将基底的厚度减薄至预设厚度以下,制备出背部腔体以及形成驱动振膜,获得基于双层压电膜的直线型驱动器;其中,基底背部为基底正表面的相对面;所述驱动振膜由上至下的结构依次为:上电极、上压电膜层、中间电极、下压电膜层、下电极和厚度在预设厚度以下的基底。
可选地,所述上电极上还设置有滑块;
对驱动单元进行独立加电,在所述驱动振膜表面激发出两列频率相同、传播方向相同且相位相差90°的驻波,使两列驻波通过波形叠加在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
可选地,将所有驱动单元中的上电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对上电极的两路信号的电极施加相位差为180°的正弦波,在上电极激发出一组驻波;
将所有驱动单元中的下电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对下电极的两路信号的电极施加相位差为180°正弦波,在下电极激发出一组驻波;其中,所述上电极中至少一路信号与下电极中至少一路信号的正弦波相位差为90°或270°,且在上电极激发出驻波以及下电极激发出驻波时,所述中间电极始终保持恒定地电位;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
可选地,将所有驱动单元中的上电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对上电极的两路信号的电极施加cos和-cos的正弦波,在上电极激发出一组驻波;
将所有驱动单元中的下电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对下电极的两路信号的电极施加sin和-sin的正弦波,在下电极激发出一组驻波;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
可选地,将所有驱动单元中的上电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对上电极的两路信号的电极施加sin和-sin的正弦波,在上电极激发出一组驻波;
将所有驱动单元中的下电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对下电极的两路信号的电极施加cos和-cos的正弦波,在下电极激发出一组驻波;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
可选地,所述上电极驻波的波长与对应的每组驱动单元个数成正比;所述下电极驻波的波长与所述上电极驻波的波长相等。
可选地,通过单独改变上电极或下电极中驱动信号的符号,改变所述行波的传播方向。
可选地,所述行波沿微驱动器的长边做直线运动。
可选地,所述预设厚度为100um。
可选地,所述基底为SOI基底;所述上压电膜和/或下压电膜为PZT膜。
如上所述,本发明提供一种基于双层压电膜的直线型驱动器,具有以下有益效果:通过薄膜沉积工艺在基底正表面依次沉积下电极、下压电膜、中间电极、上压电膜和上电极形成多层结构;利用刻蚀工艺对所述多层结构中的下电极、下压电膜、中间电极、上压电膜和上电极进行光刻及图形化,形成多根形状、尺寸相同的条形驱动单元;每根条形驱动单元均具备下电极、下压电膜、中间电极、上压电膜和上电极;采用深刻蚀工艺对基底背部加深槽反应离子刻蚀和/或湿法腐蚀,将基底的厚度减薄至预设厚度以下,制备出背部腔体以及形成驱动振膜,获得基于双层压电膜的直线型驱动器;其中,基底背部为基底正表面的相对面;所述驱动振膜由上至下的结构依次为:上电极、上压电膜层、中间电极、下压电膜层、下电极和厚度在预设厚度以下的基底。本发明针对以上问题,提出一种基于双层压电膜材料的直线型驱动器结构,每一层压电致动材料厚度可控制在百纳米至数微米范围,能有效降低器件整体厚度。此外,本发明的制备工艺与标准MEMS产线完全兼容,具备批量化生产能力。因此,本发明能解决压电直线型电机的小型化、薄型化和批量化问题。本发明提出的基于压电双层膜材料的直线型压电微驱动器结构中各层压电材料及各层电极经图形化工艺后可以形成多组条状驱动单元,并通过对每组驱动单元的上下电极分区、分时供电,在驱动器表面激发出行波,实现直线驱动能力;行波激发方式采用两列相位相差90°的驻波叠加方式,可通过驱动信号控制行波传播方向。本发明中的直线型压电微驱动器采用压电双层膜材料作为致动材料,能有效将驱动器整体厚度减小至μm量级,具备小型化、薄型化能力。同时,本发明结构简单,制备工艺与MEMS微加工工艺全兼容,能够很好地实现批量化制备,在提高器件整体一致性的同时降低了产品制备成本。此外,传统直线型电机供电电压通常>100Vp,而本发明可在低电压下工作(2-30Vp),极大的降低了器件对驱动电路的要求,使其具有更广泛的应用潜力。
附图说明
图1为基于双层压电膜的直线型驱动器的俯视图;
图2为基于双层压电膜的直线型驱动器的剖面图;
图3为第一路上电极加电方式示意图;
图4为第二路上电极加电方式示意图;
图5为第一路下电极加电方式示意图;
图6为第二路下电极加电方式示意图;
图7为行波传播方向示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
请参阅图1至图7所示,本发明提供一种基于双层膜的直线型驱动器,包括有:基底、下电极、下压电膜、中间电极、上压电膜和上电极;
通过薄膜沉积工艺在基底正表面依次沉积下电极、下压电膜、中间电极、上压电膜和上电极形成多层结构;
利用刻蚀工艺对所述多层结构中的下电极、下压电膜、中间电极、上压电膜和上电极进行光刻及图形化,形成多根形状、尺寸相同的条形驱动单元;每根条形驱动单元均具备下电极、下压电膜、中间电极、上压电膜和上电极;
采用深刻蚀工艺对基底背部加深槽反应离子刻蚀和/或湿法腐蚀,将基底的厚度减薄至预设厚度以下,制备出背部腔体以及形成驱动振膜,获得基于双层压电膜的直线型驱动器;其中,基底背部为基底正表面的相对面;所述驱动振膜由上至下的结构依次为:上电极、上压电膜层、中间电极、下压电膜层、下电极和厚度在预设厚度以下的基底。
在一示例性实施例中,所述上电极上还设置有滑块;对驱动单元进行独立加电,在所述驱动振膜表面激发出两列频率相同、传播方向相同且相位相差90°的驻波,使两列驻波通过波形叠加在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
在一示例性实施例中,将所有驱动单元中的上电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对上电极的两路信号的电极施加相位差为180°的正弦波,在上电极激发出一组驻波;
将所有驱动单元中的下电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对下电极的两路信号的电极施加相位差为180°正弦波,在下电极激发出一组驻波;其中,所述上电极中至少一路信号与下电极中至少一路信号的正弦波相位差为90°或270°,且在上电极激发出驻波以及下电极激发出驻波时,所述中间电极始终保持恒定地电位;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
根据上述记载,作为一个示例,例如将所有驱动单元中的上电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对上电极的两路信号的电极施加cos和-cos的正弦波,在上电极激发出一组驻波;
将所有驱动单元中的下电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对下电极的两路信号的电极施加sin和-sin的正弦波,在下电极激发出一组驻波;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
根据上述记载,作为一个示例,将所有驱动单元中的上电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对上电极的两路信号的电极施加sin和-sin的正弦波,在上电极激发出一组驻波;
将所有驱动单元中的下电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对下电极的两路信号的电极施加cos和-cos的正弦波,在下电极激发出一组驻波;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
具体地,本发明采用压电双层膜材料作为直线型微驱动器的压电致动材料,依次将下电极、下压电材料、中间电极、上压电材料及上电极生长于硅基底表面,形成多层结构。
随后通过刻蚀工艺,分别对下电极、下压电膜、中间电极、上压电膜和上电极进行光刻及图形化,各层材料图形化工艺存在差异,其中上下电极图形化一般可以采用离子束等物理刻蚀方式实现,而压电层材料除物理刻蚀法外,通常还可以根据压电材料类型的不同,选择不同的反应物进行化学刻蚀。图形化完成后形成多根形状、尺寸相同的条形驱动单元,每根驱动单元具备完整的上电极、上压电膜、中间电极、下压电膜以及下电极,可独立加电控制。最后,基片背部采用深刻蚀工艺如深槽反应离子刻蚀、湿法腐蚀等方式,将基底厚度减薄至100um以下,制备出背部腔体,形成驱动振膜,驱动振膜的主要结构由顶至低依次为上电极、上压电材料层、中间电极、下压电材料层、下电极和厚度较薄的硅层。基于双层压电膜直线型驱动器的俯视基本结构如图1所示,基于双层压电膜直线型驱动器的剖视基本结构如图2所示。其中,上压电膜和下压电膜可以为PZT膜。
该压电直线型驱动器的工作机理是通过电信号激励的方式,在驱动振膜表面激发出两列频率、传播方向相同且相位相差90°的驻波,两列驻波通过波形叠加在驱动振膜表面形成沿直线传播的行波,从而驱动滑块移动。由于驱动器中每根驱动单元的上下电极均可以独立控制,因此可以通过振膜上电极和振膜下电极分别激发出两列相位相差90°的驻波。下图所示给出了一种可用于行波激发的加电方式示例。如图3和图4所示,所有驱动单元中的上电极共分为两路信号,每路信号中所需加电的驱动单元分组排列,每组驱动单元个数为2个(或2n个),同时每组驱动单元之间间隔2个(或2n个)驱动单元。分别给两路信号电极施加cos和-cos(或sin和-sin)的正弦波信号,可以激发出一列驻波,其中驻波波长与每组驱动单元个数成正比。在以上行波激发过程中,中间电极始终保持恒定地电位。
如图5和图6所示,与上电极类似,所有驱动单元中的下电极也分为两路信号,每路信号中所需加电的驱动单元分组排列,每组驱动单元个数为2个(或2n个),同时每组驱动单元之间间隔2个(或2n个)驱动单元。分别给两路信号电极施加sin和-sin(或cos和-cos)的正弦波信号,可以激发出另一列驻波,该驻波与上电极所激发的驻波波长相等,相位刚好相差90°。根据波形叠加理论,这两列驻波叠加后能够在振膜表面激发出行波。此外,可以通过单独改变上电极或下电极中驱动信号的符号,改变行波传播方向。在以上行波激发过程中,中间电极始终保持恒定地电位。
根据上述流程所激发出的行波波形如图7所示。图中为某一时刻直线型驱动器表面行波波形,随时间推移,波峰沿器件长边做直线运动。
本发明针对现有技术中存在的问题,提出一种基于双层压电膜的直线型驱动器,通过薄膜沉积工艺在基底正表面依次沉积下电极、下压电膜、中间电极、上压电膜和上电极形成多层结构;利用刻蚀工艺对所述多层结构中的下电极、下压电膜、中间电极、上压电膜和上电极进行光刻及图形化,形成多根形状、尺寸相同的条形驱动单元;每根条形驱动单元均具备下电极、下压电膜、中间电极、上压电膜和上电极;采用深刻蚀工艺对基底背部加深槽反应离子刻蚀和/或湿法腐蚀,将基底的厚度减薄至预设厚度以下,制备出背部腔体以及形成驱动振膜,获得基于双层压电膜的直线型驱动器;其中,基底背部为基底正表面的相对面;所述驱动振膜由上至下的结构依次为:上电极、上压电膜层、中间电极、下压电膜层、下电极和厚度在预设厚度以下的基底。本发明提出一种基于双层压电膜材料的直线型驱动器结构,每一层压电致动材料厚度可控制在百纳米至数微米范围,能有效降低器件整体厚度。此外,本发明的制备工艺与标准MEMS产线完全兼容,具备批量化生产能力。因此,本发明能解决压电直线型电机的小型化、薄型化和批量化问题。本发明提出的基于压电双层膜材料的直线型压电微驱动器结构中各层压电材料及各层电极经图形化工艺后可以形成多组条状驱动单元,并通过对每组驱动单元的上下电极分区、分时供电,在驱动器表面激发出行波,实现直线驱动能力;行波激发方式采用两列相位相差90°的驻波叠加方式,可通过驱动信号控制行波传播方向。本发明中的直线型压电微驱动器采用压电双层膜材料作为致动材料,能有效将驱动器整体厚度减小至μm量级,具备小型化、薄型化能力。同时,本发明结构简单,制备工艺与MEMS微加工工艺全兼容,能够很好地实现批量化制备,在提高器件整体一致性的同时降低了产品制备成本。此外,传统直线型电机供电电压通常>100Vp,而本发明可在低电压下工作(2-30Vp),极大的降低了器件对驱动电路的要求,使其具有更广泛的应用潜力。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种基于双层膜的直线型驱动器,其特征在于,包括有:基底、下电极、下压电膜、中间电极、上压电膜和上电极;
通过薄膜沉积工艺在基底正表面依次沉积下电极、下压电膜、中间电极、上压电膜和上电极形成多层结构;
利用刻蚀工艺对所述多层结构中的下电极、下压电膜、中间电极、上压电膜和上电极进行光刻及图形化,形成多根形状、尺寸相同的条形驱动单元;每根条形驱动单元均具备下电极、下压电膜、中间电极、上压电膜和上电极;
采用深刻蚀工艺对基底背部加深槽反应离子刻蚀和/或湿法腐蚀,将基底的厚度减薄至预设厚度以下,制备出背部腔体以及形成驱动振膜,获得基于双层压电膜的直线型驱动器;其中,基底背部为基底正表面的相对面;所述驱动振膜由上至下的结构依次为:上电极、上压电膜层、中间电极、下压电膜层、下电极和厚度在预设厚度以下的基底。
2.根据权利要求1所述的基于双层膜的直线型驱动器,其特征在于,所述上电极上还设置有滑块;
对驱动单元进行独立加电,在所述驱动振膜表面激发出两列频率相同、传播方向相同且相位相差90°的驻波,使两列驻波通过波形叠加在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
3.根据权利要求2所述的基于双层压电膜的直线型驱动器,其特征在于,将所有驱动单元中的上电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对上电极的两路信号的电极施加相位差为180°的正弦波,在上电极激发出一组驻波;
将所有驱动单元中的下电极分为两路信号,并对每路信号中需加电的驱动单元进行分组排列,使每组驱动单元的个数为偶数个,以及使相邻两组驱动单元间隔的驱动单元数量与每组驱动单元中的数量相同;
分别对下电极的两路信号的电极施加相位差为180°正弦波,在下电极激发出一组驻波;其中,所述上电极中至少一路信号与下电极中至少一路信号的正弦波相位差为90°或270°,且在上电极激发出驻波以及下电极激发出驻波时,所述中间电极始终保持恒定地电位;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
4.根据权利要求3所述的基于双层压电膜的直线型驱动器,其特征在于,包括:分别对上电极的两路信号的电极施加cos和-cos的正弦波,在上电极激发出一组驻波;
以及分别对下电极的两路信号的电极施加sin和-sin的正弦波,在下电极激发出一组驻波;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
5.根据权利要求3所述的基于双层压电膜的直线型驱动器,其特征在于,包括:分别对上电极的两路信号的电极施加sin和-sin的正弦波,在上电极激发出一组驻波;
以及分别对下电极的两路信号的电极施加cos和-cos的正弦波,在下电极激发出一组驻波;
所述上电极激发驻波和所述下电极激发驻波完成波形叠加后在所述驱动振膜表面形成直线传播的行波,驱动所述滑块移动。
6.根据权利要求3至5中任一所述的基于双层压电膜的直线型驱动器,其特征在于,所述上电极驻波的波长与对应的每组驱动单元个数成正比;所述下电极驻波的波长与所述上电极驻波的波长相等。
7.根据权利要求3至5中任一所述的基于双层压电膜的直线型驱动器,其特征在于,通过单独改变上电极或下电极中驱动信号的符号,改变所述行波的传播方向。
8.根据权利要求2至5中任一所述的基于双层压电膜的直线型驱动器,其特征在于,所述行波沿微驱动器的长边做直线运动。
9.根据权利要求1所述的基于双层压电膜的直线型驱动器,其特征在于,所述预设厚度为100um。
10.根据权利要求1所述的基于双层压电膜的直线型驱动器,其特征在于,所述基底为SOI基底;所述上压电膜和/或下压电膜为PZT膜。
CN202011344010.9A 2020-11-26 2020-11-26 一种基于双层压电膜的直线型驱动器 Withdrawn CN112532104A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011344010.9A CN112532104A (zh) 2020-11-26 2020-11-26 一种基于双层压电膜的直线型驱动器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011344010.9A CN112532104A (zh) 2020-11-26 2020-11-26 一种基于双层压电膜的直线型驱动器

Publications (1)

Publication Number Publication Date
CN112532104A true CN112532104A (zh) 2021-03-19

Family

ID=74993569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011344010.9A Withdrawn CN112532104A (zh) 2020-11-26 2020-11-26 一种基于双层压电膜的直线型驱动器

Country Status (1)

Country Link
CN (1) CN112532104A (zh)

Similar Documents

Publication Publication Date Title
JP3272661B2 (ja) 交番電圧パターンを用いる静電アクチュエータ
CN111313747B (zh) 一种多层陶瓷共烧压电驱动器、压电马达及其制备方法
CN104467524B (zh) 基于面内模态的板式直线压电电机的工作方式
US20060008934A1 (en) Micromechanical actuator with multiple-plane comb electrodes and methods of making
JP4294924B2 (ja) マトリクス型圧電/電歪デバイス及び製造方法
CN110523607B (zh) 一种压电发射电容感知高性能mut单元及其制备方法
CN110508474B (zh) 一种混合驱动mut单元结构及其参数化激励方法
JP3709847B2 (ja) 静電型アクチュエータ
US6323582B1 (en) Piezoelectric/Electrostrictive device
JP3174740B2 (ja) マイクロ位置決め装置に使用する非傾斜プレート・アクチュエータ
US6476539B1 (en) Piezoelectric/electrostrictive device
US9240282B2 (en) Variable capacitor
CN108429486A (zh) 组合式平面三自由度超声波电机振子及其驱动方法
CN112532104A (zh) 一种基于双层压电膜的直线型驱动器
CN112769350A (zh) 一种直线型压电膜微驱动器
JPH03230779A (ja) 微小可動機械機構
EP0483147B1 (de) Dielektrisches mikromechanisches element
CN102569637B (zh) 压电驱动器及压电马达
JP4723199B2 (ja) 筒形圧電アクチュエータ並びに筒形圧電アクチュエータアレイ及び製造方法
JPH05175567A (ja) 積層型アクチュエータ
JP2024503361A (ja) 電気素子
KR100300965B1 (ko) 정전기력을 이용한 광디스크 드라이브의 미소 거울 구동기 및 그 제작 방법
US11195984B2 (en) Piezoelectric transformer
US20100201756A1 (en) Piezoelectric actuator, liquid discharging head, and method for manufacturing piezoelectric actuator
JP5317154B2 (ja) 多軸慣性駆動型アクチュエータ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210319