CN112501247B - 一种高通量同时测定混培微生物粗酶中多种酶活性的方法 - Google Patents

一种高通量同时测定混培微生物粗酶中多种酶活性的方法 Download PDF

Info

Publication number
CN112501247B
CN112501247B CN202011514548.XA CN202011514548A CN112501247B CN 112501247 B CN112501247 B CN 112501247B CN 202011514548 A CN202011514548 A CN 202011514548A CN 112501247 B CN112501247 B CN 112501247B
Authority
CN
China
Prior art keywords
enzyme
solution
hole
mixed culture
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011514548.XA
Other languages
English (en)
Other versions
CN112501247A (zh
Inventor
牛启桂
薛含含
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202011514548.XA priority Critical patent/CN112501247B/zh
Publication of CN112501247A publication Critical patent/CN112501247A/zh
Application granted granted Critical
Publication of CN112501247B publication Critical patent/CN112501247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/40Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种高通量同时测定混培微生物粗酶中多种酶活性的方法,多种酶水解底物所得的产物均为还原糖,测定方法包括如下步骤:在96孔板上规定每一行酶标条测定酶的种类,其中一行酶标条用于测葡萄糖标准曲线;布底物:在每一行酶标条的各个孔中添加待测酶对应的底物,用于测葡萄糖标准曲线的一行酶标条添加不同浓度的葡萄糖标准溶液;添加样品:在96孔板上第1列各个孔中添加蒸馏水做空白对照,在第2‑12列各个孔中依次添加混培微生物粗酶样品S1‑S11,其中,添加葡萄糖标准溶液的一行酶标条不添加任何物质;酶促反应;终止反应;显色反应;计算。本发明所公开的方法成本低,测量快速全面,控制简单,适用于实验推广。

Description

一种高通量同时测定混培微生物粗酶中多种酶活性的方法
技术领域
本发明涉及酶活性测定技术领域,特别涉及一种高通量同时测定混培微生物粗酶中多种酶活性的方法。
背景技术
α-淀粉酶又称淀粉-1,4-糊精苷酶、液化酶,是一种内切酶,其水解淀粉的产物为麦芽糖、糊精,水解限度达到30%-90%,α-淀粉酶的主要产生菌有枯草芽孢杆菌、黑曲霉、米曲霉等,α-淀粉酶不耐酸,在pH3.6以下迅速钝化。
β-淀粉酶又称淀粉-1,4-麦芽糖苷酶,是一种外切型糖化酶。它能从淀粉的非还原性末端开始依次切开间隔的α-1,4糖苷键,水解产物主要是麦芽糖和β-极限糊精,β-淀粉酶的主要产生菌有细菌等。β-淀粉酶广泛应用于啤酒酿造、食品加工等行业,是一种重要的工业用酶。β-淀粉酶不耐热,在70℃15min则被钝化。
纤维素酶是由多种水解酶组成的一个复杂酶系,自然界中很多真菌都能分泌纤维素酶。习惯上,将纤维素酶分成三类:C1酶、Cx酶和β葡糖苷酶。C1酶是对纤维素最初起作用的酶,破坏纤维素链的结晶结构。Cx酶是作用于经C1酶活化的纤维素、分解β-1,4-糖苷键的纤维素酶。β葡糖苷酶可以将纤维二糖、纤维三糖及其他低分子纤维糊精分解为葡萄糖。纤维素酶广泛存在于自然界的生物体中。细菌、真菌、动物体内等都能产生纤维素酶。一般用于生产的纤维素酶来自于真菌,比较典型的有木霉属、曲霉属和青霉属。
木聚糖酶又称内1,4-β-木聚糖酶,木聚糖酶是木聚糖降解过程中的关键酶,可将木聚糖降解成动物可消化吸收的低聚糖和木糖。木聚糖酶在自然界分布广泛,可从动物、植物和微生物中获得。目前,木聚糖酶主要利用真菌和细菌等微生物进行发酵生产。
壳聚糖酶是专一性水解壳聚糖糖基水解酶,以内切方式催化水解部分乙酰化壳聚糖中β-(1,4)-氨基葡萄糖苷键,生成具有不同生物活性的壳寡糖,终产物主要为壳二糖和壳三糖。
果胶酶是一类分解果胶质酶类的总称,实质是多聚半乳糖醛酸水解酶,包括原果胶酶,果胶酯酶,多聚半乳糖醛酸酶和果胶裂解酶四大类,果胶酶水解果胶生成β-半乳糖醛酸,果胶酶广泛存在于植物果实和微生物中,主要用于食品、酿酒、环保、医药、纺织及日化用品行业。
几丁质酶是一种作用于几丁质产生N-乙酰葡萄糖胺和几丁寡糖的糖苷水解酶。
α-淀粉酶、β-淀粉酶、纤维素酶、木聚糖酶、壳聚糖酶、果胶酶、几丁质酶水解底物所得的产物均为还原糖,具有还原性末端的寡糖和有还原基团的单糖与3,5-二硝基水杨酸试剂(DNS试剂)共热,产生棕红色的氨基化合物,在一定的范围内,生成的棕红色物质的颜色深浅与酶解产生的还原糖的含量成正比,而还原糖的生成量又与反应液中的各种酶的活力成正比,因此,通过酶标仪测得吸光度值,依据葡萄糖标准曲线和比活力公式,可以计算出各种酶的活力。
混培微生物中含有多种粗酶,利用单个酶相关试剂盒测酶活性工作量大,操作繁琐,且试剂盒价格相对昂贵,使用次数有限。因此,寻找一种便捷、高效、成本低的对多种酶酶活同时测定的方法对实现优化混培微生物粗酶酶活实验具有重要的研究意义。
发明内容
为解决上述技术问题,本发明提供了一种高通量同时测定混培微生物粗酶中多种酶活性的方法,以达到成本低,测量快速全面,控制简单,适用于实验推广的目的。
为达到上述目的,本发明的技术方案如下:
一种高通量同时测定混培微生物粗酶中多种酶活性的方法,多种酶水解底物所得的产物均为还原糖,测定方法包括如下步骤:
(1)在96孔板上规定每一行酶标条测定酶的种类,其中一行酶标条用于测葡萄糖标准曲线;
(2)布底物:在每一行酶标条的各个孔中添加待测酶对应的底物,用于测葡萄糖标准曲线的一行酶标条添加不同浓度的葡萄糖标准溶液;
(3)添加样品:在96孔板上第1列各个孔中添加蒸馏水做空白对照,在第2-12列各个孔中依次添加混培微生物粗酶样品S1-S11,其中,添加葡萄糖标准溶液的一行酶标条不添加任何物质;
(4)酶促反应:将96孔板置于38-40℃水浴锅中水浴30min;
(5)终止反应:沸水浴10-15min;
(6)显色反应:在96孔板的所有孔中各加入DNS试剂,沸水浴显色15min,反应结束后,利用彩虹酶标仪测量各个孔中溶液在540nm处的吸光度值;
(7)计算:利用葡萄糖标准溶液测得的吸光度值绘制葡萄糖标准曲线,根据葡萄糖标准曲线和测得的各个孔溶液的吸光度值,计算出相应的还原糖含量;
利用BCA法测定各混培微生物粗酶样品中的总蛋白含量,然后根据还原糖含量和总蛋白含量计算各种酶的活力。
上述方案中,所述多种酶包括α-淀粉酶、β-淀粉酶、纤维素酶、木聚糖酶、壳聚糖酶、果胶酶和几丁质酶。
进一步的技术方案中,步骤(2)中添加的底物分别为可溶淀粉溶液一、可溶淀粉溶液二、羧甲基纤维素钠溶液、木聚糖溶液、胶体壳聚糖溶液、果胶溶液和胶体几丁质溶液。
进一步的技术方案中,布底物时,添加可溶淀粉溶液一的酶标条单独取出,于70℃保温15min后,再放回96孔板,然后添加样品。
进一步的技术方案中,步骤(7)中利用BCA法测定各混培微生物粗酶样品中的总蛋白含量方法如下:
取两个新的酶标条,第1个孔中加入10uL蒸馏水,第2个孔中加入10uL浓度为563ug/mL的标准蛋白溶液,第3-24个孔中依次加入10uL混培微生物粗酶样品S1-S11,且相邻的两个孔添加同样的样品,计算时取平均值;然后在酶标条各孔中各加入100uL体积比为50:1的BCA/CuSO4混合液,37℃孵育30min,然后利用酶标仪测量562nm处吸光度值;最后根据如下公式计算出各样品中总蛋白含量:
Figure BDA0002847349830000031
其中,ODS为测得的第3-24个孔内各样品的吸光度值,OD0为测得的第1个孔内空白溶液的吸光度值,OD1为测得的第2个孔内标准溶液的吸光度值,N为样品测试前稀释倍数,V为样品体积10uL。
上述方案中,步骤(7)中计算酶活力的公式如下:
Figure BDA0002847349830000032
通过上述技术方案,本发明提供的一种高通量同时测定混培微生物粗酶中多种酶活性的方法具有如下有益效果:
α-淀粉酶、β-淀粉酶、纤维素酶、木聚糖酶、壳聚糖酶、果胶酶、几丁质酶与各底物进行反应后,生成的反应物均属于还原糖,还原糖和DNS试剂进行显色反应,各类酶活性与产生的还原糖量成正比,通过葡萄糖标准曲线可计算出相应还原糖含量,再代入公式计算出U/mg,以表示各酶的酶活性。
在测定α-淀粉酶和β-淀粉酶活性时,β-淀粉酶不耐热,因此先对添加可溶淀粉溶液一的酶标条单独取出,于70℃准确保温15min,将β-淀粉酶钝化后,测得的即为α-淀粉酶的酶活性,添加可溶淀粉溶液二的酶标条不进行预处理,测得的结果为α-淀粉酶和β-淀粉酶酶活的总和,则两个酶标条B酶活的差值即为β-淀粉酶酶活。
本发明公开的方法基于96孔板的高通量,利用3,5-二硝基水杨酸(DNS)比色法,一步同定混培微生物粗酶中多种酶活性,该方法成本低,测量快速全面,控制简单,适用于实验推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例所使用的96孔板对应添加样品示意图;
图2为本发明实施例测定总蛋白含量时使用的两个酶标条添加样品示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供了一种高通量同时测定混培微生物粗酶中多种酶活性的方法,具体实施例如下:
(1)如图1所示,在96孔板上规定如下:
酶标条A测α-淀粉酶酶活、酶标条B测β-淀粉酶酶活、酶标条C测纤维素酶酶活、酶标条D测木聚糖酶酶活、酶标条E测壳聚糖酶酶活、酶标条F测果胶酶酶活、酶标条G测几丁质酶酶活,酶标条H测葡萄糖标准曲线。
(2)布底物:在每一行酶标条的各个孔中添加待测酶对应的底物50uL,具体如下:
酶标条A——1%可溶淀粉溶液,酶标条B——1%可溶淀粉溶液,酶标条C——1%羧甲基纤维素钠溶液,酶标条D——1%木聚糖溶液,酶标条E——1%胶体壳聚糖溶液,酶标条F——1%果胶溶液,酶标条G——1%胶体几丁质溶液。
底物质量浓度均为1%,各底物溶液在配制时均用0.2mol/L磷酸缓冲液(磷酸氢二钠-柠檬酸)pH6.0进行定容。例如:1%可溶淀粉溶液为1g可溶淀粉溶解在99g磷酸缓冲液中制成的。
酶标条H添加不同浓度的葡萄糖标准溶液,具体如表1所示:
表1葡萄糖标准溶液浓度
Figure BDA0002847349830000051
(3)预处理:将酶标条A单独取出来于70℃准确保温15min,将β-淀粉酶钝化,然后再放回96孔板。
(4)添加样品:在96孔板上第1列A-G孔中添加蒸馏水做空白对照,在第2-12列A-G孔中依次添加混培微生物粗酶样品S1-S11,酶标条H的各个孔不添加任何物质;
(5)酶促反应:将96孔板置于40℃水浴锅中水浴30min;
(6)终止反应:沸水浴15min;
(7)显色反应:在96孔板的所有孔中各加入100uL DNS试剂(3,5-二硝基水杨酸),沸水浴显色15min,反应结束后,利用彩虹酶标仪测量各个孔中溶液在540nm处的吸光度值;
该步反应的机理如下:
Figure BDA0002847349830000052
(8)计算:利用葡萄糖标准溶液测得的在540nm处的吸光度值,通过Excel软件制作标准曲线,其中横坐标为葡萄糖的含量,纵坐标为不同浓度葡萄糖的吸光度值。根据葡萄糖标准曲线和测得的各个孔溶液的吸光度值,计算出各个孔内相应的还原糖含量。
利用BCA法测定各混培微生物粗酶样品中的总蛋白含量,方法如下:
取两个新的酶标条,如图2所示,第1个孔中加入10uL蒸馏水,第2个孔中加入10uL浓度为563ug/mL的标准蛋白溶液,第3-24个孔中依次加入10uL混培微生物粗酶样品S1-S11,且相邻的两个孔添加同样的样品,计算时取平均值;然后在酶标条各孔中各加入100uL体积比为50:1的BCA/CuSO4混合液,37℃孵育30min,然后利用酶标仪测量562nm处吸光度值;最后根据如下公式计算出各样品中总蛋白含量:
Figure BDA0002847349830000061
其中,ODS为测得的第3-24个孔内各样品的吸光度值,OD0为测得的第1个孔内空白溶液的吸光度值,OD1为测得的第2个孔内标准溶液的吸光度值,N为样品测试前稀释倍数,V为样品体积10uL。
计算酶活力的公式如下:
Figure BDA0002847349830000062
在对混培微生物粗酶样品S1进行分析时,利用孔A2、C2-G2的还原糖含量与混培微生物粗酶样品S1的总蛋白含量进行计算,可以得到α-淀粉酶、纤维素酶、木聚糖酶、壳聚糖酶、果胶酶和几丁质酶的酶活力。
其中,在测定α-淀粉酶和β-淀粉酶活性时,β-淀粉酶不耐热,因此先对酶标条A的酶标条单独取出,于70℃准确保温15min,将β-淀粉酶钝化后,测得的即为α-淀粉酶的酶活性,酶标条B不进行预处理,测得的结果为α-淀粉酶和β-淀粉酶酶活的总和,则两个酶标条酶活的差值即为β-淀粉酶酶活。即孔B2测得的酶活力减去孔A2测得的酶活力即为混培微生物粗酶样品S1中β-淀粉酶的酶活力。
以此类推,在对混培微生物粗酶样品S2进行分析时,利用孔A3-G3的还原糖含量与混培微生物粗酶样品S2的总蛋白含量进行计算。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (2)

1.一种高通量同时测定混培微生物粗酶中多种酶活性的方法,其特征在于,多种酶水解底物所得的产物均为还原糖,测定方法包括如下步骤:
(1)在96孔板上规定每一行酶标条测定酶的种类,其中一行酶标条用于测葡萄糖标准曲线;
(2)布底物:在每一行酶标条的各个孔中添加待测酶对应的底物,用于测葡萄糖标准曲线的一行酶标条添加不同浓度的葡萄糖标准溶液;
(3)添加样品:在96孔板上第1列各个孔中添加蒸馏水做空白对照,在第2-12列各个孔中依次添加混培微生物粗酶样品S1-S11,其中,添加葡萄糖标准溶液的一行酶标条不添加任何物质;
(4)酶促反应:将96孔板置于38-40℃水浴锅中水浴30min;
(5)终止反应:沸水浴10-15min;
(6)显色反应:在96孔板的所有孔中各加入DNS试剂,沸水浴显色15min,反应结束后,利用彩虹酶标仪测量各个孔中溶液在540nm处的吸光度值;
(7)计算:利用葡萄糖标准溶液测得的吸光度值绘制葡萄糖标准曲线,根据葡萄糖标准曲线和测得的各个孔溶液的吸光度值,计算出相应的还原糖含量;
利用BCA法测定各混培微生物粗酶样品中的总蛋白含量,然后根据还原糖含量和总蛋白含量计算各种酶的活力;
所述多种酶包括α-淀粉酶、β-淀粉酶、纤维素酶、木聚糖酶、壳聚糖酶、果胶酶和几丁质酶;
步骤(2)中添加的底物分别为可溶淀粉溶液一、可溶淀粉溶液二、羧甲基纤维素钠溶液、木聚糖溶液、胶体壳聚糖溶液、果胶溶液和胶体几丁质溶液;
步骤(7)中利用BCA法测定各混培微生物粗酶样品中的总蛋白含量方法如下:
取两个新的酶标条,第1个孔中加入10uL蒸馏水,第2个孔中加入10uL浓度为563ug/mL的标准蛋白溶液,第3-24个孔中依次加入10uL混培微生物粗酶样品S1-S11,且相邻的两个孔添加同样的样品,计算时取平均值;然后在酶标条各孔中各加入100uL体积比为50:1的BCA/CuSO4混合液,37℃孵育30min,然后利用酶标仪测量562nm处吸光度值;最后根据如下公式计算出各样品中总蛋白含量:
Figure 858822DEST_PATH_IMAGE001
其中,
Figure 307121DEST_PATH_IMAGE002
为测得的第3-24个孔内各样品的吸光度值,
Figure 618017DEST_PATH_IMAGE003
为测得的第1个孔内空白溶 液的吸光度值,
Figure 544384DEST_PATH_IMAGE004
为测得的第2个孔内标准溶液的吸光度值,N为样品测试前稀释倍数,V 为样品体积10uL;
步骤(7)中计算酶活力的公式如下:
Figure 139183DEST_PATH_IMAGE005
2.根据权利要求1所述的一种高通量同时测定混培微生物粗酶中多种酶活性的方法,其特征在于,布底物时,添加可溶淀粉溶液一的酶标条单独取出,于70℃保温15min后,再放回96孔板,然后添加样品。
CN202011514548.XA 2020-12-21 2020-12-21 一种高通量同时测定混培微生物粗酶中多种酶活性的方法 Active CN112501247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011514548.XA CN112501247B (zh) 2020-12-21 2020-12-21 一种高通量同时测定混培微生物粗酶中多种酶活性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011514548.XA CN112501247B (zh) 2020-12-21 2020-12-21 一种高通量同时测定混培微生物粗酶中多种酶活性的方法

Publications (2)

Publication Number Publication Date
CN112501247A CN112501247A (zh) 2021-03-16
CN112501247B true CN112501247B (zh) 2022-08-12

Family

ID=74922680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011514548.XA Active CN112501247B (zh) 2020-12-21 2020-12-21 一种高通量同时测定混培微生物粗酶中多种酶活性的方法

Country Status (1)

Country Link
CN (1) CN112501247B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481278B (zh) * 2021-06-15 2022-04-12 四川省食品检验研究院 同时测定蔗糖酶活力和果聚糖酶活力的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212608A (zh) * 2011-04-14 2011-10-12 吉林大学 一种高通量筛选降解秸秆高活力纤维素酶的方法
CN102230887A (zh) * 2011-03-31 2011-11-02 中国农业科学院兰州畜牧与兽药研究所 一种基于微孔板法的纤维素酶活测定方法
CN102286610A (zh) * 2011-07-16 2011-12-21 吉林大学 一种快速微量测定糖化酶活力的方法
CN102519896A (zh) * 2011-10-17 2012-06-27 青岛科技大学 一种饲料中木聚糖酶活力的测定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208466B2 (en) * 2015-11-30 2021-12-28 Kikkoman Corporation Cytochrome-fused glucose dehydrogenase and glucose measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230887A (zh) * 2011-03-31 2011-11-02 中国农业科学院兰州畜牧与兽药研究所 一种基于微孔板法的纤维素酶活测定方法
CN102212608A (zh) * 2011-04-14 2011-10-12 吉林大学 一种高通量筛选降解秸秆高活力纤维素酶的方法
CN102286610A (zh) * 2011-07-16 2011-12-21 吉林大学 一种快速微量测定糖化酶活力的方法
CN102519896A (zh) * 2011-10-17 2012-06-27 青岛科技大学 一种饲料中木聚糖酶活力的测定方法

Also Published As

Publication number Publication date
CN112501247A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Coward‐Kelly et al. Suggested improvements to the standard filter paper assay used to measure cellulase activity
Tuohy et al. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii
Gusakov et al. Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities
Juhasz et al. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources
Terrasan et al. Production of xylanolytic enzymes by Penicillium janczewskii
Zhang et al. Outlook for cellulase improvement: screening and selection strategies
Gruno et al. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate
Karim et al. Hyper production of cellulose degrading endo (1, 4) β-d-glucanase from Bacillus licheniformis KIBGE-IB2
Teixeira da Silva et al. Effect of pH, Temperature, and Chemicals on the Endoglucanases and β‐Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F. 2.1. 4. Obtained by Solid‐State and Submerged Cultivation
Szijártó et al. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces
Hua et al. Characterization of a novel thermostable GH7 endoglucanase from Chaetomium thermophilum capable of xylan hydrolysis
de Castro et al. High‐yield endoglucanase production by Trichoderma harzianum IOC‐3844 cultivated in pretreated sugarcane mill byproduct
Courtade et al. Chitin-active lytic polysaccharide monooxygenases
Silva et al. A novel Trichoderma reesei mutant RP698 with enhanced cellulase production
McCleary et al. Novel substrates for the measurement of endo-1, 4-β-glucanase (endo-cellulase)
CN112501247B (zh) 一种高通量同时测定混培微生物粗酶中多种酶活性的方法
Mafa et al. Delineating functional properties of a cello-oligosaccharide and β-glucan specific cellobiohydrolase (GH5_38): Its synergism with Cel6A and Cel7A for β-(1, 3)-(1, 4)-glucan degradation
Ishida et al. Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium
Datta Enzymatic degradation of cellulose in soil: A review
McCleary et al. Measurement of endo-1, 4-β-glucanase
Mallek-Fakhfakh et al. Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: role of these enzymes in enhancing waste paper saccharification
Mansour et al. Review of lignocellulolytic enzyme activity analyses and scale-down to microplate-based assays
Wood et al. Studies on the capacity of the cellulase of the anaerobic rumen fungus Piromonas communis P to degrade hydrogen bond-ordered cellulose
Xu et al. Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase
Qin et al. Purification and enzymatic properties of a new thermostable endoglucanase from Aspergillus oryzae HML366

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant