CN112511015B - 三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构 - Google Patents

三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构 Download PDF

Info

Publication number
CN112511015B
CN112511015B CN202011428378.3A CN202011428378A CN112511015B CN 112511015 B CN112511015 B CN 112511015B CN 202011428378 A CN202011428378 A CN 202011428378A CN 112511015 B CN112511015 B CN 112511015B
Authority
CN
China
Prior art keywords
trans
quasi
stage
source
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011428378.3A
Other languages
English (en)
Other versions
CN112511015A (zh
Inventor
陈海鹏
郝赫男
陈志忠
王汝田
艾彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202011428378.3A priority Critical patent/CN112511015B/zh
Publication of CN112511015A publication Critical patent/CN112511015A/zh
Application granted granted Critical
Publication of CN112511015B publication Critical patent/CN112511015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明是一种三相双Trans‑准Z源网络三电平间接矩阵变换器拓扑结构,包括整流级、双Trans‑准Z源网络和逆变级;其特点是,整流级是由六个双向功率开关模块S′1~S′6构成的三相桥式整流电路;双Trans‑准Z源网络由第一Trans‑准Z源和第二Trans‑准Z源连接而成;逆变级由十个功率开关模块S′1~S′10构成的10开关三电平逆变电路;将三相桥式整流电路、双Trans‑准Z源网络、10开关三电平逆变电路顺次级联,其有益效果是:功率开关元件数少、体积小、成本低、能够为逆变级提供电路中点,还可通过改变耦合电感匝数比提高输入电压大小、使三电平间接矩阵变换器获得更大电压增益,输出波形质量更佳。

Description

三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构
技术领域
本发明涉及到电力电子领域,具体涉及一种三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构。
背景技术
现有中小型电机更普遍使用的是两电平变频器。其优点在于调制算法和拓扑结构简单,开关损耗较小。但由于其单相桥臂元件少,所需承受的电压应力较大,且只能输出两种电平的电压,导致电机侧电压电流波形谐波含量大,因此不适合用于高电压,高谐波性能的电机设备控制系统。在变频器逆变级的选择上,三电平拓扑结构较两电平具有明显优势:可输出更高质量的电流电压波形、相对于两电平,对开关频率的要求降低、直流环节中的共模电压和EMI降低、功率开关管只需承受母线电压的一半,对器件的耐压要求降低,可工作于高压环境等。但如何为三电平矩阵变换器找到一个真正意义上的中点,以期提供更高质量的输出电压,并针对矩阵变换器能量双向交换的特性,选择更适合的Z源拓扑,目前尚未有良好的解决方案。
发明内容
本发明的目的是,克服现有技术的不足,提供一种功率开关元件数少、体积小、成本低、能够通过改变耦合电感匝数比提高输入电压大小、使三电平间接矩阵变换器获得更大电压增益,输出波形质量更佳的三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构。
本发明的目的是由以下技术方案来实现的:一种三相双Trans-准Z源三电平间接矩阵变换器的拓扑结构,它包括整流级、双Trans-准Z源网络和逆变级,其特征是,整流级由六个双向功率开关模块S1′~S6′构成的三相桥式整流电路;双Trans-准Z源网络由第一Trans-准Z源和第二Trans-准Z源连接而成;逆变级由十个功率开关模块S1~S10构成的10开关三电平逆变电路;所述第一Trans-准Z源由输入电感L11、耦合电感L12、L13、二极管VD1及电容C11、C12相连接构成,所述第二Trans-准Z源由输入电感L21、耦合电感L22、L23、二极管VD2及电容C21、C22相连接构成,将所述第一Trans-准Z源的电容C11的负极与第二Trans-准Z源的电容C21的正极相连,所述三相桥式整流电路、双Trans-准Z源网络、10开关三电平逆变电路顺次级联。
本发明的三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构采用整流级由六个双向功率开关模块S1′~S6′构成的三相桥式整流电路;双Trans-准Z源网络由第一Trans-准Z源和第二Trans-准Z源连接而成;逆变级由十个功率开关模块S1~S10构成的10开关三电平逆变电路;第一Trans-准Z源由输入电感L11、耦合电感L12、L13、二极管VD1及电容C11、C12相连接构成,第二Trans-准Z源由输入电感L21、耦合电感L22、L23、二极管VD2及电容C21、C22相连接构成,第一Trans-准Z源的电容C11的负极与第二Trans-准Z源的电容C21的正极相连,三相桥式整流电路、双Trans-准Z源网络、10开关三电平逆变电路顺次级联,使其功率开关元件数少、体积小、成本低,能够为逆变级提供电路中点,还可通过改变耦合电感匝数比提高输入电压大小、使三电平间接矩阵变换器获得更大电压增益,输出波形质量更佳。
附图说明
图1为本发明的三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构示意图;
图2为整流级三相电压扇区划分图;
图3为10开关逆变电路的拓扑结构示意图;
图4为10开关逆变电路工作于“P”、“O”状态的原理图;
图5为10开关逆变电路工作于“O”、“N”状态的原理图;
图6为10开关逆变电路工作于“P”、“N”状态的原理图;
图7为逆变级基于60°坐标系的扇区划分示意图;
图8为七段式开关作用序列示意图;
图9为七段式开关时间分配示意图;
图10为基于中点电位平衡的九段式开关作用序列示意图;
图11为基于中点电位平衡的九段式开关时间分配示意图;
图12为双Trans-准Z源网络三电平间接矩阵变换器输出的电流波形示意图;
图13为双Trans-准Z源网络三电平间接矩阵变换器输出的A相电压示意图。
具体实施方式
下面结合附图对本发明的拓扑结构作进一步的详细说明。
如图1所示,本发明的三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构,其整流级是由双向开关模块S1′~S6′构成的三相桥式整流电路。第一Trans-准Z源是由输入电感L11、耦合电感L12、L13,二极管VD1及电容C11、C12构成的:将输入电感L11的一端与二极管VD1的阳极相连,二极管VD1的阴极与耦合电感L13的一端相连,耦合电感L13的另一端与耦合电感L12的一端相连,电容C12的负极与二极管VD1的阳极相连,电容C12的正极与耦合电感L12的另一端相连,电容C11的正极与耦合电感L12和耦合电感L13的连接点相连,构成第一Trans-准Z源;第二Trans-准Z源是由输入电感L21、耦合电感L22、L23,二极管VD2及电容C21、C22构成的:输入电感L21的一端与二极管VD2的阴极相连,二极管VD2的阳极与耦合电感L23的一端相连,耦合电感L23的另一端与耦合电感L22的一端相连,电容C22的正极与二极管VD2的阴极相连,电容C22的负极与耦合电感L22的另一端相连,电容C21的负极与耦合电感L22和耦合电感L23的连接点相连,构成第二Trans-准Z源;将第一Trans-准Z源的电容C11的负极与第二Trans-准Z源的电容C21的正极相连,第一Trans-准Z源和第二Trans-准Z源共同构成双Trans-准Z源网络,将第一Trans-准Z源的输入电感L11的另一端定义为双Trans-准Z源网络的正输入端,将第二Trans-准Z源的输入电感L21的另一端定义为双Trans-准Z源网络的负输入端,将第一Trans-准Z源的电容C12的正极定义为双Trans-准Z源网络的正输出端,将第二Trans-准Z源的电容C22的负极定义为双Trans-准Z源网络的负输出端;电容C11、C21的连接点定义为逆变级的直流中性点O,其电位为0。由一个绝缘栅双极晶体管与一个反并联的二极管构成功率开关模块S1~S10,二极管的阳极与绝缘栅双极晶体管的发射极相连,二极管的阴极与绝缘栅双极晶体管的集电极相连,将绝缘栅双极晶体管的发射极定义为功率开关模块的发射极,将绝缘栅双极晶体管的集电极定义为开关模块的集电极;以开关模块S5~S10构成三相桥式逆变电路;开关模块S1的发射极与开关模块S2的集电极相连,开关模块S2的发射极与开关模块S3的集电极相连,开关模块S3的发射极与开关模块S4的集电极相连,开关模块S1、S2的连接点与开关模块S5、S7、S9的集电极相连,开关模块S3、S4的连接点与开关模块S6、S8、S10的发射极相连,S1~S10共同构成10开关三电平逆变电路结构,将开关模块S1的集电极定义为10开关三电平逆变电路的正输入端,将开关模块S4的发射极定义为10开关三电平逆变电路的负输入端,将开关模块S2、S3的连接点定义为10开关三电平逆变电路的零输入端,将三相桥式逆变电路的输出端定义为10开关三电平逆变电路的输出端。将三相桥式整流电路的直流母线与双Trans-准Z源网络的输入端相连,双Trans-准Z源网络的正输出端与10开关三电平逆变电路的正输入端相连,双Trans-准Z源网络的负输出端与10开关三电平逆变电路的负输入端相连,双Trans-准Z源网络的的直流中性点O与10开关三电平逆变电路的零输入端相连,构成双Trans-准Z源三电平间接矩阵变换器,三相桥式整流电路的输入端为双Trans-准Z源三电平间接矩阵变换器的输入端,三相桥式逆变电路的输出端作为双Trans-准Z源三电平间接矩阵变换器的输出端。
本发明的三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构的调制方法如下:
1)对于整流级采用无零矢量PWM调制方法,假设整流级输入正弦电压三相对称,即:
Figure BDA0002819912640000051
式中,Urm为输入相电压幅值,ωr为整流级输入电压角频率。
将输入相电压的周期分成6个区间,在每个区间中,都会有其中一相的相电压绝对值最大,而另外两相极性与其相反。在每个区间以该特性令绝对值最大相导通,另两相开关动作切换,如图2所示。以第2区间为例,绝对值最大相为C相,故取Uac和Ubc作为正极性调制线电压,合成整流级输出电压Ud,即下式:
Ud=dαuac+dβubc (2)
式中,dα为取Uac作为正极性调制线电压时的占空比;dβ为取Ubc作为正极性调制线电压时的占空比;
因此可得占空比计算表达式:
Figure BDA0002819912640000052
根据上式可总结出一个开关周期内整流级输出电压平均值为:
Figure BDA0002819912640000053
Figure BDA0002819912640000054
2)逆变级使用稀疏10开关三电平拓扑,如图3所示。该拓扑通过S1~S4控制输出电压矢量状态,根据不同的组合,可输出
Figure BDA0002819912640000055
0、
Figure BDA0002819912640000056
三种电平。当S1、S3开通,S2、S4关断,此时逆变级可输出
Figure BDA0002819912640000057
0两种电平(即逆变级工作在“P”,“O”两种状态,如图4所示);当S2、S4开通,S1、S3关断,此时逆变级可输出0,
Figure BDA0002819912640000058
两种电平(即逆变级工作在“O”,“N”两种状态,如图5所示);当S1、S4开通,S2、S3关断,此时逆变级可输出
Figure BDA0002819912640000059
Figure BDA00028199126400000510
两种电平(即逆变级工作在“P”,“N”两种状态,如图6所示)。由此可以看出,S1~S4的作用是控制直流侧链路电位,通过两两组合,实现等效电压源的正负端子解耦。
经过上述分析可知,逆变级通过改变S1~S4的开关状态来实现后级多电平输出,现总结开关状态如下:
当逆变级工作在“P”,“O”两种状态时,可输出的开关状态有:POO、PPO、OPO、OPP、OOP、POP、PPP、OOO;
当逆变级工作在“P”,“N”两种状态时,可输出的开关状态有:PNN、PPN、NPN、NPP、NNP、PNP、PPP、NNN;
当逆变级工作在“O”,“N”两种状态时,可输出的开关状态有:ONN、OON、NON、NOO、NNO、ONO、OOO、NNN;
根据基本电压矢量的幅值大小和方向,可归纳出四种矢量,即零矢量、小矢量、中矢量、大矢量。根据小矢量和零矢量对应的开关状态,可以看出小矢量冗余度为2,零矢量冗余度为3,产生同一空间矢量的两种小矢量分别会使中点电位升高或下降,故在矢量分配时,在开关周期内均匀分布小矢量,可优化直流链路共模电压。
值得注意的是,本拓扑结构无法输出传统三电平逆变器的中矢量,故采用两小矢量合成等效中矢量的方法,使中点电位更为平衡。
逆变级使用基于60°坐标系的SVPWM调制方法,扇区划分如图7所示;根据伏秒平衡原理,计算出各小扇区用于合成Vref的电压矢量作用时间如表1所示(为留出直通时间占空比dst,将有效开关周期Ts等比例缩短)。
表1电压矢量时间分配
Figure BDA0002819912640000061
Figure BDA0002819912640000071
表中,
Figure BDA0002819912640000072
为三项参考合成电压在60°坐标系下标么化后的坐标值。
逆变级的扇区划分及开关状态如图所示由前述可知,小矢量具有冗余度,故分配开关状态的作用时间为(以4/6区举例):
Figure BDA0002819912640000073
式中,d1、d2、d3为矢量的占空比;TPOO、TONN、TPPO、TPNN为对应矢量的作用时间。
为降低开关动作次数和谐波含量,确定开关切换序列时,应以正负小矢量为起点开始动作,如图8所示(以4/6区举例):
在逆变级开关周期的两端插入直通零状态,为保证开关损耗最低,在系统工作于直通状态时,保持后级的工作状态。此期间S1~S4恒导通,将逆变级短路。
3)为使本拓扑结构输出的电压电流三相对称,减小对电网侧的谐波污染,应对整流级和逆变级进行联合调制,组合两者的开关顺序和占空比,可以得出矩阵变换器占空比dαx(x=1,2,3)、dβx(x=1,2,3)如式7所示(以4/6区举例):
Figure BDA0002819912640000074
在逆变级工作于直通零状态时,其直通占空比也要与整流级相组合,组合后的占空比dαst、dβst如式8所示,组合后整流级和逆变级的开关工作状态如图9所示。
Figure BDA0002819912640000081
4)以上分析可以看出,当逆变级最近三角形原则选中两个小矢量时,七段式开关序列会导致其中一个小矢量无法通过其负等效矢量进行电位的弥衡,因此采用九段式的开关序列,使中点电位在同一开关周期内变化总和为0。图10、11给出了九段式的开关作用序列及联合调制后的时间分配。
为了验证电路拓扑结构及所使用调制方法的正确性,在Matlab/Simulink环境下进行仿真,参数如下:三相输入电压幅值为200V,频率为50Hz;直通占空比dst为0.15;电感L11、L12均为1mH,4个电容C1~C4均为1000μF;耦合电感匝数比为3:1,耦合系数为1;三相负载电阻均为12Ω,电感均为50mH。通过上述仿真,验证了三相双Trans-准Z源网络三电平矩阵变换器拓扑结构的正确性及载波PWM调制方法的可行性。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式是示意性的,而非限制性的,本领域的普通技术人员在本发明的启示下,在不脱离发明宗旨的情况下,还能够做出其它形式,这些均属于本发明的保护之内。

Claims (1)

1.一种三相双Trans-准Z源三电平间接矩阵变换器的拓扑结构,它包括整流级、双Trans-准Z源网络和逆变级,其特征在于:
(1)整流级由六个双向功率开关模块S1′~S6′构成的三相桥式整流电路;双Trans-准Z源网络由第一Trans-准Z源和第二Trans-准Z源连接而成;逆变级由十个功率开关模块S1~S10构成的10开关三电平逆变电路;所述第一Trans-准Z源由输入电感L11、耦合电感L12、L13、二极管VD1及电容C11、C12相连接构成,所述第二Trans-准Z源由输入电感L21、耦合电感L22、L23、二极管VD2及电容C21、C22相连接构成,将所述第一Trans-准Z源的电容C11的负极与第二Trans-准Z源的电容C21的正极相连,所述三相桥式整流电路、双Trans-准Z源网络、10开关三电平逆变电路顺次级联;
(2)所述的三相双Trans-准Z源三电平间接矩阵变换器,它的调制方法包括以下步骤:
1)整流级采用无零矢量PWM调制方法,三相正弦输入相电压ura、urb、urc;将输入相电压的周期分成6个区间,在每个区间令绝对值最大相导通,另两相开关动作切换;以第2区间为例,绝对值最大相为C相,故取uac和ubc作为正极性调制线电压,合成整流级输出电压Ud,表达式为:
Ud=dαuac+dβubc
式中,dα为取uac作为正极性调制线电压时的占空比;dβ为取ubc作为正极性调制线电压时的占空比;
因此可得占空比计算表达式为:
Figure FDA0003632867510000011
2)逆变级采用SVPWM调制策略,根据10开关三电平逆变级的拓扑,总结开关状态如下:
当逆变级功率开关S1、S3开通,S2、S4关断时,可输出的开关状态有:POO、PPO、OPO、OPP、OOP、POP、PPP、OOO;
当逆变级功率开关S1、S4开通,S2、S3关断时,可输出的开关状态有:PNN、PPN、NPN、NPP、NNP、PNP、PPP、NNN;
当逆变级功率开关S2、S4开通,S1、S3关断时,可输出的开关状态有:ONN、OON、NON、NOO、NNO、ONO、OOO、NNN;
上述每个开关状态对应一个电压矢量,所有电压矢量构成电压矢量图,分为6个大扇区,每个大扇区又分为8个小扇区,以第一大扇区为例,根据伏秒平衡原理计算各电压矢量对应的作用时间;
当参考电压矢量落在第1/2小扇区时,参与合成的电压矢量有:POO/ONN,PPO/OON,PPP/OOO/NNN, 各自的作用时间为:
Figure FDA0003632867510000021
Figure FDA0003632867510000022
当参考电压矢量落在第3/5小扇区时,参与合成的电压矢量有:POO/ONN,PPO/OON,PPN,各自的作用时间为:
Figure FDA0003632867510000023
Figure FDA0003632867510000024
当参考电压矢量落在第4/6小扇区时,参与合成的电压矢量有:POO/ONN,PPO/OON,PNN,各自的作用时间为:
Figure FDA0003632867510000025
Figure FDA0003632867510000026
当参考电压矢量落在第7小扇区时,参与合成的电压矢量有:PNN,PPO/OON,PPN, 各自的作用时间为:
Figure FDA0003632867510000027
Figure FDA0003632867510000028
当参考电压矢量落在第8小扇区时,参与合成的电压矢量有:POO/ONN,PNN,PPN, 各自的作用时间为:
Figure FDA0003632867510000029
Figure FDA00036328675100000210
其中,
Figure FDA00036328675100000211
为三相参考合成电压Vref在60°坐标系下标么化后的坐标值;
3)将开关状态作用时间按九段式进行分配,设电压矢量占空比分别为d1、d2、d3,为降低开关动作次数和谐波含量,确定开关切换序列时,应以正负小矢量为起点开始动作,在逆变级开关周期的两端插入直通零状态,为保证开关损耗最低,在系统工作于直通状态时,保持后级的工作状态, 此期间S1~S4恒导通,将逆变级短路,为使本拓扑结构输出的电压电流三相对称,减小对电网侧的谐波污染,应对整流级和逆变级进行联合调制,组合两者的开关顺序和占空比,可以得出矩阵变换器占空比dαx(x=1,2,3)、dβx(x=1,2,3)表达式为:
Figure FDA0003632867510000031
在逆变级工作于直通零状态时,其直通占空比也要与整流级相组合,组合后的占空比dαst、dβst表达式为:
Figure FDA0003632867510000032
CN202011428378.3A 2020-12-07 2020-12-07 三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构 Active CN112511015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011428378.3A CN112511015B (zh) 2020-12-07 2020-12-07 三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011428378.3A CN112511015B (zh) 2020-12-07 2020-12-07 三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构

Publications (2)

Publication Number Publication Date
CN112511015A CN112511015A (zh) 2021-03-16
CN112511015B true CN112511015B (zh) 2022-09-20

Family

ID=74971715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011428378.3A Active CN112511015B (zh) 2020-12-07 2020-12-07 三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构

Country Status (1)

Country Link
CN (1) CN112511015B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389460B (zh) * 2022-01-21 2024-07-26 中国石油大学(华东) 一种基于准z源结构的混合桥式dc/dc变换器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204103797U (zh) * 2014-07-18 2015-01-14 山东大学 一种准z源三电平t型逆变器
CN106452153A (zh) * 2016-10-26 2017-02-22 河北工业大学 一种变拓扑Trans‑Z源逆变器
CN111064376A (zh) * 2020-01-03 2020-04-24 湖南大学 十开关三相三电平逆变器及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092399A (zh) * 2014-07-18 2014-10-08 山东大学 一种准z源三电平t型逆变器及其svpwm调制方法
JP2018088750A (ja) * 2016-11-28 2018-06-07 東洋電機製造株式会社 電力変換装置
CN109245594B (zh) * 2018-11-02 2024-06-14 南京熊猫电子股份有限公司 一种交直流双向变换电路及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204103797U (zh) * 2014-07-18 2015-01-14 山东大学 一种准z源三电平t型逆变器
CN106452153A (zh) * 2016-10-26 2017-02-22 河北工业大学 一种变拓扑Trans‑Z源逆变器
CN111064376A (zh) * 2020-01-03 2020-04-24 湖南大学 十开关三相三电平逆变器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"三电平间接矩阵变换器的简化SVPWM方法研究";王汝田;《电测与仪表》;20170310;全文 *

Also Published As

Publication number Publication date
CN112511015A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Samizadeh et al. A new topology of switched-capacitor multilevel inverter with eliminating leakage current
CN110247568B (zh) 一种三相二极管钳位型三电平双输出逆变器拓扑结构
CN112003490B (zh) 三电平变流器的功率组件及三电平变流器
CN108471250B (zh) 一种用于电力变换系统的五电平拓扑结构
WO2012041020A1 (zh) 单相五电平功率变换器
CN113783453A (zh) 一种低成本高增益三电平逆变器及其空间矢量调制方法
CN108448918B (zh) 一种无变压器单相并网光伏逆变器
Ladoux et al. Comparative study of variant topologies for MMC
CN111953223A (zh) 一种三相四线制三电平变流器中点电压平衡方法
CN112564526A (zh) 一种三相t型三电平双输出逆变器
Babaei et al. A new basic unit for symmetric and asymmetric cascaded multilevel inverter with reduced number of components
CN106972773B (zh) 一种三电平并网逆变器恒定开关频率模型预测控制方法
CN110572064B (zh) 一种复合多电平功率变换电路及方法
Jakhar et al. A nine-level common-ground-type boost inverter for PV applications
CN112511015B (zh) 三相双Trans-准Z源网络三电平间接矩阵变换器拓扑结构
CN115842484B (zh) 一种单相四桥臂模块化多电平变换器及其调控方法
CN109039124B (zh) 基于移相空间矢量调制的mmc电容电压均衡控制方法
CN114553020B (zh) 一种电容复用型模块化多电平换流器及其控制方法
Chen et al. Detroit rectifier
Wei et al. A new quasi three-level hybrid modular multilevel converter
Wang et al. Research on split-source two-stage matrix converter and its modulation strategy
CN112187087B (zh) 可拓展式多电平整流器
CN108988672A (zh) 一种用于电力变换系统的六电平电路拓扑结构
CN115459621A (zh) 非对称型准z源三电平逆变器的空间矢量调制方法及系统
CN208723806U (zh) 一种级联式多电平逆变器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant