CN112509382A - 一种分析航班延误传播规律的方法 - Google Patents
一种分析航班延误传播规律的方法 Download PDFInfo
- Publication number
- CN112509382A CN112509382A CN202011267646.8A CN202011267646A CN112509382A CN 112509382 A CN112509382 A CN 112509382A CN 202011267646 A CN202011267646 A CN 202011267646A CN 112509382 A CN112509382 A CN 112509382A
- Authority
- CN
- China
- Prior art keywords
- flight
- probability
- delay
- flight set
- propagation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明公开了一种分析航班延误传播规律的方法,包括;以某一时刻的不同状态的航班集密度作为节点,各个航班集的转化概率作为边,来构成机场之间的航班网络;以预设时间为间隔来统计处在不同状态航班集的转化概率,以及各个航班集节点密度的比例系数;以不同状态的航班集的转化概率和航班集的节点密度之间的关系建立基于D‑SEIR模型的航班延误传播模型,通过分析各参数大小对航班集节点密度的影响,来得出航班延误传播规律。本发明以某一时刻的不同状态的航班集密度作为节点,各个航班集的联系作为边,来构成机场之间的航班网络,并将航班延误分段考虑,不仅考虑到航班之间的自发延误,也考虑到航班之间的联系造成的次衍生航班延误。
Description
技术领域
本发明涉及延误传播技术领域,尤其涉及一种分析航班延误传播规律的方法。
背景技术
随着我国航空运输量的持续增长,空域容量趋于饱和,空域容量与流量不平衡的状况日趋严重,如果有恶劣天气或者航空管制等突发事件发生时,会导致大面积的航班延误传播。航班延误不仅严重影响了旅客的出行计划,也给航空公司和社会带来了巨大的经济损失,并且会造成社会影响。
发明内容
本发明的目的是提供一种分析航班延误传播规律的方法,以航班延误在航空网络中的传播情况作为研究对象,基于D-SEIR模型分析不同状态的航班节点的转换规律,为解决航班延误问题提供参考。
本发明为实现上述发明目的采用如下技术方案:
本发明提供了一种分析航班延误传播规律的方法,包括:
以某一时刻的不同状态的航班集密度作为节点,各个航班集的转化概率作为边,来构成机场之间的航班网络;
以预设时间为间隔来统计处在不同状态航班集的转化概率,以及各个航班集节点密度的比例系数;
以不同状态的航班集的转化概率和航班集的节点密度之间的关系建立基于D-SEIR模型的航班延误传播模型,通过分析各参数大小对航班集节点密度的影响,来得出航班延误传播规律。
进一步地,以预设时间为间隔来统计处在不同状态航班集的转化概率的方法包括:
对初始时刻t0不同状态的航班集转化的概率统计;
把一天按照预设时间的间隔进行分段统计不同状态转化的航班集的转化概率。
进一步地,对初始时刻t0不同状态的航班集转化的概率统计包括下述中至少一种:
机场的正常计划的航班集自发转化为潜在延误航班集概率λ0;机场的正常计划航班集转化为正常完成航班集的概率α0;机场的潜在延误航班集转化为延误传播航班集的概率μ0;机场的潜在延误航班集转化为正常到达航班集的概率β0;机场的延误传播航班集转化为正常达到航班集的概率γ0;第二次延误的概率θ0。
进一步地,把一天按照预设时间的间隔进行分段统计不同状态转化的航班集的转化概率的方法包括:
把一天按照15分钟的间隔进行分段,共分为96个时段;
统计下一阶段为t=t0+15,若t<1440统计该时刻的不同状态转化的航班集六种转化概率;
直到t=1440,停止统计。
进一步地,以预设时间为间隔来统计各个航班集节点密度的比例系数的方法包括:
统计初始时刻t0的正常计划的航班集在航班总数中所占比例S(t0);
统计具有潜伏传播能力的航班集在航班总数中所占比例E(t0);
统计具有延误传播能力的航班集在航班总数中所占比例I(t0);
统计正常完成的航班集在航班总数中所占比例R(t0);
若t<1440统计该时刻的四种不同状态的航班集节点密度:S(t),E(t),I(t),R(t);
直到t=1440,停止统计。
进一步地,基于D-SEIR模型的航班延误传播模型的公式如下:
式中:参数λ控制对节点密度的影响分析,λ表示正常计划航班集因自发延误转化为具有潜在延误传播能力的航班集的概率;参数α控制对节点密度的影响分析,α表示正常计划航班集没有延误影响,成为正常完成航班集的概率;参数μ控制对节点密度的影响分析,μ表示具有潜在延误传播能力的航班集转为具有延误传播能力的航班集的概率;参数β控制对节点密度的影响分析,β表示具有潜在延误传播能力的航班集转为正常完成航班集的概率;参数θ控制对节点密度的影响分析,θ表示具有次衍生性延误的航班集,且具有潜在延误传播能力的航班的概率。
本发明的有益效果如下:
本发明以某一时刻的不同状态的航班集密度作为节点,各个航班集的联系作为边,来构成机场之间的航班网络,并将航班延误分段考虑,不仅考虑到航班之间的自发延误,也考虑到航班之间的联系造成的次衍生航班延误;
以不同状态的航班集的转化概率和航班集的节点密度之间的关系建立基于D-SEIR模型的航班延误传播模型,通过分析各参数大小对节点密度的影响,来探索航班延误传播规律。
附图说明
图1为根据本发明实施例提供的D-SEIR模型的节点之间的转换图;
图2为根据本发明实施例提供的流程图;
图3为根据本发明实施例提供的航班集延误的阶段划分图。
具体实施方式
参照图1至图3,根据本发明实施例提供的一种分析航班延误传播规律的方法,包括:
步骤一:以一个机场某一时刻的不同状态的航班集密度作为节点,各个航班集的转化概率作为边来构成机场的航班网络,对初始时刻t0四种不同状态的航班集转化的概率统计:机场的正常计划的航班集自发转化为潜在延误航班集概率λ0;机场的正常计划航班集转化为正常完成航班集的概率α0;机场的潜在延误航班集转化为延误传播航班集的概率μ0;机场的潜在延误航班集转化为正常到达航班集的概率β0;因为延误消散,机场的延误传播航班集,转化为正常达到航班集的概率γ0;由于因为前序航班延误消散后,造成累计延误、飞行需求超过空域流量,航班延误航班飞行时刻被压缩等事发过程,形成具有次衍生性延误,但还不具有传播能力的概率,即产生第二次延误的概率θ0;
把一天按照15分钟的间隔进行分段,一天共分为96个时段。统计下一阶段t=t0+15,若t<1440统计该时刻的四种不同状态转化的航班集六种转化概率:λ,α,μ,β,γ,θ。直到t=1440,停止统计;
其中因累计延误、飞行需求超过空域流量,航班延误航班飞行时刻被压缩后的等事发过程形成具有延误传播衍生性的航班集统计,是根据前序航班集在t0时由于自发延误导致航班延误产生,此时航班延误时间在逐渐累积;到t1时前序航班集的自发延误消散开始;t2代表航班延误消失。由于之前航班集延误导致累积的航班集依次起飞航班延误开始消散,此时仍会导致后序的航班延误,从t1时刻开始累计的延误时间皆为次衍生延误;t1到t2随着之前延误的航班逐渐起飞航班延误逐渐消散,当在t2时航班延误彻底消失,航班恢复正常。
步骤二:进一步按照15分钟的时间间隔对五种比例系数进行统计:统计初始时刻t0的正常计划的航班集在航班总数中所占比例S(t0),即正常计划航班节点密度;具有潜伏传播能力的航班集在航班总数中所占比例E(t0),即潜在延误节点密度;具有延误传播能力的航班集在航班总数中所占比例I(t0),即延误传播航班节点密度;正常完成的航班集在航班总数中所占比例R(t0),即正常完成的航班节点密度。若t<1440统计该时刻的四种不同状态的航班集节点密度:S(t),E(t),I(t),R(t)。直到t=1440,停止统计。
步骤三:基于上述,建立基于D-SEIR模型的航班延误传播模型,包括:
航班分类,依据航班延误过程中航班状态存在转化关系,将航班集划分为:
正常计划航班集S:从延误发生时起,正常计划的还未执行的航班集;
潜在延误航班集E:已经发生航班延误,但还不具有传播能力的航班集,;
延误传播航班集I:具有延误传播能力航班集;
正常到达的航班集R:延误发生后正常到达目的地的航班集。
参数说明
免疫系数α:单位时间内正常计划航班不受延误影响的航班比例系数;
正常转换延误系数λ:因空域单元限制的原因,单位时间内正常计划航班转为延误航班的数量与正常计划航班的总数成一定比例系数;
无延误传播能力系数β:单位时间内无传播能力的航班延误转为正常航班的数量占不具有传播能力的延误航班总数的比例;
具有次衍生能力系数θ:单位时间内因为前序航班延误消散后,造成累计延误、飞行需求超过空域流量,航班延误航班飞行时刻被压缩等事发过程,造成航班延误的衍生性,形成具有次衍生性延误的航班数量占航班延误总数的比例;
延误传播系数μ:单位时间内因延误传播造成的航班延误数量占航班延误总数的比例;
延误消散系数γ:单位时间内感染延误航班转化为正常航班完成航班的数量占延误传播航班总数的比例。
模型建立
模型公式如下:
步骤四:D-SEIR模型参数调整
参数λ控制对节点密度的影响分析。λ表示正常计划航班集因自发延误转化为具有潜在延误传播能力的航班集的概率。令其他五个参数保持不变的情况下,当不同的λ值时,与延误传播节点和免疫节点的密度关系,判断因λ值大小的变化,曲线的变化情况;
参数α控制对节点密度的影响分析。α表示正常计划航班集没有延误影响,成为正常完成航班集的概率。令其他五个参数保持不变的情况下,当不同的α值时,与免疫节点的密度关系,判断因α值大小的变化,免疫节点的变化情况;
参数μ控制对节点密度的影响分析。μ表示具有潜在延误传播能力的航班集转为具有延误传播能力的航班集的概率。令其他五个参数保持不变的情况下,当不同的μ值时,与免疫节点的关系,判断因μ值大小的变化,免疫节点密度的变化情况。
参数β控制对节点密度的影响分析。β表示具有潜在延误传播能力的航班集转为正常完成航班集的概率。令其他五个参数保持不变的情况下,当不同的β值时,与延误传播航班节点的密度关系,判断因β值大小的变化,延误传播航班节点密度的变化情况。
参数θ控制对节点密度的影响分析。θ表示当前序航班集延误消散后,成为正常完成航班集时,而后序同架飞机的航班因累计延误、飞行需求超过空域流量,航班飞行时刻被压缩后等过程,形成具有次衍生性延误的航班集,且具有潜在延误传播能力的航班的概率。令其他五个参数保持不变的情况下,当不同的θ值时,与延误传播航班节点密度的关系,判断因θ值大小的变化,延误传播航班节点密度的变化情况。
最终根据参数的大小与节点密度的关系,来探索航班延误传播。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
Claims (6)
1.一种分析航班延误传播规律的方法,其特征在于,包括:
以某一时刻的不同状态的航班集密度作为节点,各个航班集的转化概率作为边,来构成机场之间的航班网络;
以预设时间为间隔来统计处在不同状态航班集的转化概率,以及各个航班集节点密度的比例系数;以不同状态的航班集的转化概率和航班集的节点密度之间的关系建立基于D-SEIR模型的航班延误传播模型,通过分析各参数大小对航班集节点密度的影响,来得出航班延误传播规律。
2.根据权利要求1所述的一种分析航班延误传播规律的方法,其特征在于,以预设时间为间隔来统计处在不同状态航班集的转化概率的方法包括:
对初始时刻t0不同状态的航班集转化的概率统计;
把一天按照预设时间的间隔进行分段统计不同状态转化的航班集的转化概率。
3.根据权利要求2所述的一种分析航班延误传播规律的方法,其特征在于,对初始时刻t0不同状态的航班集转化的概率统计包括下述中至少一种:
机场的正常计划的航班集自发转化为潜在延误航班集概率λ0;机场的正常计划航班集转化为正常完成航班集的概率α0;机场的潜在延误航班集转化为延误传播航班集的概率μ0;机场的潜在延误航班集转化为正常到达航班集的概率β0;机场的延误传播航班集转化为正常达到航班集的概率γ0;第二次延误的概率θ0。
4.根据权利要求3所述的一种分析航班延误传播规律的方法,其特征在于,把一天按照预设时间的间隔进行分段统计不同状态转化的航班集的转化概率的方法包括:
把一天按照15分钟的间隔进行分段,共分为96个时段;
统计下一阶段为t=t0+15,若t<1440统计该时刻的不同状态转化的航班集六种转化概率;
直到t=1440,停止统计。
5.根据权利要求1所述的一种分析航班延误传播规律的方法,其特征在于,以预设时间为间隔来统计各个航班集节点密度的比例系数的方法包括:
统计初始时刻t0的正常计划的航班集在航班总数中所占比例S(t0);
统计具有潜伏传播能力的航班集在航班总数中所占比例E(t0);
统计具有延误传播能力的航班集在航班总数中所占比例I(t0);
统计正常完成的航班集在航班总数中所占比例R(t0);
若t<1440统计该时刻的四种不同状态的航班集节点密度:S(t),E(t),I(t),R(t);
直到t=1440,停止统计。
6.根据权利要求1所述的一种分析航班延误传播规律的方法,其特征在于,基于D-SEIR模型的航班延误传播模型的公式如下:
式中:参数λ控制对节点密度的影响分析,λ表示正常计划航班集因自发延误转化为具有潜在延误传播能力的航班集的概率;参数α控制对节点密度的影响分析,α表示正常计划航班集没有延误影响,成为正常完成航班集的概率;参数μ控制对节点密度的影响分析,μ表示具有潜在延误传播能力的航班集转为具有延误传播能力的航班集的概率;参数β控制对节点密度的影响分析,β表示具有潜在延误传播能力的航班集转为正常完成航班集的概率;参数θ控制对节点密度的影响分析,θ表示具有次衍生性延误的航班集,且具有潜在延误传播能力的航班的概率。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011267646.8A CN112509382B (zh) | 2020-11-13 | 2020-11-13 | 一种分析航班延误传播规律的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011267646.8A CN112509382B (zh) | 2020-11-13 | 2020-11-13 | 一种分析航班延误传播规律的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112509382A true CN112509382A (zh) | 2021-03-16 |
CN112509382B CN112509382B (zh) | 2021-10-22 |
Family
ID=74957461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011267646.8A Active CN112509382B (zh) | 2020-11-13 | 2020-11-13 | 一种分析航班延误传播规律的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112509382B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114613196A (zh) * | 2022-01-24 | 2022-06-10 | 中国民用航空中南地区空中交通管理局海南分局 | 多重流量管理策略对同一航班延误分析方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101377887A (zh) * | 2008-07-31 | 2009-03-04 | 北京民航天宇科技发展有限公司 | 航班延误统计方法及装置 |
US20100042394A1 (en) * | 2007-04-02 | 2010-02-18 | Kamran Khan | System and Method to Predict the Global Spread of Infectious Agents Via Commercial Air Travel |
CN106650985A (zh) * | 2016-09-12 | 2017-05-10 | 南京航空航天大学 | 基于随机Petri网的不正常航班衍生事件链式效应预测方法 |
CN108039068A (zh) * | 2018-01-05 | 2018-05-15 | 南京航空航天大学 | 一种基于航班延误传播的加权航空网络社团结构划分方法 |
CN109190700A (zh) * | 2018-08-27 | 2019-01-11 | 北京航空航天大学 | 一种航空延误传播的定量分析方法 |
US20190108758A1 (en) * | 2017-10-06 | 2019-04-11 | Tata Consultancy Services Limited | System and method for flight delay prediction |
CN109872074A (zh) * | 2019-03-04 | 2019-06-11 | 中国民航大学 | 基于sis的航空网络延误传播模型及建立方法 |
CN110570693A (zh) * | 2019-10-24 | 2019-12-13 | 南京航空航天大学 | 一种基于可靠性的航班运行时间预测方法 |
CN111191843A (zh) * | 2019-12-30 | 2020-05-22 | 南京航空航天大学 | 一种基于时序网络传播动力学方程的机场延误预测方法 |
CN111401601A (zh) * | 2019-12-23 | 2020-07-10 | 南京航空航天大学 | 一种面向延误传播的航班起降时间预测方法 |
-
2020
- 2020-11-13 CN CN202011267646.8A patent/CN112509382B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100042394A1 (en) * | 2007-04-02 | 2010-02-18 | Kamran Khan | System and Method to Predict the Global Spread of Infectious Agents Via Commercial Air Travel |
CN101377887A (zh) * | 2008-07-31 | 2009-03-04 | 北京民航天宇科技发展有限公司 | 航班延误统计方法及装置 |
CN106650985A (zh) * | 2016-09-12 | 2017-05-10 | 南京航空航天大学 | 基于随机Petri网的不正常航班衍生事件链式效应预测方法 |
US20190108758A1 (en) * | 2017-10-06 | 2019-04-11 | Tata Consultancy Services Limited | System and method for flight delay prediction |
CN108039068A (zh) * | 2018-01-05 | 2018-05-15 | 南京航空航天大学 | 一种基于航班延误传播的加权航空网络社团结构划分方法 |
CN109190700A (zh) * | 2018-08-27 | 2019-01-11 | 北京航空航天大学 | 一种航空延误传播的定量分析方法 |
CN109872074A (zh) * | 2019-03-04 | 2019-06-11 | 中国民航大学 | 基于sis的航空网络延误传播模型及建立方法 |
CN110570693A (zh) * | 2019-10-24 | 2019-12-13 | 南京航空航天大学 | 一种基于可靠性的航班运行时间预测方法 |
CN111401601A (zh) * | 2019-12-23 | 2020-07-10 | 南京航空航天大学 | 一种面向延误传播的航班起降时间预测方法 |
CN111191843A (zh) * | 2019-12-30 | 2020-05-22 | 南京航空航天大学 | 一种基于时序网络传播动力学方程的机场延误预测方法 |
Non-Patent Citations (4)
Title |
---|
RONG YAO: ""Prediction Model and Algorithm of Flight Delay Propagation Based on Integrated"", 《2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION,CONTROL, AND MANAGEMENT》 * |
张兆宁: ""基于SEIR模型的大面积航班延误传播"", 《科学技术与工程》 * |
曹卫东: ""航班延误树的构造与波及分析"", 《计算机工程与应用》 * |
赵向领: ""航班延迟推出策略及虚拟队列长度灵敏度分析"", 《四川大学学报(工程科学版)》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114613196A (zh) * | 2022-01-24 | 2022-06-10 | 中国民用航空中南地区空中交通管理局海南分局 | 多重流量管理策略对同一航班延误分析方法 |
CN114613196B (zh) * | 2022-01-24 | 2023-06-06 | 中国民用航空中南地区空中交通管理局海南分局 | 多重流量管理策略对同一航班延误分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112509382B (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gilbo | Optimizing airport capacity utilization in air traffic flow management subject to constraints at arrival and departure fixes | |
CN112396871B (zh) | 基于航迹预测的进场延误分配吸纳方法 | |
Delgado et al. | Cruise speed reduction for ground delay programs: A case study for San Francisco International Airport arrivals | |
CN112509382B (zh) | 一种分析航班延误传播规律的方法 | |
CN109711619A (zh) | 考虑空地运行限制的多机场战略航班时刻协同优化方法 | |
CN107016881A (zh) | 一种多跑道机场进场航班多效能优化排序方法 | |
CN109741638B (zh) | 一种进离场管理系统一体化协同运行方法 | |
CN108519988A (zh) | 基于格兰杰检验的航空延误因果关系网络构建方法 | |
CN104299454B (zh) | 一种恶劣天气下多机场协同放行系统航班排序方法 | |
CN109872074B (zh) | 基于sis的航空网络延误传播模型及建立方法 | |
CN112419791B (zh) | 一种区域级繁忙终端航班排序调度方法 | |
CN109544000A (zh) | 面向航班正常性的航空公司排班计划优化方法和系统 | |
CN102903261B (zh) | 一种大区域多元约束下的尾随间隔限制的计算方法 | |
CN102890876B (zh) | 基于流量比率的区域尾随间隔限制值的计算方法 | |
Nikoleris et al. | Effect of trajectory prediction and stochastic runway occupancy times on aircraft delays | |
CN112070291B (zh) | 一种基于航班正常性的tsat时刻优化方法 | |
Gao et al. | Modeling and parameter optimization of statistical priority-based multiple access protocol | |
JP2006523874A (ja) | 着陸する航空機を順序付けるための方法 | |
Lei et al. | Flight schedule strategy of airport group | |
CN114819510A (zh) | 一种多目标航班时刻优化方法 | |
CN113496085A (zh) | 一种基于蒙特卡洛仿真优化的飞机离港推出控制方法 | |
Jiang et al. | Study of the multi-airport ground-holding strategy model and application | |
CN114898598A (zh) | 基于起飞机场优先级的机场群航班延误估计方法 | |
CN112201082A (zh) | 一种航班放行时隙的n点置换方法 | |
Irvine et al. | Investigating the capacity benefit of airborne speed adjustment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |