CN112532099B - 双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法 - Google Patents

双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法 Download PDF

Info

Publication number
CN112532099B
CN112532099B CN202011512708.7A CN202011512708A CN112532099B CN 112532099 B CN112532099 B CN 112532099B CN 202011512708 A CN202011512708 A CN 202011512708A CN 112532099 B CN112532099 B CN 112532099B
Authority
CN
China
Prior art keywords
phase
voltage
power switch
quasi
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011512708.7A
Other languages
English (en)
Other versions
CN112532099A (zh
Inventor
杨冬锋
郝赫男
王汝田
刘闯
蔡国伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Province Beitian Gong Software Development Co ltd
Northeast Electric Power University
Economic and Technological Research Institute of State Grid Jilin Electric Power Co Ltd
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202011512708.7A priority Critical patent/CN112532099B/zh
Publication of CN112532099A publication Critical patent/CN112532099A/zh
Application granted granted Critical
Publication of CN112532099B publication Critical patent/CN112532099B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/08Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明是一种双Trans‑准Z源网络三电平间接矩阵变换器的载波PWM调制方法,其特点是,对于整流级,将输入相电压划分为六个扇区,选取每个扇区中极性为正且幅值最大的两个线电压合成输出电压,以达到整流级最大电压调制比;对于Trans‑准Z源网络,在开关周期中插入直通时间,以达到升压的目的;对于逆变级,采用基于SVPWM的载波PWM调制方法,通过判断电压大小,得到逆变级的调制波,再通过和载波比较获得各开关的驱动信号;其有益效果是:采用正负小矢量对称分布,且由于拓扑特点无中矢量,使中点电位更加平衡;无需判断扇区和计算占空比,只涉及三相电压的值运算,大大降低了计算量和软、硬件实现难度。

Description

双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制 方法
技术领域
本发明涉及到电力电子领域,具体的说,是一种双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法。
背景技术
现有技术的间接矩阵变换器作为一种“绿色”的变频器,广泛应用于电机驱动系统中。其优点有拓扑结构简单,可四象限运行,无中间直流储能环节、可通过控制维持输入侧单位功率因数等。逆变级选择三电平的拓扑结构,可降低功率开关元件的电压应力,降低元件耐压要求,并提高输出电压电流波形质量。现如今,三电平间接矩阵变换器通常使用SVPWM作为调制算法,但七段式的SVPWM调制方法会导致中点电压不平衡,加入对中点电位的补偿算法后的计算量过大,硬件计算能力受限,实现困难。
发明内容
本发明的目的是克服现有技术的不足,提出一种基于双Trans-准Z源三电平间接矩阵变换器的载波PWM调制方法,只需对三相参考电压进行数值运算,无需传统SVPWM算法中的大量三角函数运算,大大降低了计算量和软、硬件实现难度。
本发明的目的是由以下技术方案来实现的:一种双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法,所述的双Trans-准Z源网络三电平间接矩阵变换器包括整流级、双Trans-准Z源网络和逆变级;整流级是由六组双向功率开关S′ap、S′an、S′bp、S′bn、S′cp、S′cn构成的三相桥式整流电路,双Trans-准Z源网络是由两个输入电感L11、L12、四个耦合电感L12、L13、L22、L23、四个电容C11、C12、C21、C22、两个二极管VD1、VD2构成的电路,逆变级是由十组功率开关SP1、SP2、SN1、SN2、SAP、SAN、SBP、SBN、SCP、SCN构成的三电平逆变电路;对所述的整流级,将三相输入相电压的周期划分为六个扇区,在每个扇区内选择两个最大且极性为正的线电压来合成输出直流母线电压,使输入相电压利用率达到最大;对所述的逆变级,根据最近三矢量原则和伏秒平衡原理,求得各基本矢量的占空比;对所述的双Trans-准Z源网络,在调制周期中插入直通状态时间,实现其升压功能;其特征在于:
(1)采用变斜率载波PWM方法进行调制,载波utri的周期与调制周期相同;一个载波周期内,在(0,dαTs)时间内,载波值从0变化至1,在(dαTs,Ts)时间内,载波值由1变化至0,具体表达式为:
Figure BDA0002846914340000021
式中,Ts为载波utri的周期;
在三相输入相电压的一个扇区内,将相电压绝对值最大的相定义为x相,其电压值为ux、另外两相电压定义为y相、z相,其电压值分别为uy、uz,其中x∈{a,b,c},y∈{a,b,c},z∈{a,b,c};dα、dβ为整流级用于合成输出直流母线电压的两个输入线电压的占空比,dα、dβ的计算公式为:
Figure BDA0002846914340000022
整流级的控制原理为:当ux>0时,在(0,dαTs)时间内,输出线电压uxy,即S′xp导通、S′xn关断、S′yp关断、S′yn导通、S′zp关断、S′zn关断;在(dαTs,Ts)时间内,输出线电压uxz,即S′xp导通、S′xn关断、S′yp关断、S′yn关断、S′zp关断、S′zn导通;当ux<0时,在(0,dαTs)时间内,输出线电压uyx,即S′xp关断、S′xn导通、S′yp导通、S′yn关断、S′zp关断、S′zn关断;在(dαTs,Ts)时间内,输出线电压uzx,即S′xp关断、S′xn导通、S′yp关断、S′yn关断、S′zp导通、S′zn关断;
(2)逆变级采用载波PWM调制方法,将参考三相输出相电压在一个周期内划分为六个扇区,定义扇区号为N,N∈{1,2,3,4,5,6},在每个扇区中,都有一相电压恒为正值,一相电压极性会改变,另外一相电压恒为负值,将它们分别定义为恒正相X、变极性相Y和恒负相Z,它们的值分别用uX、uY、uZ表示,其中X∈{A,B,C},Y∈{A,B,C},Z∈{A,B,C};
逆变级所需调制波分别为:
us1=1-dst
Figure BDA0002846914340000031
Figure BDA0002846914340000032
Figure BDA0002846914340000033
Figure BDA0002846914340000034
Figure BDA0002846914340000035
Figure BDA0002846914340000036
Figure BDA0002846914340000037
Figure BDA0002846914340000038
Figure BDA0002846914340000039
Figure BDA00028469143400000310
Figure BDA00028469143400000311
Figure BDA00028469143400000312
式中,dst为双Trans-准Z源网络三电平间接矩阵变换器的直通占空比,Uvd为双Trans-准Z源网络的输出电压;将调制波us1、us2、us3与载波utri进行比较,再进行逻辑运算,获得功率开关模块SP1、SP2、SN1、SN2的驱动信号sP1、sP2、sN1、sN2
功率开关模块SAP、SAN、SBP、SBN、SCP、SCN按恒正相X、变极性相Y、恒负相Z分为:恒正相X所对应功率开关模块SXP、SXN,变极性相Y所对应功率开关模块SYP、SYN,恒负相Z所对应功率开关模块SZP、SZN;对上述六个功率开关模块的控制原理为:SXP、SZN恒导通,SXN、SZP恒关断;将调制波usp1、usp2与载波utri进行比较,再进行逻辑运算,获得功率开关模块SYP、SYN的驱动信号sYP、sYN
使用本发明的一种基于双Trans-准Z源三电平间接矩阵变换器的载波PWM调制方法,对整流级和逆变级进行调制,能够输出幅值、频率皆可调的三相交流电压,中点电压平衡,并通过设置直通时间获得了电压增益,且调制方法简单,无需三角函数计算,计算量减少,降低了软、硬件实现难度。具有科学合理,适用性强,效果佳等优点。
附图说明
图1为双Trans-准Z源网络三电平间接矩阵变换器拓扑结构示意图;
图2为三相输入相电压扇区划分图;
图3为逆变级载波调制示意图;
图4为三相输出相电压扇区划分及以第二扇区为例的变极性相选取示意图;
图5为双Trans-准Z源网络三电平间接矩阵变换器输出的A相电压示意图;
图6为双Trans-准Z源网络三电平间接矩阵变换器输出的电流波形示意图;
图7为双Trans-准Z源网络三电平间接矩阵变换器逆变级中点电压示意图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步的详细说明。
双Trans-准Z源网络三电平间接矩阵变换器的拓扑如图1所示,其整流级由双向功率开关S′ap、S′an、S′bp、S′bn、S′cp、S′cn构成,逆变级由功率开关SP1、SP2、SN1、SN2、SAP、SAN、SBP、SBN、SCP、SCN构成,双Trans-准Z源网络由输入电感L11、L12、耦合电感L12、L13、L22、L23、电容C11、C12、C21、C22、二极管VD1、VD2构成。双Trans-准Z源网络三电平间接矩阵变换器有两种工作模式:
(1)直通状态
当双Trans-准Z源网络三电平间接矩阵变换器工作于直通状态时,开关模块SP1、SP2、SN1、SN2均导通,逆变级被短路,二极管VD1、VD2开路,整流级、电容C12、C22为耦合电感L12、L22充电,电容C11、C21为电感L11、L21充电,使电感元件的电压升高;
(2)非直通状态
当双Trans-准Z源网络三电平间接矩阵变换器工作于非直通状态时,逆变级处于工作状态,二极管VD1、VD2导通,阻抗源中的耦合电感L12、L13、L22、L23和输入电感L11、L12向负载放电,并为电容C11、C12、C21、C22充电。
假设整流级输入正弦电压三相对称,即:
Figure BDA0002846914340000051
式中,Uim为整流级输入相电压幅值,ωi为整流级输入电压角频率。
将三相输入相电压的周期划分六个扇区,在每个扇区内中,都会有其中一相的相电压绝对值最大,而另外两相极性与其相反。在每个区间以该特性令绝对值最大相恒导通,另两相进行调制,如图2所示。
在三相输入相电压的一个扇区内,将相电压绝对值最大的相定义为x相,其电压值为ux、另外两相电压定义为y相、z相,其电压值分别为uy、uz,其中x∈{a,b,c},y∈{a,b,c},z∈{a,b,c};dα、dβ为整流级用于合成输出直流母线电压的两个输入线电压的占空比,则dα、dβ的计算公式为:
Figure BDA0002846914340000052
根据上式可总结出一个开关周期内整流级输出电压平均值为:
Figure BDA0002846914340000061
Figure BDA0002846914340000062
采用如图3所示的变斜率载波PWM方法进行调制,载波utri的周期与调制周期相同。在(0,dαTs)时间内,载波值从0变化至1,在(dαTs,Ts)时间内,载波值由1变化至0,具体表达式为:
Figure BDA0002846914340000063
式中,Ts为载波utri的周期。
整流级的控制原理为:当ux>0时,在(0,dαTs)时间内,输出线电压uxy,即S′xp导通、S′xn关断、S′yp关断、S′yn导通、S′zp关断、S′zn关断;在(dαTs,Ts)时间内,输出线电压uxz,即S′xp导通、S′xn关断、S′yp关断、S′yn关断、S′zp关断、S′zn导通;当ux<0时,在(0,dαTs)时间内,输出线电压uyx,即S′xp关断、S′xn导通、S′yp导通、S′yn关断、S′zp关断、S′zn关断;在(dαTs,Ts)时间内,输出线电压uzx,即S′xp关断、S′xn导通、S′yp关断、S′yn关断、S′zp导通、S′zn关断;
以三相输入相电压在第二扇区为例,在(0,dαTs)时间内,输出线电压uac,即S′ap开通、S′an关断、S′bp关断、S′bn关断、S′cp关断、S′cn开通;在(dαTs,Ts)时间内,输出线电压ubc,即S′ap关断、S′an关断、S′bp开通、S′bn关断、S′cp关断、S′cn开通;
逆变级采用载波PWM调制方法,设三相参考电压为:
Figure BDA0002846914340000064
式中,Uom为逆变级输入相电压幅值,ωo为逆变级输入电压角频率。
将参考三相输出相电压在一个周期内划分为六个扇区,定义扇区号为N,N∈{1,2,3,4,5,6},在每个扇区中,都有一相电压恒为正值,一相电压极性会改变,另外一相电压恒为负值,将它们分别定义为恒正相X、变极性相Y和恒负相Z,它们的值分别用uX、uY、uZ表示,其中X∈{A,B,C},Y∈{A,B,C},Z∈{A,B,C};
功率开关模块SP1、SP2、SN1、SN2的控制原理为:将调制波us1与utri比较,获得驱动信号sdst,当sdst为1时,SP1、SP2、SN1、SN2的驱动信号均取1;当sdst为0时,将调制波us2、us3分别与utri比较,获得SP1、SN1的驱动信号sP1、sN1;分别对sP1、sN1取反,获得SP2、SN2的驱动信号sP2、sN2
调制波us1、us2、us3分别为:
us1=1-dst (7)
Figure BDA0002846914340000071
Figure BDA0002846914340000072
式中,dst为双Trans-准Z源网络三电平间接矩阵变换器的直通占空比,Uvd为双Trans-准Z源网络的输出电压;
功率开关模块SAP、SAN、SBP、SBN、SCP、SCN按恒正相X、变极性相Y、恒负相Z分为:恒正相X所对应功率开关模块SXP、SXN,变极性相Y所对应功率开关模块SYP、SYN,恒负相Z所对应功率开关模块SZP、SZN。SXP、SZN恒导通,即SXP、SZN的驱动信号sXP、sZN恒为1;SXN、SZP恒关断,即SXN、SZP的驱动信号sXN、sZP恒为0。
调制波usp1、usp2分别为:
Figure BDA0002846914340000081
Figure BDA0002846914340000082
Figure BDA0002846914340000083
Figure BDA0002846914340000084
Figure BDA0002846914340000085
Figure BDA0002846914340000086
Figure BDA0002846914340000087
Figure BDA0002846914340000088
定义信号sspk
Figure BDA0002846914340000089
将两条调制波usp1、usp2与utri比较,在比较后获得的驱动信号ssp1和ssp2做逻辑同或运算获得驱动信号sspx,再与sspk做逻辑同或运算得到SYP的驱动信号sYP
Figure BDA00028469143400000810
将sYP取反得到SYN的驱动信号sYN
为了验证电路拓扑及所使用调制方法的正确性,在Matlab/Simulink环境下进行仿真,参数如下:三相输入电压幅值为200V,频率为50Hz;逆变级调制比为0.85,载波周期为0.0001s,直通占空比dst为0.15;电感L1、L2均为1mH,4个电容C1~C4均为1000μF;耦合电感匝数比为2:1,耦合系数为1;三相负载电阻均为6Ω,电感均为25mH。从图5、图6所示电压、电流波形可看出,其输出电压具有三电平特性,远高于输入电压,且输出电流正弦度较好,从图7中可看出,逆变级中点电压波动不超过±1V。通过上述仿真,验证了双Trans-准Z源网络三电平矩阵变换器拓扑的正确性及载波PWM调制方法的可行性。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式是示意性的,而非限制性的,本领域的普通技术人员在本发明的启示下,在不脱离发明宗旨的情况下,还能够做出其它形式,这些均属于本发明的保护之内。

Claims (1)

1.一种双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法,所述的双Trans-准Z源网络三电平间接矩阵变换器包括整流级、双Trans-准Z源网络和逆变级;整流级是由六组双向功率开关S′ap、S′an、S′bp、S′bn、S′cp、S′cn构成的三相桥式整流电路,双Trans-准Z源网络是由两个输入电感L11、L12、四个耦合电感L12、L13、L22、L23、四个电容C11、C12、C21、C22、两个二极管VD1、VD2构成的电路;输入电感L11的一端、电容C12的负极与二极管VD1的阳极相连,二极管VD1的阴极与耦合电感L13的同名端相连,耦合电感L13的非同名端、电容C11的正极与耦合电感L12的同名端相连,电容C12的正极与耦合电感L12的非同名端相连,输入电感L21的一端、电容C22的正极与二极管VD2的阴极相连,二极管VD2的阳极与耦合电感L23的同名端相连,耦合电感L23的非同名端、电容C21的负极与耦合电感L22的同名端相连,电容C22的负极与耦合电感L22的非同名端相连,电容C11的负极与电容C21的正极相连,并将此连接点定义为O点;以输入电感L12、L21的另一端构成双Trans-准Z源网络的输入端口,连接整流级的输出端口,以电容C12的正极和电容C22的负极构成双Trans-准Z源的输出端口;逆变级是由十组功率开关SP1、SP2、SN1、SN2、SAP、SAN、SBP、SBN、SCP、SCN构成的三电平逆变电路,功率开关SP1的发射极与功率开关SP2、SAP、SBP、SCP的集电极相连,功率开关SP2的发射极、功率开关SN1的集电极与O点相连,功率开关SN1、SAN、SBN、SCN的发射极与功率开关SN2的集电极相连,功率开关SAP的发射极与功率开关SAN的集电极相连,构成三电平逆变电路的A相输出端,功率开关SBP的发射极与功率开关SBN的集电极相连,构成三电平逆变电路的B相输出端,功率开关SCP的发射极与功率开关SCN的集电极相连,构成三电平逆变电路的C相输出端,以功率开关SP1的集电极和功率开关SN2的发射极构成三电平逆变电路的输入端口,与双Trans-准Z源网络的输出端口相连;对所述的整流级,将三相输入相电压的周期划分为六个扇区,在每个扇区内选择两个最大且极性为正的线电压来合成输出直流母线电压,使输入相电压利用率达到最大;对所述的逆变级,根据最近三矢量原则和伏秒平衡原理,求得各基本矢量的占空比;对所述的双Trans-准Z源网络,在调制周期中插入直通状态时间,实现其升压功能;其特征在于:
(1)采用变斜率载波PWM方法进行调制,载波utri的周期与调制周期相同;一个载波周期内,在(0,dαTs)时间内,载波值从0变化至1,在(dαTs,Ts)时间内,载波值由1变化至0,具体表达式为:
Figure FDA0003226141200000021
式中,Ts为载波utri的周期;
在三相输入相电压的一个扇区内,将相电压绝对值最大的相定义为x相,其电压值为ux、另外两相电压定义为y相、z相,其电压值分别为uy、uz,其中x∈{a,b,c},y∈{a,b,c},z∈{a,b,c};dα、dβ为整流级用于合成输出直流母线电压的两个输入线电压的占空比,dα、dβ的计算公式为:
Figure FDA0003226141200000022
整流级的控制原理为:当ux>0时,在(0,dαTs)时间内,输出线电压uxy,即S′xp导通、S′xn关断、S′yp关断、S′yn导通、S′zp关断、S′zn关断;在(dαTs,Ts)时间内,输出线电压uxz,即S′xp导通、S′xn关断、S′yp关断、S′yn关断、S′zp关断、S′zn导通;当ux<0时,在(0,dαTs)时间内,输出线电压uyx,即S′xp关断、S′xn导通、S′yp导通、S′yn关断、S′zp关断、S′zn关断;在(dαTs,Ts)时间内,输出线电压uzx,即S′xp关断、S′xn导通、S′yp关断、S′yn关断、S′zp导通、S′zn关断;
(2)逆变级采用载波PWM调制方法,将参考三相输出相电压在一个周期内划分为六个扇区,定义扇区号为N,N∈{1,2,3,4,5,6},在每个扇区中,都有一相电压恒为正值,一相电压极性会改变,另外一相电压恒为负值,将它们分别定义为恒正相X、变极性相Y和恒负相Z,它们的值分别用uX、uY、uZ表示,其中X∈{A,B,C},Y∈{A,B,C},Z∈{A,B,C};
逆变级所需调制波分别为:
us1=1-dst
Figure FDA0003226141200000031
Figure FDA0003226141200000032
Figure FDA0003226141200000033
Figure FDA0003226141200000034
式中,dst为双Trans-准Z源网络三电平间接矩阵变换器的直通占空比,Uvd为双Trans-准Z源网络的输出电压;将调制波us1、us2、us3与载波utri进行比较,再进行逻辑运算,获得功率开关模块SP1、SP2、SN1、SN2的驱动信号sP1、sP2、sN1、sN2
功率开关模块SAP、SAN、SBP、SBN、SCP、SCN按恒正相X、变极性相Y、恒负相Z分为:恒正相X所对应功率开关模块SXP、SXN,变极性相Y所对应功率开关模块SYP、SYN,恒负相Z所对应功率开关模块SZP、SZN;对上述六个功率开关模块的控制原理为:SXP、SZN恒导通,SXN、SZP恒关断;将调制波usp1、usp2与载波utri进行比较,再进行逻辑运算,获得功率开关模块SYP、SYN的驱动信号sYP、sYN
CN202011512708.7A 2020-12-20 2020-12-20 双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法 Active CN112532099B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011512708.7A CN112532099B (zh) 2020-12-20 2020-12-20 双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011512708.7A CN112532099B (zh) 2020-12-20 2020-12-20 双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法

Publications (2)

Publication Number Publication Date
CN112532099A CN112532099A (zh) 2021-03-19
CN112532099B true CN112532099B (zh) 2021-10-01

Family

ID=75001746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011512708.7A Active CN112532099B (zh) 2020-12-20 2020-12-20 双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法

Country Status (1)

Country Link
CN (1) CN112532099B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092400A (zh) * 2014-07-18 2014-10-08 山东大学 一种z源三电平t型逆变器及其调制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601125B2 (ja) * 2015-10-07 2019-11-06 住友電気工業株式会社 電力変換装置及びその制御方法
CN108429469B (zh) * 2018-02-09 2020-06-23 东北电力大学 基于载波pwm的z源双级矩阵变换器调制方法
CN108923666B (zh) * 2018-09-09 2021-03-19 东北电力大学 基于载波pwm的双输出双级矩阵变换器调制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092400A (zh) * 2014-07-18 2014-10-08 山东大学 一种z源三电平t型逆变器及其调制方法

Also Published As

Publication number Publication date
CN112532099A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN108429469B (zh) 基于载波pwm的z源双级矩阵变换器调制方法
CN112234808B (zh) 单相逆变器的二倍频纹波抑制电路及抑制方法
CN104092399A (zh) 一种准z源三电平t型逆变器及其svpwm调制方法
CN112290817B (zh) 扩展t型多电平变流拓扑及调制方法
CN110247568B (zh) 一种三相二极管钳位型三电平双输出逆变器拓扑结构
CN113783453B (zh) 一种低成本高增益三电平逆变器及其空间矢量调制方法
CN105450063A (zh) 一种半桥级联型多电平逆变器及控制方法
Palanisamy et al. Maximum Boost Control for 7-level z-source cascaded h-bridge inverter
CN111953223A (zh) 一种三相四线制三电平变流器中点电压平衡方法
CN114513125A (zh) 单相逆变器及其控制方法、控制系统
CN112511030B (zh) 一种具有升压能力的三相三电平双输出逆变器及其调制方法
CN107404249B (zh) 一种低漏电流并网逆变电路及其控制方法
CN110071652B (zh) 一种低漏电流五开关非隔离单相光伏并网逆变器及并网系统
CN113078829A (zh) 一种上下桥臂子模块高频链互联的mmc拓扑及控制方法
CN112701725A (zh) 一种混合导通模式的并网逆变器
CN112165268A (zh) 一种解耦电路及方法
CN112532099B (zh) 双Trans-准Z源网络三电平间接矩阵变换器的载波PWM调制方法
WO2023226317A1 (zh) 维也纳整流器的控制方法及系统
CN113224964B (zh) 一种单相单级式升压逆变器的控制方法
Hong et al. Decoupling control of input voltage balance for diode-clamped dual buck three-level inverter
CN108809130A (zh) Semi-Z源单相逆变器的调制方法
CN112564526A (zh) 一种三相t型三电平双输出逆变器
CN104242711A (zh) 一种多电平逆变器
CN112511015B (zh) 三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构
CN112491282B (zh) 基于载波pwm的y源双级矩阵变换器调制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221107

Address after: 130021 no.4799, Renmin Street, Chaoyang District, Changchun City, Jilin Province

Patentee after: ECONOMIC TECHNOLOGY RESEARCH INSTITUTE OF STATE GRID JILIN ELECTRIC POWER CO.,LTD.

Patentee after: Jilin Province Beitian Gong Software Development Co.,Ltd.

Address before: 132012, Changchun Road, Jilin, Jilin, 169

Patentee before: NORTHEAST DIANLI University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221201

Address after: 132012, Changchun Road, Jilin, Jilin, 169

Patentee after: NORTHEAST DIANLI University

Patentee after: ECONOMIC TECHNOLOGY RESEARCH INSTITUTE OF STATE GRID JILIN ELECTRIC POWER CO.,LTD.

Patentee after: Jilin Province Beitian Gong Software Development Co.,Ltd.

Address before: 130021 no.4799, Renmin Street, Chaoyang District, Changchun City, Jilin Province

Patentee before: ECONOMIC TECHNOLOGY RESEARCH INSTITUTE OF STATE GRID JILIN ELECTRIC POWER CO.,LTD.

Patentee before: Jilin Province Beitian Gong Software Development Co.,Ltd.