CN112526354A - 一种锂电池健康状态估计方法 - Google Patents

一种锂电池健康状态估计方法 Download PDF

Info

Publication number
CN112526354A
CN112526354A CN202011527735.1A CN202011527735A CN112526354A CN 112526354 A CN112526354 A CN 112526354A CN 202011527735 A CN202011527735 A CN 202011527735A CN 112526354 A CN112526354 A CN 112526354A
Authority
CN
China
Prior art keywords
lithium battery
weak
estimator
vector machine
health
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011527735.1A
Other languages
English (en)
Inventor
彭纪昌
孟锦豪
刘海涛
郝思鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN202011527735.1A priority Critical patent/CN112526354A/zh
Publication of CN112526354A publication Critical patent/CN112526354A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂电池健康状态估计方法,包括以下步骤:从动力锂电池充电过程中随机提取部分电压片段,以所述电压片段中的电压值构成向量,作为动力锂电池的老化特征,并形成训练样本;采用训练样本,建立弱估计器;将上述建立好的弱估计器通过权重系数进行联合,各弱估计器的输出经过加权后,得到最终锂电池的健康状态。本发明可对锂电池健康状态进行更为准确的评估。

Description

一种锂电池健康状态估计方法
技术领域
本发明涉及一种锂电池健康状态估计方法,属于动力锂电池应用领域。
背景技术
动力锂电池因具备高能量密度、无记忆效应和低自放电率等多种优势,已经成为了当前电动汽车和固定式储能的重要解决方案。然而,在新能源汽车实际应用中,动力锂电池会逐渐老化。而从车辆中退役的动力锂电池仍然具备一定的使用价值。而动力锂电池的健康状态对于安全高效的使用退役动力锂电池具有重要意义。
经过大量的离线测试,建立动力锂电池的经验模型,是一类被广泛提出的动力锂电池健康状态估计方法。然而,该类方法的测试过程依赖于大量离线测试,不同类型电池的电化学特性有一定差异,即使同一类型的电池,也可能因电池系统的具体设计方不同,而出现性能偏差。再综合考虑因制作工艺导致的锂电池出厂不一致性以及老化测试过程的偏差,经验模型的准确性将受限于所测定的电池类型,面对不同电池的有效性仍有待于进一步探讨。
为提高估计的准确性和便捷性,基于模型的估计方法通过预先建立以电池容量为状态变量的状态空间方程,利用卡尔曼滤波、最小二乘等方法,实现对锂电池容量的在线辨识。然而,荷电状态是此类方法估计的输入量,必然会导致最终估计结果的偏差。另外,此类方法中基于电池容量的状态方程的建立较为困难。
发明内容
本发明是提供一种锂电池健康状态估计方法,可对锂电池健康状态进行更为准确的评估。
为达到上述目的,本发明所采用的技术方案是:一种锂电池健康状态估计方法,包括以下步骤:从动力锂电池充电过程中随机提取部分电压片段,以所述电压片段中的电压值构成向量,作为动力锂电池的老化特征,并形成训练样本;采用训练样本,建立弱估计器;将上述建立好的弱估计器通过权重系数进行联合,各弱估计器的输出经过加权后,得到最终锂电池的健康状态。
优选地,所述弱估计器包括基于神经网络的弱估计器以及基于支持向量机的弱估计器。
优选地,所述基于神经网络的弱估计器的建立包括以下步骤:采用训练样本对基于神经网络的数据驱动模型进行训练,经过训练过程建立基于神经网络的弱估计器;所述基于神经网络的数据驱动模型的输入为随机匹配的老化特征,输出为训练样本对应的电池健康状态。
优选地,所述基于神经网络的数据驱动模型的训练包括对输入数据依次进行向前传播计算和误差反向传播计算。
优选地,所述基于支持向量机的弱估计器包括以下步骤:根据支持向量机,建立基于支持向量机的弱估计器;所述支持向量机的输入为随机匹配的电压片段,输出为训练样本中电池的健康状态。
优选地,所述支持向量机为:
Figure BDA0002851144600000031
其中,fSVR(x)为支持向量机输出的电池健康状态,
Figure BDA0002851144600000032
能够将训练数据映射到高维空间,x为输入的电压片段,b为复数参数,w为支持向量机的权重系数,T为矩阵转置运算。
优选地,所述支持向量机的核函数为径向基核函数。
优选地,所述权重系数采用自适应差分进化算法,经过迭代优化后得到。
一种存储或多个程序的计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行上述的方法。
一种计算设备,包括一个或多个处理器、存储器以及一个或多个程序,其中一个或多个程序存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行上述方法中的任一方法的指令。
本发明通过建立多个异质的弱估计器,混合建立集成估计模型,同时结合老化特征的随机选取与匹配,提高各弱估计器的多样性,以满足集成学习对于弱估计器多样性及准确性的要求,提高估计动力锂电池健康状态的泛化性。同时,所使用的老化特征可从电池相对固定的充电过程中获得,在实际应用中容易获取。而使用自适应差分进化算法能够避免繁琐的调参过程,也能够进一步提高多模型联合集成估计的整体表现。
附图说明
图1为本发明实施例提供的一种锂电池健康状态估计方法的流程示意图;
图2为本发明实施例中神经网络的示意图;
图3为本发明实施例中支持向量机的示意图;
图4为本发明实施例中差分进化算法的流程示意图。
具体实施方式
为了更好的理解本发明的实质,下面结合具体实施例和附图对本发明作进一步的阐述。
本发明适用于锂电池健康状态的估计,尤其适用于退役动力锂电池健康状态的估计,具体包括以下步骤:
步骤一,从动力锂电池充电过程中随机提取部分电压片段,以所述电压片段中的电压值构成向量,作为动力锂电池的老化特征,并形成训练样本。
由于动力锂电池的充电过程相对固定,因此,本发明将在在电池充电电压曲线中随机选取部分电压片段,作为老化特征。如图4所示,定义所选取的电压片段长度为L,弱估计器的数目为N,则需要从电压片段中选取N个长度为L的不同电压片段,则获得的老化特征可表示为F=[u1,u2,u3,…,uN]。
步骤二,建立弱估计器,所述弱估计器包括基于神经网络的弱估计器以及基于支持向量机的弱估计器。
分别采用基于神经网络的数据驱动驱动模型、基于支持向量机的数据驱动模型建立弱估计器,以保证集成学习的多样性。
可选地,基于神经网络的弱估计器以及基于支持向量机的弱估计器的数量均为N/2。
1、建立基于神经网络的弱估计器包括以下步骤:
如图1所示,采用训练样本对基于神经网络的数据驱动模型进行训练,所述基于神经网络的数据驱动模型的输入为随机匹配的老化特征,输出为训练样本对应的电池健康状态。经过训练过程建立N/2个基于神经网络的弱估计器。
所述基于神经网络的数据驱动模型的训练过程包括以下步骤:
1)前向传播计算。首先,定义前向传播过程中,从第1层到第2层的计算由(1)式表示:
Figure BDA0002851144600000051
其中,
Figure BDA0002851144600000052
为第1层第j个神经元到第2层第i个神经元之间的权重,
Figure BDA0002851144600000053
为第2层第i个神经元相应的偏置,f(·)为神经元的激活函数,xj为第j个神经元的训练样本中的老化特征,
Figure BDA0002851144600000061
为第二层神经网络输出的电池健康状态,n为层数,
Figure BDA0002851144600000062
为第二层神经网络的输出。
由此更一般的前向传播计算过程,可表示为(2)式:
Figure BDA0002851144600000063
其中,z(l)表示第l层的输入,a(l)表示第l层的输出,a(l-1)表示第l-1层的输出,b(l -1)表示第l-1层相应的偏置,W(l-1)表示第l-1层的权重。
逐层向前计算,即可得到各层的激活值。
2)误差反向传播计算。在完成前向传播的计算后,计算残差δ(n)
Figure BDA0002851144600000064
其中,y为神经网络输出,f'(z(l))为激活函数的结果,⊙为矩阵乘法运算,W(l)为第l层的权重,T为矩阵转置运算。
之后,即可完成偏导数的计算,如式(5)、(6)所示:
Figure BDA0002851144600000065
Figure BDA0002851144600000066
其中,
Figure BDA0002851144600000067
为函数J(W,b;x,y)对于权重W(l)的偏导数,
