CN112521139A - 一种跨尺度多孔陶瓷及其制备方法 - Google Patents

一种跨尺度多孔陶瓷及其制备方法 Download PDF

Info

Publication number
CN112521139A
CN112521139A CN201910826082.8A CN201910826082A CN112521139A CN 112521139 A CN112521139 A CN 112521139A CN 201910826082 A CN201910826082 A CN 201910826082A CN 112521139 A CN112521139 A CN 112521139A
Authority
CN
China
Prior art keywords
laser
microns
cross
porous ceramic
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910826082.8A
Other languages
English (en)
Other versions
CN112521139B (zh
Inventor
董雷
唐胤洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Youdeng Technology Co ltd
Original Assignee
Nanjing Youdeng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Youdeng Technology Co ltd filed Critical Nanjing Youdeng Technology Co ltd
Priority to CN201910826082.8A priority Critical patent/CN112521139B/zh
Publication of CN112521139A publication Critical patent/CN112521139A/zh
Application granted granted Critical
Publication of CN112521139B publication Critical patent/CN112521139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明涉及一种兼有除尘和除废气功能的跨尺度多孔陶瓷及制备方法,属于功能材料领域。本发明的跨尺度多孔陶瓷具有大孔(大于50nm)、介孔(2nm到50nm)、微孔(小于2nm)的多级孔隙结构,在宏观、介观和微观三个尺度实现跨尺度仿生结构。本发明使用波长在红外波段的激光对硅藻土,介孔二氧化硅和全硅分子筛的混合粉体激光选区烧结制备的跨尺度多孔陶瓷。本发明的跨尺度多孔陶瓷用于恶劣工况下粉尘治理和有毒废气治理。

Description

一种跨尺度多孔陶瓷及其制备方法
技术领域
本发明属于新材料领域,具体属于用于多孔陶瓷制备领域。
背景技术
硅藻是水生单细胞藻类,具有多样的形貌和丰富的孔隙结构,以圆形藻为例,大小约几微米到几十微米,硅藻的外壳密布着与外界进行物质交换孔洞,孔洞的形状为圆形,孔洞的大小在亚微米和纳米尺度,硅藻的外壳主要成分是无定形的二氧化硅,属于天然的生物玻璃材料,太阳光透过硅藻的玻璃外壳,在硅藻壳内参与光合作用。硅藻死后,由于二氧化硅的很稳定,难于分解,经过成千上万年的积累,形成了丰富廉价的硅藻土。硅藻土主要由硅藻壳组成,有的形貌还很完整,有的已经破碎,但都保留了丰富的孔隙结构。由于孔隙率很高,硅藻土除了在饮料、化工和家装等传统领域有广泛的应用外,还被做成陶瓷膜、多孔陶瓷等用于水处理和光催化等。
介孔二氧化硅具有孔道结构规则,孔径分布窄等特点,广泛应用于分离提纯、吸附、催化等领域,目前的介孔二氧化硅多为粉体状态,由于表面多羟基,介孔二氧化硅存在严重团聚的问题,如能将介孔二氧化硅做成块体材料,可拓宽应用范围。全硅分子筛具有微观尺度的孔道结构,广泛应用于工业催化,吸附分离等领域。
现有技术制备硅藻土基多孔陶瓷的成型工艺主要有模压法,添加造孔剂法,泡沫浸渍法,发泡法等,很难实现自由成型。烧结工艺为常规的加热烧结工艺,由于常规的烧结工艺提供的是均一的温度场,由于尺寸效应,微孔已经坍塌闭合的情况,大颗粒材料还未烧结,所以普通烧结工艺很难实现在宏观,微观和介观领域跨尺度的孔隙结构。另外在应用上大孔结构多用于除尘,介孔和微孔结构多用于气体吸附,现有技术很难实现制备同时兼有除尘和除废气功能的多孔体。
发明内容
本发明要解决的问题
本发明要公布一种兼有除尘和除废气功能的多孔体及制备方法,本发明的多孔体具有大孔(大于50nm)、介孔(2nm到50nm)、微孔(小于2nm)的多级孔隙结构,在宏观、介观和微观三个尺度实现跨尺度仿生结构。本发明的多孔体的成分为二氧化硅。
本发明的技术路线
本发明使用的原料为50~70wt%硅藻壳。10~30wt%的介孔二氧化硅,10~20wt%的全硅沸石。本发明的制备工艺为成型和烧结一步完成工艺,本发明的工艺为自由成型工艺。具体为软件控制的铺粉和激光分层烧结工艺,铺粉的层厚度为80微米~300微米,优选为100微米~200微米,激光器为固体激光器,光纤激光器,二氧化碳激光器中的一种,优选为激光波长为红外区的二氧化碳激光器。本发明的跨尺度孔隙结构,大孔由选区预留,激光扫描分辨率、激光束直径和硅藻壳自身孔径实现,介孔由介孔二氧化硅实现,微孔由全硅分子筛实现。
本发明的有益效果
本发明在二氧化硅材质多孔体上实现了大孔,介孔,微孔的跨尺度孔隙,同时兼有除尘和除废气功能。
附图说明
图1本发明多孔体的典型形貌。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1
将50wt%的硅藻壳,30wt%的介孔二氧化硅,20wt%的全硅沸石均匀混合后,使用功率为100瓦,激光波长10.6微米的二氧化碳激光器进行激光选区烧结,通过软件控制铺粉,粉层厚设置为150微米,光斑直径为15微米,激光扫描速度为40cm/s,分辨率为500DPI,得到兼有除尘和除废气功能的多孔体。
实施例2
将70wt%的硅藻壳,10wt%的介孔二氧化硅,20wt%的全硅沸石均匀混合后,使用功率为60瓦,激光波长10.6微米的二氧化碳激光器进行激光选区烧结,通过软件控制铺粉,粉层厚设置为200微米,光斑直径为10微米,激光扫描速度为50cm/s,分辨率为400DPI,得到兼有除尘和除废气功能的多孔体。
实施例3
将70wt%的硅藻壳,20wt%的介孔二氧化硅,10wt%的全硅沸石均匀混合后,使用功率为40瓦,激光波长10.6微米的二氧化碳激光器进行激光选区烧结,通过软件控制铺粉,粉层厚设置为170微米,光斑直径为50微米,激光扫描速度为10cm/s,分辨率为400DPI,得到兼有除尘和除废气功能的多孔体。

Claims (5)

1.一种跨尺度多孔陶瓷的制备方法,其特征在于,该方法包括如下步骤:
步骤一,原料的制备:将硅藻壳、介孔二氧化硅,全硅沸石按比例均匀混合,其配比为50wt%-70wt%:10wt%-30wt%:10wt%-20wt%;优选比例为50wt%:30wt%:20wt%或70wt%:10wt%:20wt%或70wt%:20wt%:10wt%之一。
步骤二,激光器的选择与设定:选取固体激光器,光纤激光器,二氧化碳激光器中的一种,优选为激光波长为红外区的二氧化碳激光器,激光波长优选10.6nm,使用功率为40瓦-100瓦,光斑直径为10微米-50微米,激光扫描速度为10cm/s-50cm/s,分辨率为400DPI-500DPI。
步骤三,软件控制自动铺粉和激光分层烧结:软件控制铺粉,粉层厚设置为150微米-200微米,优选150微米、170微米、200微米,通过二氧化碳激光器在选区时将大孔预留,层层烧结,得到跨尺度多孔陶瓷。
2.根据权利要求1所述的跨尺度多孔陶瓷的制备方法,其特征在于:所述步骤一中的硅藻壳、介孔二氧化硅,全硅沸石的比例为:50wt%:30wt%:20wt%;步骤二中激光器为红外区的二氧化碳激光器,激光波长为10.6微米,使用功率为100瓦,光斑直径为15微米,激光扫描速度为40cm/s,分辨率为500DPI;步骤三中粉层厚设置为150微米。
3.根据权利要求1所述跨尺度多孔陶瓷的制备方法,其特征在于:所述步骤一中的硅藻壳、介孔二氧化硅,全硅沸石的比例为:70wt%:10wt%:20wt%;步骤二中激光器为红外区的二氧化碳激光器,激光波长为10.6微米,使用功率为60瓦,光斑直径为10微米,激光扫描速度为50cm/s,分辨率为400DPI;步骤三中粉层厚设置为200微米。
4.根据权利要求1所述跨尺度多孔陶瓷的制备方法,其特征在于:所述步骤一中的硅藻壳、介孔二氧化硅,全硅沸石的比例为:70wt%:20wt%:10wt%;步骤二中激光器为红外区的二氧化碳激光器,激光波长为10.6微米,使用功率为40瓦,光斑直径为50微米,激光扫描速度为10cm/s,分辨率为400DPI;步骤三中粉层厚设置为170微米。
5.根据权利要求1-4所述的任一一种制备方法所得的跨尺度多孔陶瓷,其特征在于:多孔陶瓷体的孔隙结构包括大孔≥50nm,介孔2nm至50nm,微孔小于2nm。
CN201910826082.8A 2019-09-03 2019-09-03 一种跨尺度多孔陶瓷及其制备方法 Active CN112521139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910826082.8A CN112521139B (zh) 2019-09-03 2019-09-03 一种跨尺度多孔陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910826082.8A CN112521139B (zh) 2019-09-03 2019-09-03 一种跨尺度多孔陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112521139A true CN112521139A (zh) 2021-03-19
CN112521139B CN112521139B (zh) 2022-09-23

Family

ID=74974761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910826082.8A Active CN112521139B (zh) 2019-09-03 2019-09-03 一种跨尺度多孔陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112521139B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385668A (zh) * 2022-09-22 2022-11-25 营口理工学院 可快速烧结的环保型水基镁质转炉修补料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070013098A1 (en) * 2003-09-11 2007-01-18 Wacker Chemie Ag Method for producing an si3n4 coated sio2 molded body
US20110262993A1 (en) * 2008-10-30 2011-10-27 Backov Renal Method for preparing a cellular carbon monolith comprising a hierarchised porous network
US20160279597A1 (en) * 2013-10-17 2016-09-29 Nitta Corporation Chemical filter
CN105985632A (zh) * 2015-10-28 2016-10-05 合肥学院 一种选择性激光烧结用粉末材料及其制备方法
CN106390198A (zh) * 2016-09-19 2017-02-15 西安交通大学 一种选区激光成形及电解还原制备个性化多孔植入物方法
CN106466494A (zh) * 2015-08-18 2017-03-01 重庆润泽医药有限公司 一种多孔材料及制备方法
CN107973607A (zh) * 2016-10-21 2018-05-01 南京理工大学 一种无粘结剂的陶瓷浆料激光选区熔化/烧结成形方法
CN108478860A (zh) * 2018-04-04 2018-09-04 昆明理工大学 一种钙磷盐-二氧化硅多孔支架及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070013098A1 (en) * 2003-09-11 2007-01-18 Wacker Chemie Ag Method for producing an si3n4 coated sio2 molded body
US20110262993A1 (en) * 2008-10-30 2011-10-27 Backov Renal Method for preparing a cellular carbon monolith comprising a hierarchised porous network
US20160279597A1 (en) * 2013-10-17 2016-09-29 Nitta Corporation Chemical filter
CN106466494A (zh) * 2015-08-18 2017-03-01 重庆润泽医药有限公司 一种多孔材料及制备方法
CN105985632A (zh) * 2015-10-28 2016-10-05 合肥学院 一种选择性激光烧结用粉末材料及其制备方法
CN106390198A (zh) * 2016-09-19 2017-02-15 西安交通大学 一种选区激光成形及电解还原制备个性化多孔植入物方法
CN107973607A (zh) * 2016-10-21 2018-05-01 南京理工大学 一种无粘结剂的陶瓷浆料激光选区熔化/烧结成形方法
CN108478860A (zh) * 2018-04-04 2018-09-04 昆明理工大学 一种钙磷盐-二氧化硅多孔支架及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385668A (zh) * 2022-09-22 2022-11-25 营口理工学院 可快速烧结的环保型水基镁质转炉修补料及其制备方法

Also Published As

Publication number Publication date
CN112521139B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Colombo et al. Fabrication of ceramic components with hierarchical porosity
Yuan et al. Insights into hierarchically meso–macroporous structured materials
Su et al. Insights into hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science
Inayat et al. Silica monoliths with hierarchical porosity obtained from porous glasses
CN110240484B (zh) 一种3d打印高比表面积高效率催化剂-载体体系的方法
Xue et al. Evaporation‐induced coating and self‐assembly of ordered mesoporous carbon‐silica composite monoliths with macroporous architecture on polyurethane foams
Yang et al. Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications
DK2883632T3 (en) Metallic foam body with controlled grain size on the surface, method of production and use thereof
Vantomme et al. Self-formation of hierarchical micro-meso-macroporous structures: generation of the new concept “Hierarchical Catalysis”
CN100467371C (zh) 多孔碳材料的制备方法
CN102417366B (zh) 一种孔梯度碳化硅多孔陶瓷及其制备方法
CN112521139B (zh) 一种跨尺度多孔陶瓷及其制备方法
CN102391011A (zh) 一种硅藻土基多孔陶瓷微球的制备方法
CN104529506B (zh) 一种复合天然多孔矿物陶瓷微珠的制备方法
JP2002537205A (ja) シリカスートの押出し成形によるシリカガラスハニカム構造体の製造方法
CN101279850B (zh) 一种孔结构可控的多孔陶瓷的制备方法
Simaioforidou et al. Surface chemical modification of macroporous and mesoporous carbon materials: Effect on their textural and catalytic properties
Sierra-Salazar et al. Unconventional pathways for designing silica-supported Pt and Pd catalysts with hierarchical porosity
CN112521138B (zh) 一种硅藻土多孔体及其制备方法
CN103100418B (zh) 一种ts-1钛硅分子筛催化剂的油柱成型方法
CN103041852A (zh) 一种ts-1钛硅分子筛催化剂的挤条成型方法
JP2009269788A (ja) 中空ゼオライトの合成方法及び中空ゼオライト、並びにその中空ゼオライトからなる薬物担体
JP4724789B2 (ja) 発泡体セラミックスを用いた光触媒の製造方法及び光触媒
KR20110058334A (ko) Lta 제올라이트 분리막 및 그 제조 방법
CN115216052B (zh) 一种保持完整骨架的多级孔MOFs材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant