CN112501588B - 进气分布器及利用其在大型筒体构件上制备SiC涂层的方法 - Google Patents

进气分布器及利用其在大型筒体构件上制备SiC涂层的方法 Download PDF

Info

Publication number
CN112501588B
CN112501588B CN202011225140.0A CN202011225140A CN112501588B CN 112501588 B CN112501588 B CN 112501588B CN 202011225140 A CN202011225140 A CN 202011225140A CN 112501588 B CN112501588 B CN 112501588B
Authority
CN
China
Prior art keywords
air inlet
air
distributor
distribution plate
sic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011225140.0A
Other languages
English (en)
Other versions
CN112501588A (zh
Inventor
张海昇
李建章
王鹏
成来飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Xinyao Ceramic Composite Material Co Ltd
Original Assignee
Xi'an Golden Mountain Ceramic Composites Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Golden Mountain Ceramic Composites Co ltd filed Critical Xi'an Golden Mountain Ceramic Composites Co ltd
Priority to CN202011225140.0A priority Critical patent/CN112501588B/zh
Publication of CN112501588A publication Critical patent/CN112501588A/zh
Application granted granted Critical
Publication of CN112501588B publication Critical patent/CN112501588B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供一种SiC涂层制备方法,具体涉及一种进气分布器及利用其在大型筒体构件上制备均匀SiC涂层的方法。解决采用现有化学气相沉积法(CVD)无法在直径为1000mm左右、高度大于500mm的大型筒体构件上制备均匀SiC涂层的问题。进气分布器包括进气混气块、进气导流板及进气分布板;制备SiC涂层时,首先将进气分布器安装在炉体内,之后安装大型筒体构件并通气,进行SiC涂层沉积;进气分布器,可将三路进气按比例混和均匀并可导向输送至大型筒体内外壁的正上方,避免了反应气体沿炉膛中轴线直进直出造成的浪费,极大提高SiC涂层的沉积效率,保障SiC涂层的沉积均匀性。

Description

进气分布器及利用其在大型筒体构件上制备SiC涂层的方法
技术领域
本发明提供一种SiC涂层制备方法,尤其涉及一种进气分布器及利用其在大型筒体构件上制备均匀SiC涂层的方法。
背景技术
SiC陶瓷材料在0.1MPa压力下的分解温度为2380℃,不存在熔点,β-SiC向α-SiC转变的温度始于2100℃,但转变速率很小。SiC陶瓷材料是碳化物中抗氧化性最好的,具有良好的化学稳定性、高机械强度和抗热震性。
生产单/多晶硅用的大型流化床、烧结炉等设备上安装有直径为1000mm左右的石墨或C/C复合材料保温筒、导流筒、坩埚等热场部件,这些热场部件长时间暴露在高温硅蒸汽的强腐蚀环境下,严重地缩短了流化床的使用寿命,若在这些部件外表面均匀覆盖一层SiC涂层,可以有效提高热场部件的高温抗氧化性和高温抗腐蚀性。
另外,卫星光机用的轻质碳陶复合材料(Cf/SiC陶瓷基复合材料)大型镜筒支撑筒直径在800~1300毫米之间,镜筒为小尺寸Cf/SiC陶瓷基复合材料盒形零部件拼接组装而成,需要在组装之后整体沉积一层SiC涂层增强其整体物理强度和刚度。
目前,SiC涂层的制备方法有化学气相沉积法(CVD)、先驱体浸渍裂解法(PIP)、浆料浸渍烧结法、熔体反应法等。化学气相沉积法制备温度低,涂层厚度可控,结合强度较高,已实现工业化,适用于工业化生产。但是,采用化学气相沉积法在上述大型构件上制备SiC涂层的均匀性得不到保障,尤其是直径在1000mm左右、高度大于500mm大型筒体构件,涂层均匀性更差。同时在现有公开的技术方案中暂没有在大型筒体构件上制备均匀SiC涂层的可行方法。
发明内容
本发明的目的是:提供一种在大型筒体构件上制备均匀SiC涂层的方法,以解决采用现有化学气相沉积法(CVD)无法在直径为1000mm左右、高度大于500mm的大型筒体构件上制备均匀SiC涂层的问题。
本发明中所描述的大型筒体构件的直径在800~1300mm之间,高度在500~1500mm之间。大型筒体构件的材料为石墨构件、C/C复合材料、碳陶复合材料。在大型筒体构件上制备均匀SiC涂层。
本发明所采用的技术方案是提供一种进气分布器,用于在大型筒体构件上制备均匀SiC涂层,其特殊之处在于:包括进气混气块、进气导流板及进气分布板;
进气导流板的底面中部开设向进气导流板的顶面方向凹进的圆锥台状凹槽,所述圆锥台状凹槽的槽口面积大于槽底面积;所述进气导流板的顶面中部开设通孔,所述通孔的直径小于所述圆锥台状凹槽槽底直径;
进气分布板的顶面中部向上凸起,形成圆锥形凸台;所述进气分布板的非凸起部位开设多组狭缝单元;每组狭缝单元包括多个贯穿进气分布板顶面与底面的狭缝,多个狭缝排布在以进气分布板中心为圆心的同一圆周上;多组狭缝单元同心设置;
所述进气混气块内部具有空腔,形成进气混气腔室,进气混气块顶部开设与进气混气腔室相通的进气孔,所述进气混气块的侧壁开设与进气混气腔室相通的出气通道;
所述进气混气块嵌入所述进气导流板的通孔内,并且进气混气块的底部与进气分布板上圆锥形凸台的锥面固连;所述进气导流板叠放并固定在进气分布板上,且进气导流板的中心轴线与进气分布板的中心轴线位于同一直线;进气混气块的外侧壁、进气导流板的圆锥台状凹槽的槽壁面、进气分布板的圆锥形凸台的锥面以及进气分布板的非凸起部位顶面之间形成进气导流腔;
所述进气混气块的出气通道与所述进气导流腔相通,所述狭缝与所述进气导流腔相通。
进一步地,为了避免气流在进气分布板顶面与圆锥形凸台衔接处形成锐角拐角涡流,减小气流进入进气分布板的阻力,所述进气分布板顶面与圆锥形凸台衔接的部位开设有以进气分布板中心为圆心的环状凹槽,环状凹槽的外径大于等于圆锥台状凹槽槽口的直径,使得进气分布板顶面与圆锥形凸台衔接处形成钝角,减小气流阻力;所述狭缝开设在环状凹槽的槽底,环状凹槽槽底与圆锥形凸台的锥面平滑过渡。
进一步地,为了在大型筒体构件的内外壁均制备更加均匀的SiC涂层,最内圈狭缝单元的直径比大型筒体构件内径小,最外圈狭缝单元的直径比大型筒体构件外径大。
进一步地,为确保进入进气导流腔气流的均匀性,所述出气通道为开设在进气混气块的侧壁上的多个长条孔,多个长条孔沿进气混气块的侧壁周向排布。
进一步地,各个长条孔的中心轴线与进气导流腔沿流体流动方向的中心轴线相互平行。
进一步地,为了确保三路气体的均匀混合,所述进气混气腔室为圆柱形腔室和圆锥形腔室组成的漏斗状腔室;各个长条孔沿圆锥形腔室的侧壁周向均布。
进一步地,所述进气孔为三个,分别用于与氩气、稀释氢气和硅烷三路气路相接。
进一步地,所述进气混气腔室的容积为10~20L;
所述长条孔的横截面为矩形,长为30~40mm,宽为5~8mm;
所述进气导流板圆锥台状凹槽23的槽壁面与进气分布板的圆锥形凸台的锥面之间的间距为30~50mm;
所述狭缝单元为4~8组,每个狭缝的宽为8~15mm,长为90~150mm,最内圈狭缝单元的直径比大型筒体构件内径小30~100mm,最外圈狭缝单元的直径比大型筒体构件外径大30~100mm。
本发明还提供一种利用上述的进气分布器在大型筒体构件上制备均匀SiC涂层的方法,其特殊之处在于,包括以下步骤:
步骤1、安装进气分布器;
选取与大型筒体构件相匹配的进气分布器,将其嵌入并周向固定到化学气相反应炉炉盖内,然后将三路气路管接入到进气孔;安装完成后,进气分布器侧面与炉盖内侧壁紧密接触;
步骤2、安装大型筒体构件并升温;
步骤2.1、将大型筒体构件放置于化学气相反应炉炉膛中央,并与进气分布器同轴线,大型筒体构件的上端面与进气分布器底部具有设定距离;
步骤2.2、抽真空至化学气相反应炉内的真空达到0.096MPa~0.0098MPa;
步骤2.3、通过进气混气块上的进气孔向化学气相反应炉内通入氩气,流量为1.5~3L/min,将化学气相反应炉升温至1000℃~1100℃,并保温设定1~3h;
步骤3、通入稀释氢气和硅烷进行SiC涂层沉积;
通过进气混气块上的进气孔向化学气相反应炉内通入稀释氢气与硅烷;稀释氢气的流量为6~8L/min,硅烷由流量为6~8L/min鼓泡氢气将其送入进气混气腔室;同时增大氩气流量至8~10L/min,使得化学气相反应炉内气压为2kPa~5kPa;
待沉积50~70小时后,关闭稀释氢气和硅烷两路气体,并减小氩气流量至1.5~3L/min;
步骤4、炉体降温;
炉体降温制得沉积有均匀SiC涂层的大型筒体构件。
进一步地,为了确保较高的大型筒体构件的上下端沉积得到更加均匀的SiC涂层,步骤4之后还包括:
将大型筒体构件的上下端调换,重复步骤2至步骤4的过程。两次沉积的时间应相同。
本发明的有益效果是:
(1)本发明利用进气分布器在大型筒体构件上制备均匀的SiC涂层,进气分布器的设计和安装,首先可将三路进气在进气混气腔室按比例混和均匀;在进气导流腔作用下,混合气体可导向输送至直径在1000mm左右大型筒体内外壁的正上方,避免了反应气体沿炉膛中轴线直进直出造成的浪费,极大提高SiC涂层的沉积效率;进气分布板上几组狭缝单元的设计,可调整气流流速进而提高气流均匀性,保障SiC涂层的沉积均匀性。
(2)必须在炉体升温至1000℃~1100℃后需保温1~3h,保障整个炉膛内沉积温度的均匀性,之后通入稀释氢气和硅烷进行SiC涂层沉积,使得大型筒体构件上沉积得到更加均匀的SiC涂层。
(3)在通入稀释氢气和硅烷的同时需增大氩气流量至8~10L/min,保障反应气体(稀释氢气和硅烷)在整个炉膛内充分流动,使得大型筒体构件上沉积得到更加均匀的SiC涂层。
(4)高度大于1000mm的筒体分两次进行沉积,两次沉积时筒体需将上下端调换沉积,两次沉积的时间应相同,使得沉积得到更加均匀的SiC涂层。
附图说明
图1为本发明进气分布器外形结构示意图;
图2为本发明进气分布器中进气导流板的剖视图;
图3为本发明进气分布器中进气分布板的剖视图;
图4为本发明进气分布器中进气分布板的俯视图;
图5为本发明进气分布器中进气混气块的剖视图;
图6为沿图1中A-A的剖视图;
图7为未采用本发明中方法的石墨中间筒节上部SEM照片;
图8为未采用本发明中方法的石墨中间筒节下部SEM照片;
图9为采用本发明中方法的石墨中间筒节上部SEM照片;
图10为采用本发明中方法的石墨中间筒节下部SEM照片。
图中附图标记为:
1-进气混气块,2-进气导流板,3-进气分布板;
21-进气导流板的底面,22-进气导流板的顶面,23-圆锥台状凹槽,24-通孔,25-进气导流腔;
31-进气分布板的顶面,32-进气分布板的底面,33-圆锥形凸台,34-环状凹槽,35-狭缝,36-最内圈狭缝单元,37-最外圈狭缝单元;
11-圆柱形腔室,12-圆锥形腔室,13-进气孔,14-进气混气块的侧壁,15-出气通道,16-进气混气腔室。
具体实施方式
以下结合附图及具体实施例对本发明进行详细说明。
实施例一
本实施例在外径为1100mm,内径为900mm、高度为900mm的石墨中间筒节(一种流化床热场部件)上沉积均匀的SiC涂层。具体包括以下步骤:
第一步:设计制作进气分布器;
如图1所示,进气分布器由从上至下依次同轴设置的进气混气块1、进气导流板2及进气分布板3三部分组成,进气混气块1为上大下小的圆台状结构,进气导流板2与进气分布板3为直径相等的圆形板状结构。
如图2所示,进气导流板的底面21中部向进气导流板的顶面22方向凹进,形成圆锥台状的凹部,将该凹部可定义为圆锥台状凹槽23;该圆锥台状凹槽23的槽口面积大于槽底面积,即凹槽的开口端的径向尺寸大于槽底的径向尺寸,也可以理解凹槽的开口端为圆锥台的底面,凹槽的槽底为圆锥台的顶面。同时为了与本实施例石墨中间筒节的尺寸相匹配,本实施例中凹槽的开口端的径向尺寸应大于1100mm。
进气导流板的顶面22中部开设通孔24,通孔24的直径略小于圆锥台状凹槽23槽底直径。
如图3所示,进气分布板的顶面31中部向上凸起,形成圆锥形凸台33,当进气导流板2同轴固定在进气分布板3上时,该圆锥形凸台33的锥面与进气导流板2圆锥台状凹槽23的槽壁面相互平行。为了进一步地提高气流均匀性,进气分布板的顶面31与圆锥形凸台33衔接的部位开设以进气分布板3的中心为圆心的环状凹槽34,环状凹槽34槽底与圆锥形凸台33的锥面平滑过渡;环状凹槽34的外径大于等于圆锥台状凹槽23槽口的直径。如图3及图4所示,在环状凹槽34的槽底,开设多组狭缝单元;每组狭缝单元包括多个贯穿进气分布板3上下表面的狭缝35,多个狭缝35排布在以进气分布板3中心为圆心的同一圆周上;多组狭缝单元同心设置;本实施例可开设四组狭缝单元。最内圈狭缝单元36的直径比大型筒体构件内径小,最外圈狭缝单元37的直径比大型筒体构件大。
如图5及图6所示,进气混气块1内部开有圆柱形腔室11和圆锥形腔室12组成的漏斗状空腔,形成进气混气腔室16,进气混气块1顶部开设与进气混气腔室16相通的三个进气孔13,分别用于与氩气、稀释氢气和硅烷三路气路相接。进气混气块的侧壁14即圆锥形腔室12的侧壁开设与进气混气腔室16相通的出气通道15;出气通道15为开设在进气混气块的侧壁14上的多个长条孔,多个长条孔沿圆锥形腔室12的侧壁周向均布。
如图6,进气混气块1嵌入进气导流板2的通孔24内,其底部与进气分布板3的圆锥形凸台33的锥面压紧固连;进气导流板2叠放并固定在进气分布板3上,且进气导流板2的中心轴线与进气分布板3的中心轴线位于同一直线;进气混气块1的外侧壁、进气导流板2圆锥台状凹槽23的槽壁面、进气分布板3的圆锥形凸台33的锥面以及进气分布板3的非凸起部位顶面之间形成进气导流腔25;各个长条孔与所述进气导流腔25相通,且中心轴线与进气导流腔25沿流体流动方向的中心轴线相互平行。狭缝35与所述进气导流腔25相通。从图2中可以看出,进气导流腔25呈喇叭状辐射至与大型筒体构件直径相匹配的区域。
本实施例为了与石墨中间筒节的尺寸相匹配,进气混气腔室16的容积为10L;长条孔的横截面为矩形,长为30mm,宽为5mm;进气导流板2圆锥台状凹槽23的槽壁面与进气分布板3的圆锥形凸台33的锥面之间的间距为30mm;每个狭缝35的宽为15mm,长为90mm,本实施例中最内圈狭缝单元36的直径小于870mm,最外圈狭缝单元37的直径大于1130mm。
第二步:安装进气分布器;
将其嵌入并周向固定到化学气相反应炉炉盖内,将氩气、稀释氢气和硅烷三路气体从进气混气腔室16顶部接入。安装完成后,进气分布器侧面与炉盖内侧壁紧密接触,底面距炉盖下沿10-40mm。
第三步:将石墨中间筒节构件置于化学气相反应炉炉膛中央,将化学气相反应炉抽真空至0.098MPa;打开氩气气路,调节流量为1.5~3L/min,氩气通过进气孔13进入进气混气室,并通过出气通道15均匀的进入进气导流腔25,再通过狭缝单元进入化学气相反应炉,将化学气相反应炉升温至1000℃,并保温2h,确保了整个炉膛内沉积温度的均匀性。保温时间在1~3h内均可,保温时间过短,整个炉膛内沉积温度的均匀性较差,影响沉积SiC涂层的均匀性,保温时间过长,造成热源浪费。
第四步:打开稀释氢气和鼓泡氢气,调节稀释氢气流量为6~8L/min,硅烷由流量为6~8L/min鼓泡氢气将其送入进气混气腔室16,同时增大氩气流量至8~10L/min,使得反应气体(稀释氢气和硅烷)在整个炉膛内充分流动,稀释氢气、硅烷及氩气在进气混气腔室16内按比例充分混合均匀,通过出气通道15均匀进入进气导流腔25,混合气体经进气导流腔25可导向输送至石墨中间筒节构件内外壁的正上方,避免了反应气体沿炉膛中轴线直进直出造成的浪费;混合气体再经进气分布器狭缝单元使得气流均匀快速流出进入化学气相反应炉内,维持炉内气压为2kPa。待沉积50小时后,关闭稀释氢气和硅烷两路气体,并减小氩气流量至1.5~3L/min。
第五步:炉体降温;
第六步:将石墨中间筒节构件的上下端调换,重复步骤3至步骤5的过程制得沉积有均匀SiC涂层的大型筒体构件。
经SU3800-SEM对所沉积涂层进行检测,未采用本发明中方法的石墨中间筒节上部、下部SiC涂层沉积效果如图7、图8所示,石墨中间筒节上部有少许SiC,下部几乎没有沉积SiC,可清晰看见片层状石墨仍然暴露在外面,不仅沉积效果非常不均匀,而且沉积效率低;采用本发明方法的石墨中间筒节上部、下部SiC涂层沉积效果如图9、图10所示,可知,上部和下部都均匀沉积了一层SiC,并将原有片层状石墨完全覆盖,效果明显。
实施例二
本实施例在外径为1235mm,内径为1220mm、高度为1000mm的Cf/SiC复合材料卫星镜筒支撑筒上沉积均匀的SiC涂层。具体包括以下步骤:
第一步:设计制作进气分布器;
本实施例进气分布器的结构与实施例一相同,不同的是,为了与本次沉积的卫星镜筒支撑筒构件尺寸匹配,本实施例中凹槽的开口端的径向尺寸大于1260mm。进气混气腔室16的容积为20L;长条孔的横截面为矩形,长为40mm,宽为8mm;进气导流板2圆锥台状凹槽23的槽壁面与进气分布板3的圆锥形凸台33的锥面之间的间距为50mm;每个狭缝35的宽为8mm,长为150mm,本实施例中最内圈狭缝单元36的直径小于1120mm,最外圈狭缝单元37的直径大于1335mm。
第二步:安装进气分布器;
将其嵌入并周向固定到化学气相反应炉炉盖内,将氩气、稀释氢气和硅烷三路气体从进气混气腔室16顶部接入。
第三步:将石墨中间筒节构件置于化学气相反应炉炉膛中央,将化学气相反应炉抽真空至0.096MPa;打开氩气气路,调节流量为1.5~3L/min,氩气通过进气孔13进入进气混气室,并通过出气通道15均匀的进入进气导流腔25,再通过狭缝单元进入化学气相反应炉,将化学气相反应炉升温至1100℃,并保温3h。
第四步:打开稀释氢气和鼓泡氢气,调节稀释氢气流量为6~8L/min,硅烷由流量为6~8L/min鼓泡氢气将其送入进气混气腔室16,同时增大氩气流量至10L/min,稀释氢气、硅烷及氩气在进气混气腔室16内按比例充分混合均匀,通过出气通道15均匀进入进气导流腔25,混合气体经进气导流腔25可导向输送至石墨中间筒节构件内外壁的正上方,避免了反应气体沿炉膛中轴线直进直出造成的浪费;混合气体再经进气分布器狭缝单元使得气流均匀快速流出进入化学气相反应炉内,维持炉内气压为5kPa。待沉积50小时后(沉积时间在50~70小时内均可,沉积时间过短,则SiC涂层不够致密,沉积时间过长,每炉次沉积SiC涂层厚度较厚,则达不到SiC涂层厚度精确控制的要求),关闭稀释氢气和硅烷两路气体,并减小氩气流量至1.5~3L/min。
第五步:炉体降温;
第六步:将石墨中间筒节构件的上下端调换,重复步骤3至步骤5的过程制得沉积有均匀SiC涂层的大型筒体构件。
经SU3800-SEM对所沉积涂层进行检测,在卫星镜筒支撑筒构件上部和下部都均匀沉积了一层SiC,效果明显。

Claims (8)

1.一种进气分布器,用于在大型筒体构件上制备均匀SiC涂层,其特征在于:包括进气混气块(1)、进气导流板(2)及进气分布板(3);
进气导流板的底面(21)中部开设向进气导流板的顶面(22)方向凹进的圆锥台状凹槽(23),所述圆锥台状凹槽(23)的槽口面积大于槽底面积;所述进气导流板的顶面(22)中部开设通孔(24),所述通孔(24)的直径小于所述圆锥台状凹槽(23)槽底直径;
进气分布板的顶面(31)中部向上凸起,形成圆锥形凸台(33);所述进气分布板(3)的非凸起部位开设多组狭缝单元;每组狭缝单元包括多个贯穿进气分布板顶面与底面的狭缝(35),多个狭缝(35)排布在以进气分布板(3)中心为圆心的同一圆周上;多组狭缝单元同心设置;
所述进气混气块(1)内部具有空腔,形成进气混气腔室(16),进气混气块(1)顶部开设与进气混气腔室(16)相通的进气孔(13),所述进气混气块(1)的侧壁开设与进气混气腔室(16)相通的出气通道(15);
所述进气混气块(1)嵌入所述进气导流板(2)的通孔(24)内,并且进气混气块(1)的底部与进气分布板(3)上圆锥形凸台(33)的锥面固连;所述进气导流板(2)叠放并固定在进气分布板(3)上,且进气导流板(2)的中心轴线与进气分布板(3)的中心轴线位于同一直线;进气混气块(1)的外侧壁、进气导流板(2)的圆锥台状凹槽(23)的槽壁面、进气分布板(3)的圆锥形凸台(33)的锥面以及进气分布板(3)的非凸起部位顶面之间形成进气导流腔(25);
所述进气混气块(1)的出气通道(15)与所述进气导流腔(25)相通,所述狭缝(35)与所述进气导流腔(25)相通;
所述进气分布板顶面(31)与圆锥形凸台(33)衔接的部位开设以进气分布板(3)中心为圆心的环状凹槽(34),环状凹槽(34)的外径大于等于圆锥台状凹槽(23)槽口的直径;所述狭缝(35)开设在环状凹槽(34)的槽底,环状凹槽(34)槽底与圆锥形凸台(33)的锥面平滑过渡;
最内圈狭缝单元(36)的直径比大型筒体构件内径小,最外圈狭缝单元(37)的直径比大型筒体构件外径大。
2.根据权利要求1所述的进气分布器,其特征在于:所述出气通道(15)为开设在进气混气块的侧壁(14)上的多个长条孔,多个长条孔沿进气混气块的侧壁(14)周向排布。
3.根据权利要求2所述的进气分布器,其特征在于:各个长条孔的中心轴线与进气导流腔(25)沿流体流动方向的中心轴线相互平行。
4.根据权利要求3所述的进气分布器,其特征在于:所述进气混气腔室(16)为圆柱形腔室(11)和圆锥形腔室(12)组成的漏斗状腔室;各个长条孔沿圆锥形腔室(12)的侧壁周向均布。
5.根据权利要求4所述的进气分布器,其特征在于:所述进气孔(13)为三个,分别用于与氩气、稀释氢气和硅烷三路气路相接。
6.根据权利要求5所述的进气分布器,其特征在于:所述进气混气腔室(16)的容积为10~20L;
所述长条孔的横截面为矩形,长为30~40mm,宽为5~8mm;
所述进气导流板(2)圆锥台状凹槽(23)的槽壁面与进气分布板(3)的圆锥形凸台(33)的锥面之间的间距为30~50mm;
所述狭缝单元为4~8组,每个狭缝(35)的宽为8~15mm,长为90~150mm,最内圈狭缝单元(36)的直径比大型筒体构件内径小30~100mm,最外圈狭缝单元(37)的直径比大型筒体构件外径大30~100mm。
7.一种利用权利要求1-6任一所述的进气分布器在大型筒体构件上制备SiC涂层的方法,其特征在于,包括以下步骤:
步骤1、安装进气分布器;
步骤1.1、选取与大型筒体构件相匹配的进气分布器,将其嵌入并周向固定到化学气相反应炉炉盖内;安装完成后,进气分布器外周面与炉盖内侧壁紧密接触;
步骤1.2、将三路气路管接入到进气孔;
步骤2、安装大型筒体构件并升温;
步骤2.1、将大型筒体构件放置于化学气相反应炉炉膛中央,并与进气分布器同轴线;大型筒体构件的上端面与进气分布器底部具有设定距离;
步骤2.2、抽真空至化学气相反应炉内的真空达到0.096MPa~0.0098MPa;
步骤2.3、通过进气混气块上的进气孔向化学气相反应炉内通入氩气,流量为1.5~3L/min,将化学气相反应炉升温至1000℃~1100℃,并保温1~3h;
步骤3、通入稀释氢气和硅烷进行SiC涂层沉积;
通过进气混气块上的进气孔向化学气相反应炉内通入稀释氢气与硅烷;稀释氢气的流量为6~8L/min,硅烷由流量为6~8L/min鼓泡氢气将其送入进气混气腔室;同时增大氩气流量至8~10L/min,使得化学气相反应炉内气压为2kPa~5kPa;
待沉积50~70小时后,关闭稀释氢气和硅烷两路气体,并减小氩气流量至1.5~3L/min;
步骤4、炉体降温;
炉体降温制得沉积有均匀SiC涂层的大型筒体构件。
8.根据权利要求7所述的在大型筒体构件上制备SiC涂层的方法,其特征在于,步骤4之后还包括:
将大型筒体构件的上下端调换,重复步骤2至步骤4的过程。
CN202011225140.0A 2020-11-05 2020-11-05 进气分布器及利用其在大型筒体构件上制备SiC涂层的方法 Active CN112501588B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011225140.0A CN112501588B (zh) 2020-11-05 2020-11-05 进气分布器及利用其在大型筒体构件上制备SiC涂层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011225140.0A CN112501588B (zh) 2020-11-05 2020-11-05 进气分布器及利用其在大型筒体构件上制备SiC涂层的方法

Publications (2)

Publication Number Publication Date
CN112501588A CN112501588A (zh) 2021-03-16
CN112501588B true CN112501588B (zh) 2023-03-21

Family

ID=74955833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011225140.0A Active CN112501588B (zh) 2020-11-05 2020-11-05 进气分布器及利用其在大型筒体构件上制备SiC涂层的方法

Country Status (1)

Country Link
CN (1) CN112501588B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230097346A1 (en) * 2021-09-30 2023-03-30 Applied Materials, Inc. Flow guide apparatuses for flow uniformity control in process chambers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030019428A1 (en) * 2001-04-28 2003-01-30 Applied Materials, Inc. Chemical vapor deposition chamber
CN103880477B (zh) * 2014-02-26 2015-08-26 青岛持久高新材料有限公司 石墨制品SiC涂层方法
CN107699865B (zh) * 2017-11-10 2024-04-19 西安鑫垚陶瓷复合材料股份有限公司 一种气相沉积炉用均匀进气的装置
CN210945778U (zh) * 2019-12-10 2020-07-07 江苏协鑫特种材料科技有限公司 一种具有气流导向功能的沉积炉

Also Published As

Publication number Publication date
CN112501588A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US20210324518A1 (en) Injector configured for arrangement within a reactor of a vertical furnace and vertical furnace
CN1136335C (zh) 化学蒸汽渗透和沉积工艺用的设备
KR101177983B1 (ko) 화학 기상 증착 반응기
CN111348931B (zh) 一种环型碳/碳复合材料气相渗透方法
CN1608142A (zh) 利用化学气相渗透使多孔基质致密化的方法和装置
CN101215182B (zh) 制备其密度呈梯度分布的炭/炭复合材料的装置及方法
CN1071725C (zh) 放置在环形堆垛中的致密基片的温度梯度化学气相渗透法
CN112501588B (zh) 进气分布器及利用其在大型筒体构件上制备SiC涂层的方法
CN1650042A (zh) 气体预热器
CN111153406B (zh) 一种用于制备碳化硅粉料的合成炉和合成方法
CN203461974U (zh) 一种均匀化快速cvi致密炭/炭坩埚的装置
CN110978569B (zh) 一种板材cvi工艺中气体流场结构
CN115636685A (zh) 一种cvi系统多料柱短周期制备大型筒状碳碳热场材料的方法和系统
CN113169023A (zh) 用于cvd反应器的屏蔽板
CN107699866B (zh) 一种改善流场均匀性的装置
CN211977566U (zh) 一种坩埚组件及碳化硅粉料合成炉
CN218478800U (zh) 石墨基碳化坦涂层的沉积炉
CN112960674B (zh) 多晶硅还原炉的底盘、底盘组件以及还原炉
CN110950341B (zh) 一种碳化硅粉料及其制备方法、使用的装置
CN218812237U (zh) 一种提高成膜质量的进气结构
CN215028674U (zh) 氮化铝陶瓷散热基板排焦装置
CN216106652U (zh) 气体流动控制装置及热解炭界面制备模具
CN220224332U (zh) 一种控制高温热处理炉流场均匀性的装置
CN213447293U (zh) 一种上下进气式cvd反应炉
CN114686855B (zh) 喷嘴装置及成膜设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province

Patentee after: Xi'an Xinyao Ceramic Composite Co.,Ltd.

Country or region after: China

Address before: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province

Patentee before: XI'AN GOLDEN MOUNTAIN CERAMIC COMPOSITES CO.,LTD.

Country or region before: China