Figure BDA0002851144600000068
为函数J(W,b;x,y)对于权重b(l)的偏导数
采用梯度下降法更新权重与偏置,则参数更新方式可由式(7)、(8)计算得到:
Figure BDA0002851144600000069
Figure BDA00028511446000000610
通过以上的前向传播和的反向传播算法,即可实现对基于神经网络的弱估计器的建立。
2、建立基于支持向量机的弱估计器包括以下步骤:
本实施例选用支持向量机,建立另外N/2个弱估计器,支持向量机的输入为随机匹配的电压片段,输出为训练样本中电池的健康状态。实施例采用图2所示的结构,建立基于支持向量机的弱估计器。本发明所使用的支持向量机表达式如式(9)所示:
Figure BDA0002851144600000071
其中,fSVR(x)为支持向量机输出的电池健康状态,
Figure BDA0002851144600000072
能够将训练数据映射到高维空间,x为输入的电压片段,b为复数参数,w为支持向量机的权重系数,T为矩阵转置运算。
本实施例在支持向量机建立过程中,选用径向基核函数:
Figure BDA0002851144600000073
其中,xi为第i个神经元的训练样本中的老化特征,xj为第j个神经元的训练样本中的老化特征,γ为调整高斯核形状的参数。
通过求解(11)式所示的带约束的优化问题,即可获得支持向量机表达式中的参数w与b:
Figure BDA0002851144600000074
约束条件为:
Figure BDA0002851144600000075
其中,ξi
Figure BDA0002851144600000081
为代价函数的松弛变量,C为平衡支持向量机泛化性和输出偏差的超参数,minw,b,ξ,ξ*为最小值,N为支持向量数目,yi为第i个支持向量的输出,∈为软间隔的阈值
步骤三,将上述建立好的弱估计器进行联合。
在通过前述步骤分别建立了所有弱估计器之后,将通过权重系数的方式实现多个弱估计器的联合,所述权重系数可以通过自适应差分进化算法,经过迭代优化后即可得N个弱估计器所需的权重(w1,w2,…,wn)。各弱估计器的输入为老化特征,各弱估计器的输出经过加权后,即可获得最终估计的锂电池健康状态。
差分进化的主要流程如图3所示,通过随机选取个体向量产生差分向量,将差分向量赋予权值之后,与第三个向量相加,以产生变异向量。而传统差分进化的优化结果与缩放因子F及交叉率CR密切相关,变异策略也与差分进化性能密切相关。为此,自适应差分进化算法将采取如下方法设置各参数与选取变异策略:
1)F在服从N(0.5,0.3)的正态分布中随机选取,CR在服从N(CRm,Std)的正态分布中随机选取,CRm能够根据每种变异策略生成下一代种群的成功率来调整。
2).常用的变异策略被统一到备选方案池中,通过评估各变异策略的历史成功率,来选取最佳的变异策略。其中,差分进化中可备选的变异方案如下式(13)-(14)所示:
vi,G+1=xr1,G+F(xr2,G-xr3,G) (13)
vi,G+1=xbest,G+F(xr1,G-xr2,G) (14)
vi,G+1=xi,G+F(xbest,G-xi,G)+F(xr1,G-xr2,G) (15)
vi,G+1=xbest,G+F(xr1,G-xr2,G)+F(xr3,G-xr4,G) (16)
vi,G+1=xr1,G+F(xr2,G-xr3,G)+F(xr4,G-xr5,G) (17)
式中,xbest,G为当前的最优个体,xr1,G、xr2,G、xr3,G、xr4,G、xr5,G是随机选取的不同个体,F为缩放因子,vi,G+1为变异后的个体,xi,G为待变异个体。
自适应差分进化的优化结果,即为集成多个弱估计器所需的N个权重(w1,w2,…,wn)。
本发明通过建立多个异质的弱估计器,混合建立集成估计模型,同时结合老化特征的随机选取与匹配,提高各弱估计器的多样性,以满足集成学习对于弱估计器多样性及准确性的要求,提高估计动力锂电池健康状态的泛化性。同时,所使用的老化特征可从电池相对固定的充电过程中获得,在实际应用中容易获取。而使用自适应差分进化算法能够避免繁琐的调参过程,也能够进一步提高多模型联合集成估计的整体表现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
应当指出,虽然通过上述实施方式对本发明进行了描述,然而本发明还可有其它多种实施方式。在不脱离本发明精神和范围的前提下,熟悉本领域的技术人员显然可以对本发明做出各种相应的改变和变形,但这些改变和变形都应当属于本发明所附权利要求及其等效物所保护的范围内。

Claims (8)

1.一种锂电池健康状态估计方法,其特征在于,包括以下步骤:
从动力锂电池充电过程中随机提取部分电压片段,以所述电压片段中的电压值构成向量,作为动力锂电池的老化特征,并形成训练样本;
采用训练样本,建立弱估计器;
将上述建立好的弱估计器通过权重系数进行联合,各弱估计器的输出经过加权后,得到最终锂电池的健康状态。
2.根据权利要求1所述锂电池健康状态估计方法,其特征在于:所述弱估计器包括基于神经网络的弱估计器以及基于支持向量机的弱估计器。
3.根据权利要求2所述锂电池健康状态估计方法,其特征在于:所述基于神经网络的弱估计器的建立包括以下步骤:
采用训练样本对基于神经网络的数据驱动模型进行训练,经过训练过程建立基于神经网络的弱估计器;所述基于神经网络的数据驱动模型的输入为随机匹配的老化特征,输出为训练样本对应的电池健康状态。
4.根据权利要求3所述锂电池健康状态估计方法,其特征在于:所述基于神经网络的数据驱动模型的训练包括对输入数据依次进行向前传播计算和误差反向传播计算。
5.根据权利要求2所述锂电池健康状态估计方法,其特征在于:所述基于支持向量机的弱估计器包括以下步骤:
根据支持向量机,建立基于支持向量机的弱估计器;所述支持向量机的输入为随机匹配的电压片段,输出为训练样本中电池的健康状态。
6.根据权利要求5所述锂电池健康状态估计方法,其特征在于:所述支持向量机为:
Figure FDA0002851144590000021
其中,fSVR(x)为支持向量机输出的电池健康状态,
Figure FDA0002851144590000022
能够将训练数据映射到高维空间,x为输入的电压片段,b为复数参数,w为支持向量机的权重系数,T为矩阵转置运算。
7.根据权利要求5所述锂电池健康状态估计方法,其特征在于:所述支持向量机的核函数为径向基核函数。
8.根据权利要求1所述锂电池健康状态估计方法,其特征在于:所述权重系数采用自适应差分进化算法,经过迭代优化后得到。
CN202011527735.1A 2020-12-22 2020-12-22 一种锂电池健康状态估计方法 Pending CN112526354A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011527735.1A CN112526354A (zh) 2020-12-22 2020-12-22 一种锂电池健康状态估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011527735.1A CN112526354A (zh) 2020-12-22 2020-12-22 一种锂电池健康状态估计方法

Publications (1)

Publication Number Publication Date
CN112526354A true CN112526354A (zh) 2021-03-19

Family

ID=75002397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011527735.1A Pending CN112526354A (zh) 2020-12-22 2020-12-22 一种锂电池健康状态估计方法

Country Status (1)

Country Link
CN (1) CN112526354A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113255215A (zh) * 2021-05-19 2021-08-13 四川大学 一种基于电压片段的锂电池健康状态估计方法
CN114047452A (zh) * 2022-01-13 2022-02-15 浙江玥视科技有限公司 一种确定电池循环寿命的方法及装置
CN114297904A (zh) * 2022-03-09 2022-04-08 四川大学 一种基于二次差分温度特征的锂电池健康状态估计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187281A (zh) * 2019-05-22 2019-08-30 天津大学 基于充电阶段健康特征的锂电池健康状态估算的方法
CN110659722A (zh) * 2019-08-30 2020-01-07 江苏大学 基于AdaBoost-CBP神经网络的电动汽车锂离子电池健康状态估算方法
CN111398837A (zh) * 2020-04-01 2020-07-10 重庆大学 一种基于数据驱动的车用电池健康状态估计方法
CN111680848A (zh) * 2020-07-27 2020-09-18 中南大学 基于预测模型融合的电池寿命预测方法及存储介质
CN111709186A (zh) * 2020-06-16 2020-09-25 四川大学 一种退役动力锂电池健康状态的集成估计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187281A (zh) * 2019-05-22 2019-08-30 天津大学 基于充电阶段健康特征的锂电池健康状态估算的方法
CN110659722A (zh) * 2019-08-30 2020-01-07 江苏大学 基于AdaBoost-CBP神经网络的电动汽车锂离子电池健康状态估算方法
CN111398837A (zh) * 2020-04-01 2020-07-10 重庆大学 一种基于数据驱动的车用电池健康状态估计方法
CN111709186A (zh) * 2020-06-16 2020-09-25 四川大学 一种退役动力锂电池健康状态的集成估计方法
CN111680848A (zh) * 2020-07-27 2020-09-18 中南大学 基于预测模型融合的电池寿命预测方法及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
成曙 等: "《发动机现代诊断技术》", vol. 1, 31 December 2006, 西安交通大学出版社, pages: 32 - 37 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113255215A (zh) * 2021-05-19 2021-08-13 四川大学 一种基于电压片段的锂电池健康状态估计方法
CN113255215B (zh) * 2021-05-19 2022-02-01 四川大学 一种基于电压片段的锂电池健康状态估计方法
CN114047452A (zh) * 2022-01-13 2022-02-15 浙江玥视科技有限公司 一种确定电池循环寿命的方法及装置
CN114047452B (zh) * 2022-01-13 2022-05-13 浙江玥视科技有限公司 一种确定电池循环寿命的方法及装置
CN114297904A (zh) * 2022-03-09 2022-04-08 四川大学 一种基于二次差分温度特征的锂电池健康状态估计方法

Similar Documents

Publication Publication Date Title
CN112526354A (zh) 一种锂电池健康状态估计方法
CN111709186B (zh) 一种退役动力锂电池健康状态的集成估计方法
CN110488202A (zh) 基于深度神经网络的车辆电池荷电状态估计方法
CN110554324B (zh) 一种soc和soh联合估计方法
CN115632179B (zh) 一种锂离子电池智能快速充电方法及系统
CN111983459B (zh) 一种基于车用锂离子电池的健康状态测试评估方法
CN112834927A (zh) 锂电池剩余寿命预测方法、系统、设备及介质
CN114966436A (zh) 锂电池荷电状态预测方法、装置、设备及可读存储介质
CN114660464A (zh) 一种锂离子电池荷电状态估算方法
CN114660497A (zh) 一种针对容量再生现象的锂离子电池寿命预测方法
CN115453871A (zh) 一种基于ide扩展多维泰勒网的非线性系统建模方法
CN115980584A (zh) 基于多特征融合lstm网络的锂电池rul估计方法
CN116106761A (zh) 基于典型相关分析的锂离子电池电量实时估计方法
CN115308606A (zh) 一种基于邻近特征的锂离子电池健康状态估计方法
CN111260015A (zh) 一种基于混沌猫群算法的锂离子电池模型参数辨识方法
CN113093014B (zh) 一种基于阻抗参数的soh与soc的在线协同估计方法及系统
CN110232432B (zh) 一种基于人工生命模型的锂电池组soc预测方法
Li et al. The state of charge estimation of lithium-ion battery based on battery capacity
CN111999651B (zh) 一种纯电动汽车用锂离子电池的功率性能测试方法
CN117799495A (zh) 一种锂离子电池荷电状态估算与均衡控制方法
CN115963407A (zh) 一种基于icgwo优化elm的锂电池soc估计方法
CN114895206B (zh) 基于改进灰狼优化算法的rbf神经网络的锂离子电池soh估计方法
CN113702836B (zh) 一种基于emd-gru锂离子电池荷电状态估计方法
CN115629314A (zh) 基于改进Jaya的电池参数与状态联合估计方法及系统
CN114239463A (zh) 基于大数据的电池簇荷电状态修正方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination