CN112501193A - 一种烟酸及烟酰胺生物传感系统 - Google Patents

一种烟酸及烟酰胺生物传感系统 Download PDF

Info

Publication number
CN112501193A
CN112501193A CN202011446330.5A CN202011446330A CN112501193A CN 112501193 A CN112501193 A CN 112501193A CN 202011446330 A CN202011446330 A CN 202011446330A CN 112501193 A CN112501193 A CN 112501193A
Authority
CN
China
Prior art keywords
promoter
nicotinic acid
nadr
gene
gfp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011446330.5A
Other languages
English (en)
Other versions
CN112501193B (zh
Inventor
周哲敏
韩来闯
崔文璟
程中一
刘中美
周丽
郭军玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202011446330.5A priority Critical patent/CN112501193B/zh
Publication of CN112501193A publication Critical patent/CN112501193A/zh
Application granted granted Critical
Publication of CN112501193B publication Critical patent/CN112501193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/05Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in nitriles (3.5.5)
    • C12Y305/05001Nitrilase (3.5.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01084Nitrile hydratase (4.2.1.84)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/24Assays involving biological materials from specific organisms or of a specific nature from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • G01N2333/245Escherichia (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/978Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种烟酸及烟酰胺生物传感系统,属于基因工程技术领域。本发明将枯草芽孢杆菌转录阻遏蛋白NadR及其靶标启动子异源构建到大肠杆菌。通过对NadR进行基于易错PCR的定向进化筛选,得到响应合适浓度烟酸的NadR突变体L171F,并利用该突变体构建在所需浓度范围内高灵敏响应烟酸的生物传感系统,可使生物传感系统在0‑50mM范围内高灵敏响应烟酸浓度。进一步通过在该系统中过表达能将烟酰胺转化为烟酸的烟酰胺酶PncA,使得该系统可以间接感受烟酰胺浓度。

Description

一种烟酸及烟酰胺生物传感系统
技术领域
本发明涉及一种烟酸及烟酰胺生物传感系统,属于基因工程技术领域。
背景技术
烟酰胺和烟酸属B族维生素,是医药、食品、饲料、化工等领域广泛需求的重要精细化学品。近些年,我国对烟酰胺、烟酸及其衍生化学品的需求呈现爆发式增长,逐步成长为烟酰胺、烟酸的生产和消费大国。传统上通过化学法生产烟酸和烟酰胺,但是由于生物酶法催化具备反应条件温和、催化效率高、环境污染小等优势,正逐步淘汰烟酰胺和烟酸的化学合成法。
腈水合酶(Nitrile hydratase,NHase,EC 4.2.1.84)和腈水解酶(Nitrilase,EC3.5.5.1)可将3-氰基吡啶(烟腈)分别一步催化为烟酰胺和烟酸,因此利用腈水合酶和腈水解酶生产烟酰胺和烟酸具有巨大的潜在经济价值。但是,热稳定性低、酶活性不高和产物耐受性差依然是限制NHase/Nitrilase进一步工业应用的瓶颈。如何获得具备高性能的天然来源酶或人工改造酶是解决这些瓶颈问题的关键。NHase/Nitrilase酶活检测缺乏高通量的检测方法,严重限制了高性能酶的挖掘和改造工作的开展。近年来,基于转录因子的生物传感系统的开发,为酶的快速、连续定向进化提供了便利,加快了新酶创制和性能改造步伐。因此,开发烟酸和烟酰胺生物传感系统对高性能腈水合酶和腈水解酶的高通量筛选具有重大意义。另外,烟酸和烟酰胺也是生物体内维生素和NAD代谢的重要中间物质。开发以烟酸和烟酰胺为中间代谢产物的代谢工程菌同样需要响应这两种物质的基因表达调控元件。
发明内容
本发明的目的是提供一种响应烟酸的生物传感系统,包括PlacI启动子、NadR蛋白、PnadB启动子;所述NadR蛋白的编码基因位于PlacI启动子下游,使PlacI启动子调控NadR蛋白的表达;所述PlacI启动子和PnadB启动子的转录方向相反;所述PnadB启动子上具有可以结合NadR蛋白和烟酸的结合物的结合位点。
在一种实施方式中,所述PnadB启动子的下游具有标记物基因。
在一种实施方式中,所述标记物基因为绿色荧光蛋白基因。
在一种实施方式中,所述标记物基因的下游还含有P3启动子和PncA基因;所述P3启动子调控PncA基因的表达。
在一种实施方式中,所述PlacI启动子的核苷酸序列如SEQ ID NO.5所示;编码所述NadR蛋白的核苷酸序列如SEQ ID NO.1或SEQ ID NO.6所示;所述PnadB启动子的核苷酸序列如SEQ ID NO.2所示。
在一种实施方式中,所述P3启动子的核苷酸序列如SEQ ID NO.11所示;所述PncA基因的核苷酸序列如SEQ ID NO.10所示。
在一种实施方式中,所述生物传感系统以pEVO-GFP为质粒骨架。
本发明的第二个目的是提供含有所述生物传感系统的微生物细胞。
在一种实施方式中,所述微生物细胞为大肠杆菌JM109细胞。
本发明的第三个目的是提供制备所述微生物细胞的方法,包括如下步骤:
(1)将PlacI启动子、NadR蛋白、PnadB启动子分别与载体连接,得到含有响应烟酸的蛋白表达调控元件的质粒;(2)将外源基因连接至PnadB启动子的下游,得到响应烟酸的质粒外源基因;(3)将质粒外源基因转化到微生物细胞中。
在一种实施方式中,所述外源基因为标记物基因。
在一种实施方式中,所述标记物基因为绿色荧光蛋白的基因。
本发明的第四个目的是提供所述生物传感系统在检测烟酸或烟酸相关的代谢产物中的应用。
在一种实施方式中,所述应用是在腈水解酶或腈水合酶活性筛选中的应用。
有益效果:本发明将枯草芽孢杆菌负责烟酸代谢的nad操纵子调控基因表达的元件,主要为转录阻遏蛋白NadR及其靶标启动子异源构建到大肠杆菌。通过对NadR进行基于易错PCR的定向进化筛选,得到响应合适浓度烟酸的NadR突变体L171F,并利用该突变体构建在所需浓度范围内高灵敏响应烟酸的生物传感系统,可使生物传感系统在0-50mM范围内高灵敏响应烟酸浓度。进一步通过在该系统中过表达能将烟酰胺转化为烟酸的烟酰胺酶PncA,使得该系统可以间接感受烟酰胺浓度。
本发明还提供了所述生物传感系统的相关应用,通过在烟酰胺传感系统中表达腈水合酶,发现该系统能够响应不同表达强度腈水解酶的酶活。通过添加不同浓度的钴离子,显示该系统可以灵敏响应不同钴离子浓度下腈水合酶的酶活。
附图说明
图1为靶标启动子的荧光强度表达效果图。
图2为转录因子NadR功能验证效果。
图3为易错PCR初筛钝化NadR。a:GFP表达荧光检测。b:烟酸添加与否的GFP荧光变化倍数。
图4为钝化NadR功能验证。a:是否添加烟酸、烟腈和烟酰胺时GFP表达荧光检测。b:烟酸添加与否的GFP荧光变化倍数。
图5为烟酸生物传感系统对烟酸浓度的响应。
图6为腈水解酶表达量的生物传感效果。
图7为烟酰胺生物传感系统的构建和功能验证。
图8为腈水合酶活性的生物传感效果。
具体实施方式
LB培养基(L-1):胰蛋白胨10g,NaCl 10g,酵母提取物5g,pH 7.0,配制固体培养基时添加琼脂粉20g。
GFP表达:重组菌种从-80℃冰箱中取出,在含有相应抗性的LB平板上划线,挑取单菌落在含有5mL LB培养基的试管中200r·min-1,37℃过夜培养。之后按2%接种量转入含有5mL LB培养基的试管,37℃200rpm继续培养。
腈水解酶和腈水合酶酶活感应培养条件:重组菌种从-80℃冰箱中取出,在含有相应抗性的LB平板上划线,挑取单菌落在含有5mL LB培养基的试管中200r·min-1,30℃过夜培养。之后按2%接种量转入含有5mL LB培养基的试管,30℃200rpm继续培养24h。扩大培养的培养基中含有适当浓度的L-阿拉伯糖以诱导腈水解酶的表达,以及一定浓度的底物烟腈。对于腈水合酶,还需加入合适浓度的钴离子。培养结束后检测GFP表达的荧光水平,反应不同的腈水解酶和腈水合酶酶活。
GFP荧光强度的检测方法:取200μL细菌培养液至96孔黑壁透明底酶标板,放入SynergyTM H4荧光酶标仪检测OD600和荧光。检测荧光时,激发光波长为495nm,吸收光波长为525nm。
实施例1:NadR及其含靶标启动子的质粒、重组菌的构建
以PEniaP-GFP-i1/PEniaP-GFP-i2,PEnadB-GFP-i1/PEnadB-GFP-i2和PEnifS-GFP-i1/PEnifS-GFP-i2为引物,以枯草芽孢杆菌168基因组DNA为模板,分别扩增核苷酸序列如SEQ ID NO.2~4所示的启动子PnadB、PnifS和PniaP序列。以PE-GFP-v1/PE-GFP-v2为引物,以pEVO-GFP质粒(公开于Han L,Cui W,Lin Q,et al.Efficient Overproduction ofActive Nitrile Hydratase by Coupling Expression Induction and EnzymeMaturation via Programming a Controllable Cobalt-Responsive Gene Circuit[J].Frontiers in Bioengineering and Biotechnology,2020,8.)为模板,扩增载体骨架。通过Gibson Assembly无缝克隆,将启动子克隆至绿色荧光蛋白GFP基因(SEQ ID NO.9所示)上游,构建GFP表达质粒pEPniaP-GFP、pEPnadB-GFP和pEPnifS-GFP。将重组质粒pEPniaP-GFP、pEPnadB-GFP和pEPnifS-GFP分别转化至大肠杆菌JM109细胞中。
表1引物序列
引物 序列(5’-3’)
PEniaP-GFP-i1 GATCGAGATCTCGATCCCGCGAAATTAAAAACCCCGCTTGTGG
PEniaP-GFP-i2 TGAAAAGTTCTTCTCCTTTGCTCATTGCCAACACCTCTGATATG
PEnadB-GFP-i1 TCGATCCCGCGAAATCCGGTCTTCCTCCATCC
PEnadB-GFP-i2 TTCTCCTTTACTCATATGCCATCCTCCTGTTG
PEnifS-GFP-i1 TCGATCCCGCGAAATATGCCATCCTCCTGTTG
PEnifS-GFP-i2 TTCTCCTTTACTCATCCGGTCTTCCTCCATCC
PE-GFP-v1 ATGAGCAAAGGAGAAGAACTTTTC
PE-GFP-v2 ATTTCGCGGGATCGAGATC
PlacI-nadR-i1 TGCGTTGCGCTTAGTCTTTAATTAAAATGCCGGC
PlacI-nadR-i2 GGTGGTGAATATGACCGAAGAATTAAAGCTAATGG
PlacI-nadR-v1 TAATTCTTCGGTCATATTCACCACCCTGAATTGAC
PlacI-nadR-v2 TTAATTAAAGACTAAGCGCAACGCAATTAATGTAAG
分别将含有质粒pEPniaP-GFP、pEPnadB-GFP和pEPnifS-GFP的重组菌在不同浓度含烟酸、烟酰胺或烟腈的LB培养基中培养24h,使细胞浓度达到OD600≈3,检测各GFP表达荧光。结果如图1和表2所示,该三种启动子在大肠杆菌中均具有活性,且GFP为组成型表达,基本不受烟酸、烟酰胺和烟腈干扰。这表明在没有转录阻遏蛋白NadR时,这三种启动子的活性不受调控。对这三种启动子的活性进行比较,发现PnadB在大肠杆菌中的活性最高,说明若构建烟酸生物传感系统,PnadB是最佳选择。
表2启动子表达GFP荧光检测
Figure BDA0002824794390000041
实施例2过表达NadR的异源构建
以PlacI-nadR-i1/PlacI-nadR-i2为引物,以枯草芽孢杆菌168基因组DNA为模板,扩增如SEQ ID NO.1所示的nadR基因序列。以PlacI-nadR-v1/PlacI-nadR-v2为引物,分别以pEPniaP-GFP、pEPnadB-GFP和pEPnifS-GFP质粒为模板,扩增质粒骨架。通过GibsonAssembly无缝克隆,将NadR基因克隆至启动子PlacI的下游,构建重组质粒pEPniaP-GFP-nadR、pEPnadB-GFP-nadR和pEPnifS-GFP-nadR。
分别将重组质粒pEPniaP-GFP-nadR、pEPnadB-GFP-nadR和pEPnifS-GFP-nadR转化至大肠杆菌JM109感受态细胞中,获得含有不同重组质粒的重组大肠杆菌。
分别向在含有不同浓度的烟酸、烟酰胺和烟腈的LB培养基中接种含有质粒pEPniaP-GFP-nadR、pEPnadB-GFP-nadR和pEPnifS-GFP-nadR的重组菌,在37℃200rpm条件下培养24h,使细胞浓度达到OD600≈3,检测GFP表达荧光。
结果如图2和表3所示,当NadR存在时,该三种启动子在大肠杆菌中的活性均被严重抑制,且这种抑制不受烟酸、烟酰胺和烟腈干扰。这表明NadR对启动子的抑制非常灵敏,
表3 NadR调控下GFP荧光检测
Figure BDA0002824794390000051
实施例3:钝化NadR的生物传感器的构建
NadR突变体构建引物见表4。以PnadR-EP-i1/PnadR-EP-i2为引物,以pEPnadB-GFP-nadR质粒为模板,通过易错PCR将突变随机引入nadR基因。以PnadR-EP-v1/PnadR-EP-v2为引物,pEPnadB-GFP-nadR质粒为模板,扩增质粒骨架。通过Gibson Assembly无缝克隆,将含有随机突变的nadR基因克隆至载体骨架,转化大肠杆菌JM109。将获得的转化子随机挑选至含有600μL LB培养基的96空深孔板进行培养,37℃400rpm培养24h,分别检测不加入烟酸和加入20mM烟酸时的GFP荧光。结果如图3所示,获得一系列GFP表达明显受到添加烟酸抑制的突变体,计算加入烟酸后GFP荧光变化倍数,即GFP荧光变化倍数=含有20mM烟酸的LB中培养检测到的荧光强度/在LB培养基中培养检测到的荧光强度,并按照倍数从低到高进行排序。
挑选GFP荧光变化倍数最小的10个转化子测序,获得该10个突变体的突变位点(表5)。并对这10个突变体在添加烟酸、烟酰胺或者烟腈条件下GFP的表达进一步验证。结果如图4所示,这10个突变体的GFP表达都对烟酸有响应,并呈现出了不同的响应特征。相反GFP的表达都不受烟酰胺和烟腈的影响。在这10个突变体中,AF11对烟酸最敏感,AB8对烟酸最迟钝。
表4 NadR突变体构建引物
引物 序列(5’-3’)
PnadR-EP-i1 CTAACTTACATTAATTGCGTTGCGC
PnadR-EP-i2 AGAGAGTCAATTCAGGGTGGTGAATATG
PnadR-EP-v1 ATTCACCACCCTGAATTGAC
PnadR-EP-v2 GCGCAACGCAATTAATGTAAG
表5钝化NadR突变信息
突变体 突变位点
AF11 S145P,K179R
BG5 N11I,E22G,S145P
BE8 R13H,V129D
AA12 L17H,K53E,Q75H,I133Y,G175A
BC10 L18Q,S23T,V98L,S138T,A158T
AG3 Y114H,T125A
AH6 L171F
AB8 V38A,K105E,E128D,I133F,C168R
BH6 Q73K,E92D,S138F,T155A,H162L
BC1 L84Q,L94Q,L96F,D99N
实施例4烟酸生物传感系统对烟酸浓度的响应
选择对烟酸最敏感的AF11(SEQ ID NO.8所示)、最迟钝的AB8(SEQ ID NO.7所示)和感应适中的AH6(SEQ ID NO.6所示)验证其GFP表达对烟酸浓度的响应。将实施例3构建的含AF11、AB8和AH6的生物传感器的重组大肠杆菌接种在含有3mL LB培养基的试管中中37℃200rpm培养12h,此时OD600≈3。然后转接100μL种子液至含有5mL LB培养基的试管中,分别向培养基中加入不同浓度的烟酸(0-50mM),37℃200rpm培养24h,此时OD600≈3,检测GFP表达荧光。结果如图5所示,含突变体AF11的生物传感系统在较低浓度(1mmol/L)烟酸添加时,便能明显抑制GFP的表达,导致其对烟酸浓度的响应范围绞窄(0-1mM),尤其是无法区分较高浓度的烟酸。而含突变体AB8的生物传感系统对烟酸较为迟钝,即使加入50mM烟酸,GFP的表达水平依然较高,导致其区分烟酸浓度的灵敏性较差。而含突变体AH6的生物传感系统可以在0-50mM浓度范围内很好地响应烟酸,GFP的表达随着烟酸浓度的升高而规律下降,烟酸浓度达到50mM时,GFP表达被抑制在较低水平。因此,AH6适合作为高性能的烟酸生物传感系统使用,并将含有AH6突变体pEPnadB-GFP-nadR质粒命名为pENAsensor。将含有质粒pENAsensor的大肠杆菌JM109重组菌命名为大肠杆菌NAsensor,该传感系统原理见图5a。
实施例5:烟酸生物传感系统感应腈水解酶的表达
腈水解酶基因的克隆引物见表6。以Pkd-nit-i1/Pkd-nit-i2为引物,以从公司合成的含有腈水解酶BbNit基因序列的质粒pUC-BbNit为模板,扩增SEQ ID NO.12所示的BbNit基因。以Pkd-nit-v1/Pkd-nit-v2为引物,以质粒pKD46为模板,扩增质粒骨架。通过Gibson组装,将BbNit基因克隆至位于质粒骨架上L-阿拉伯糖诱导型启动子PBAD下游,构建BbNit表达质粒pKD46-BbNit。
将pKD46-BbNit转化至实施例4构建的大肠杆菌NAsensor感受态细胞中,获得重组大肠杆菌NAsensor p KD46-BbNit。将该重组菌的单菌落接种至含有3mL LB培养基的试管中,30℃200rpm培养12h,此时OD600≈3。然后转接100μL种子液至含有5mL LB培养基的试管中,分别向培养基中加入不同浓度的L-阿拉伯糖诱导BbNit的表达,另外添加20mM烟腈作为催化底物,30℃200rpm培养24h,此时OD600≈3,检测GFP表达荧光。结果如图6所示,当BbNit不表达时,GFP荧光水平很高。加入L-阿拉伯糖诱导BnNit表达后,由于BbNit将培养基中的烟腈转化为烟酸,GFP的表达受到抑制,且随着L-阿拉伯糖浓度的提升,GFP的荧光水平逐步下降。这表明重组大肠杆菌NAsensor pKD46-BbNit可以很好地响应BbNit的表达水平。
表6腈水解酶表达质粒构建引物
引物 序列(5’-3’)
Pkd-nit-i1 AGGAAACGTAATGAAAAAAAGAAAGAGGCGAAAC
Pkd-nit-i2 GAGGGATACCGCATCAGGCGAATTCTTATTGTGCAGCTGCTTGTACG
Pkd-nit-v1 GAATTCGCCTGATGCGGTATC
Pkd-nit-v2 CTTTCTTTTTTTCATTACGTTTCCTCCTTGTTGTCAC
实施例6:烟酰胺生物传感系统构建
过表达PncA的引物见表7。以PpncA-i1/PpncA-i2为引物,以大肠杆菌JM109基因组DNA为模板,扩增如SEQ ID NO.10所示的pncA基因。以PpncA-v1/PpncA-v2为引物,以质粒pENAsensor为模板,扩增质粒骨架。将引物PpncA-p1/PpncA-p2进行梯度退火互补,产生具备粘性末端的双链DNA片段。通过Gibson组装,将pncA基因克隆至强组成型启动子P3下游,构建pncA过表达表达质粒pENMSensor。将含有质粒pENMSensor的大肠杆菌JM109重组菌命名重组大肠杆菌NMSensor,该烟酰胺传感系统原理见图7a。
将重组大肠杆菌NMSensor在LB培养基中,于30℃,200rpm条件下培养,并分别向培养基中加入不同浓度的烟酸和烟酰胺,培养至菌体OD600≈3时,检测GFP荧光水平。结果如图7b所示,随着烟酸浓度的提升,重组大肠杆菌NMsensor的GFP的表达水平逐步降低。随着烟酰胺浓度的提升,NMSensor中GFP表达水平与其响应烟酸的GFP表达水平基本吻合。这表明通过过表达PncA,能够迅速地将培养基中的烟酰胺转化为烟酸,使得重组大肠杆菌NMSensor能够高效响应0-50mM浓度范围的烟酰胺。
表7烟酰胺传感器构建引物
Figure BDA0002824794390000081
实施例7:烟酰胺生物传感系统感应腈水合酶酶活
腈水合酶基因的克隆引物见表8。与腈水解酶的诱导表达质粒构建类似。以Pkd-NHase-i1/Pkd-NHase-i2为引物,以公司合成的含有腈水合酶NHase-3095基因序列的质粒pUC-NHase-3095为模板,扩增腈水合酶NHase-3095基因(腈水合酶β亚基的核苷酸序列如SEQ ID NO.13所示,腈水合酶α亚基的核苷酸序列如SEQ ID NO.14所示,腈水合酶的激活蛋白序列如SEQ ID NO.15所示)。以Pkd-NHase-v1/Pkd-NHase-v2为引物,以质粒pKD46为模板,扩增质粒骨架。将质粒骨架和NHase-3095基因片段通过Gibson Assembly组装,使NHase-3095基因克隆至L-阿拉伯糖诱导型启动子PBAD下游,构建BbNit表达质粒pKD46-NHase-3095。
将pKD46-NHase-3095转化至实施例6构建的重组大肠杆菌NMsensor,获得重组大肠杆菌NHase-3095。将该重组菌的单菌落接种至含有3mL LB培养基的试管中,30℃200rpm培养12h,此时OD600≈3。然后转接100μL种子液至含有5mL LB培养基的试管中,分别向培养基中加入4mM的L-阿拉伯糖诱导NHase-3095的表达,另外添加20mM烟腈作为催化底物,最后添加不同浓度的钴离子使得NHase-3095具有不同的活性。之后在30℃200rpm下培养24h,此时OD600≈3,检测GFP表达荧光。结果如图8所示,当不添加钴离子时,GFP荧光水平很高。加入钴离子后,由于NHase-3095将培养基中的烟腈转化为烟酰胺,PncA又将烟酰胺转化为烟酸,GFP的表达受到抑制,且钴离子浓度越高,抑制程度越强。这表明NMsensor-3095可以很好地响应NHase-3095的酶活水平。
表8腈水合酶表达质粒构建引物
引物 序列(5’-3’)
Pkd-NHase-i1 CTAAGGAGGTTATAAAAAATGAATGGCGTTTATGATGTTG
Pkd-NHase-i2 TTTGTTAGCAGCCGGATCTTAGCTGCGAACTGCCGGATG
Pkd-NHase-v1 GATCCGGCTGCTAACAAAG
Pkd-NHase-v2 TTTTTATAACCTCCTTAGAGCTCG
实施例8烟酸和烟酰胺生物传感系统的应用
将实施例4构建的烟酸传感器NAsensor和实施例6构建的烟酰胺传感器NMSensor被证明可以很好地响应细胞内烟酸及烟酰胺的浓度。这两个系统可用于如下3个用途:
1、高产烟酸和烟酰胺菌株的筛选:利用实施例4和实施例6构建的传感器可以简单快速检测烟酸或烟酰胺产生菌培养液中的烟酸和烟酰胺浓度,进而筛选烟酸或烟酰胺高产菌株。
2、高活性腈水解酶和腈水合酶的筛选:如实施例5和实施例7所示,将腈水解酶或腈水合酶表达于实施例4构建的烟酸或实施例6构建的烟酰胺传感器中,以GFP作为报告基因,通过荧光检测可以反映酶活性的高低。利用本发明构建的传感器,可以方便快速地筛选高活性的腈水解酶或腈水合酶。亦或是对腈水解酶或腈水合酶进行改造,筛选具有较高酶活的突变体。
3、用于以烟酸或者烟酰胺为中间代谢产物的代谢工程菌构建中:利用实施例4构建的烟酸传感器或实施例6构建的烟酰胺传感器,可以以细胞代谢过程中烟酸或烟酰胺的浓度为信号,对上下游代谢途径相关基因的表达进行动态调控,以使代谢途径更加平衡,最终提高目标代谢产物的合成水平。例如,将目的基因连接至启动子PnadB下游,利用启动子PnadB调控目的基因的表达,如果烟酸浓度较高,AH6蛋白抑制PnadB的作用越明显,使目的基因的表达量降低;如果烟酸浓度较低,AH6蛋白抑制PnadB的作用较弱,使目的基因的表达水平提高。从而实现目的基因随着细胞烟酸代谢水平自动进行的动态调控。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
SEQUENCE LISTING
<110> 江南大学
<120> 一种烟酸及烟酰胺生物传感系统
<130> BAA201337A
<160> 15
<170> PatentIn version 3.3
<210> 1
<211> 543
<212> DNA
<213> 人工序列
<400> 1
atgaccgaag aattaaagct aatgggcgcc aacaggcgtg accagcttct tctgtggctg 60
aaggaatcta aatcaccgct gacaggagga gaactcgcaa aaaaagcgaa cgtctcaaga 120
caggttattg tacaggatat atcgctcttg aaagcgaaaa atgtaccgat tatcgccaca 180
agccaaggat atgtatacat ggatgcagcc gctcagcagc accagcaggc agaaagaatc 240
atagcatgtc tgcacggtcc tgaacggaca gaagaggaac tgcagctcat cgtcgacgaa 300
ggcgttacag taaaagacgt aaaaatcgag catcccgtat acggagattt aactgcagcc 360
atccaagtag gcacccggaa agaagttagc catttcatca aaaaaatcaa ttctacgaat 420
gctgcctact tatcacagct gaccgacggc gtgcacctgc atacactgac agcacctgat 480
gaacatcgca tcgatcaagc ctgccaagcc ctcgaagaag ccggcatttt aattaaagac 540
taa 543
<210> 2
<211> 102
<212> DNA
<213> 人工序列
<400> 2
ccggtcttcc tccatccgtt ctccataaaa aactcttgag tttattttat ccttgtgtaa 60
atataggtgt caagacaggt gtaaacaaca ggaggatggc at 102
<210> 3
<211> 102
<212> DNA
<213> 人工序列
<400> 3
atgccatcct cctgttgttt acacctgtct tgacacctat atttacacaa ggataaaata 60
aactcaagag ttttttatgg agaacggatg gaggaagacc gg 102
<210> 4
<211> 121
<212> DNA
<213> 人工序列
<400> 4
taaaaacccc gcttgtggaa cataagcggg gtatttcaat tacatcattt agttaatgac 60
aatgtgtaaa gacaggtgta aacttaaacg gtaatcattt tgcatatcag aggtgttggc 120
a 121
<210> 5
<211> 78
<212> DNA
<213> 人工序列
<400> 5
gacaccatcg aatggcgcaa aacctttcgc ggtatggcat gatagcgccc ggaagagagt 60
caattcaggg tggtgaat 78
<210> 6
<211> 543
<212> DNA
<213> 人工序列
<400> 6
atgaccgaag aattaaagct aatgggcgcc aacaggcgtg accagcttct tctgtggctg 60
aaggaatcta aatcaccgct gacaggagga gaactcgcaa aaaaagcgaa cgtctcaaga 120
caggttattg tacaggatat atcgctcttg aaagcgaaaa atgtaccgat tatcgccaca 180
agccaaggat atgtatacat ggatgcagcc gctcagcagc accagcaggc agaaagaatc 240
atagcatgtc tgcacggtcc tgaacggaca gaagaggaac tgcagctcat cgtcgacgaa 300
ggcgttacag taaaagacgt aaaaatcgag catcccgtat acggagattt aactgcagcc 360
atccaagtag gcacccggaa agaagttagc catttcatca aaaaaatcaa ttctacgaat 420
gctgcctact tatcacagct gaccgacggc gtgcacctgc atacactgac agcacctgat 480
gaacatcgca tcgatcaagc ctgccaagcc ttcgaagaag ccggcatttt aattaaagac 540
taa 543
<210> 7
<211> 543
<212> DNA
<213> 人工序列
<400> 7
atgaccgagg aattaaagct aatgggcgcc aacaggcgtg accagcttct tctgtggctg 60
aaggaatcta aatcaccgct gacaggagga gaactcgcaa aaaaagcgaa cgcctcaaga 120
caggttattg tacaggatat atcgctcttg aaagcgaaaa atgtaccgat tatcgccaca 180
agccaaggat atgtttacat ggatgcagcc gctcagcagc accagcaggc agaaagaatc 240
atagcatgtc tgcacggtcc tgaacggaca gaagaggaac tgcagctcat cgtcgacgaa 300
ggcgttacag tagaagacgt aaaaatcgag catcccgtat acggagattt aactgcagcc 360
atccaagttg gcacccggaa agacgttagc catttcttca aaaaaatcaa ttctacgaat 420
gctgcctact tatcacagct gaccgacggc gtgcacctgc atacactgac agcacctgat 480
gaacatcgca tcgatcaagc ccgccaagcc ctcgaagaag ccggcatttt aattaaagac 540
taa 543
<210> 8
<211> 543
<212> DNA
<213> 人工序列
<400> 8
atgaccgaag aattaaagct aatgggcgcc aacaggcgtg accagcttct tctgtggctg 60
aaggaatcta aatcaccgct gacaggagga gaactcgcaa aaaaagcgaa cgtctcaaga 120
caggttattg tacaggatat atcgctcttg aaagcgaaaa atgtaccgat tatcgccaca 180
agccaaggat atgtatacat ggatgcagcc gctcagcagc accagcaggc agaaagaatc 240
atagcatgtc tgcacggtcc tgaacggaca gaagaggaac tgcagctcat cgtcgacgaa 300
ggcgttacag taaaagacgt aaaaatcgag catcccgtat acggagattt aactgcagcc 360
atccaagtag gcacccggaa agaagttagc catttcatca aaaaaatcaa ttctacgaat 420
gctgcctact taccacagct gaccgacggc gtgcacctgc atacactgac agcacctgat 480
gaacatcgca tcgatcaagc ctgccaagcc ctagaagaag ccggcatttt aattagagac 540
taa 543
<210> 9
<211> 717
<212> DNA
<213> 人工序列
<400> 9
atgagtaaag gagaagaact tttcactgga gttgtcccaa ttcttgttga attagatggt 60
gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg aaggtgatgc aacatacgga 120
aaacttaccc ttaaatttat ttgcactact ggaaaactac ctgttccatg gccaacactt 180
gtcactactt tcacttatgg tgttcaatgc ttttcaagat acccagatca tatgaagcgg 240
cacgacttct tcaagagcgc catgcctgag ggatacgtgc aggagaggac catctctttc 300
aaggacgacg ggaactacaa gacacgtgct gaagtcaagt ttgagggaga caccctcgtc 360
aacaggatcg agcttaaggg aatcgatttc aaggaggacg gaaacatcct cggccacaag 420
ttggaataca actacaactc ccacaacgta tacatcacgg cagacaaaca aaagaatgga 480
atcaaagcta acttcaaaat tagacacaac attgaagatg gaagcgttca actagcagac 540
cattatcaac aaaatactcc aattggcgat ggccctgtcc ttttaccaga caaccattac 600
ctgtccacac aatctgccct ttcgaaagat cccaacgaaa agagagacca catggtcctt 660
cttgagtttg taacagctgc tgggattaca catggcatgg atgaactata caaatga 717
<210> 10
<211> 642
<212> DNA
<213> 人工序列
<400> 10
atgccccctc gcgccctgtt actggtcgat ttacaaaatg atttctgtgc tggtggcgcg 60
ctcgccgtgc cggaaggtga cagtacggtg gatgtcgcta accgcctgat tgactggtgc 120
cagtcgcgcg gtgaagcggt tatcgccagt caggactggc acccggcgaa tcacggcagt 180
tttgccagtc agcacggtgt agagccttat acgccaggcc aactcgacgg tttgccacaa 240
accttctggc cagatcactg tgtgcagaac agtgaaggcg cacaattaca tccgttactg 300
caccaaaaag cgatcgcagc ggtgttccat aaaggcgaaa atcctttagt tgacagttac 360
agtgcctttt ttgataacgg ccgtcggcag aaaacctctc tcgatgactg gttacgcgat 420
catgaaatcg atgaattgat cgttatgggc ctggctactg actattgcgt gaagtttacc 480
gtgctggacg cgttacagtt aggttataag gtaaacgtga ttaccgatgg ttgtcgtggc 540
gtgaatatcc agccccagga cagtgcgcac gcgtttatgg agatgtcagc agctggggca 600
acgctatata cgctggcaga ctgggaagag acacaggggt aa 642
<210> 11
<211> 48
<212> DNA
<213> 人工序列
<400> 11
aaaaaattta tttgcttatt aattcatccg gctcgtataa tgtgtgga 48
<210> 12
<211> 1101
<212> DNA
<213> 人工序列
<400> 12
atggttacct acaccaacaa attccgtgct gctaccgttc aggcggagcc ggtctggttc 60
gacgcggctg ctaccgttga aaaatctatc ggtctgatca aagaagctgc ttctaacgac 120
gctcagatca tcgctttccc ggaagttttc atcccgggtt acccgtacca catctggctg 180
gactctccgt tcgctgctat gggtaaattc gctgttcgtt accacgaaca gtctctgccg 240
atcgactctc cgctgatcgt tcgtctgcgt gacgctgctc gtgctaacaa aatctctgtt 300
gttatgggtt tctctgaacg tgacggtggt accctgtaca tgtctcagat catcatcaac 360
gaacacggta acatcgttgc tcaccgtcgt aaactgaaac cgacccacgt tgaacgtacc 420
gttttcggtg aaggtgacgg ttctgacatc gctgtttacg acatggctgt tggtcgtgtt 480
ggtgctctga actgctggga acacttccag accctgacca aatacgctat gtacgctatg 540
cacgaacaga tccacatcgc tgcttggccg ggtatgtctc tgtaccagcc ggaagtttac 600
gctttctctt ctgaagctca gtctgttgct acccagatgt acgctatgga aggtcagacc 660
ttcgttctgt gcgctaccca ggttgttggt aaagctgctc accagttctt ctgcgaatct 720
ccgatgcacg aaaaactgat cggttacggt ggtggtttcg ctcagatctt cggtccggac 780
ggtcgtgctc tggctgaccg tctgccgggt gacggtgaag gtatcctgta cgctgaaatc 840
aacctggctg aaatcgctat ggctaaacag gctgctgacc cggttggcca ctactctcgt 900
cgtgacgtgt tcaccgtaac cttcaacgac cagccgcgtg acccgatcaa acgtgacaaa 960
gacaccaccg aagcttcttt cctgggtcgt gctctgccgc agaccaccgt tgttgctccg 1020
tctctgcagc acgaagcttc tgacctggaa atcccgaaac tgccgctgga acacgaaaac 1080
atcgaaaacg aagttcagaa a 1101
<210> 13
<211> 726
<212> DNA
<213> 人工序列
<400> 13
atgaatggcg tttatgatgt tggtggcacc gatggtctgg gtccgattaa tcgcccggcc 60
gatgaaccgg tttttcgcgc cgaatgggaa aaagttgcat ttgccatgtt tccggcaacc 120
tttcgcgcag gttttatggg tctggatgaa tttcgttttg gcattgaaca gatgaatccg 180
gcagaatatc tggaaagtcc gtattattgg cattggattc gtacctatat tcatcatggc 240
gtgcgtaccg gtaaaattga tctggaagaa ctggaacgtc gtacccagta ttatcgtgaa 300
aatccggatg ccccgctgcc ggaacatgaa cagaaaccgg aactgattga atttgtgaat 360
caggccgttt atggcggcct gccggcaagc cgtgaagttg atcgtccgcc gaaattcaaa 420
gaaggtgacg tggtgcgctt tagcaccgcc agtccgaaag gccatgcacg tcgtgcccgc 480
tatgtgcgtg gcaaaaccgg taccgtggtt aaacatcatg gtgcatatat ctatccggat 540
accgccggta atggcctggg tgaatgtccg gaacatctgt ataccgttcg ctttaccgca 600
caggaactgt ggggcccgga aggtgacccg aatagtagtg tttattatga ttgctgggag 660
ccgtatattg aactggtgga taccaaagca gcagccgcat ggagccaccc gcagttcgaa 720
aagtga 726
<210> 14
<211> 618
<212> DNA
<213> 人工序列
<400> 14
atgaccgaaa acatcctgcg taaaagcgat gaagaaattc agaaagaaat caccgcccgc 60
gttaaagccc tggaaagtat gctgattgaa cagggcattc tgaccaccag tatgattgat 120
cgtatggccg aaatctatga aaatgaagtt ggcccgcatc tgggcgccaa agtggtggtt 180
aaagcctgga ccgatccgga gtttaaaaaa cgcctgctgg ccgatggcac cgaagcatgt 240
aaagaactgg gcattggtgg cctgcagggc gaagatatga tgtgggtgga aaataccgat 300
gaagtgcatc atgtggtggt ttgtaccctg tgcagttgct atccgtggcc ggttctgggc 360
ctgccgccga attggtttaa agaaccgcag tatcgcagcc gtgttgtgcg tgaaccgcgt 420
cagctgctga aagaagaatt tggttttgaa gttccgccga gtaaagaaat taaggtttgg 480
gatagcagca gcgaaatgcg ttttgtggtg ctgccgcagc gtccggccgg tacagatggt 540
tggagcgaag aagaactggc caccctggtg acccgcgaaa gtatgattgg tgttgaaccg 600
gccaaagcag tggcatga 618
<210> 15
<211> 435
<212> DNA
<213> 人工序列
<400> 15
atgagcgctg aagccaaagt gcgtctgaaa cattgtccga ccgccgaaga tcgcgccgcc 60
gcagatgcac tgctggcaca gctgccgggc ggcgaccgcg cgctcgatcg cggttttgat 120
gaaccgtggc agctgcgcgc ctttgccctg gccgtggccg cctgtcgcgc cggccgcttt 180
gaatggaaac agctgcagca ggccctgatt agcagtattg gcgaatggga acgtacccat 240
gatctggatg atccgagctg gagctattat gaacattttg tggccgcact ggaaagtgtg 300
ctgggcgaag aaggtattgt tgaaccggaa gcactggatg aacgcaccgc cgaagttctg 360
gccaatccgc cgaataagga tcatcatggc ccgcatctgg aaccggttgc agtgcatccg 420
gcagttcgca gctaa 435

Claims (10)

1.一种响应烟酸的生物传感系统,其特征在于,包括PlacI启动子、NadR蛋白、PnadB启动子;所述NadR蛋白的编码基因位于PlacI启动子下游,使PlacI启动子调控NadR蛋白的表达;所述PlacI启动子和PnadB启动子的转录方向相反;所述PnadB启动子上具有可以结合NadR蛋白和烟酸的结合物的结合位点。
2.根据权利要求1所述的生物传感系统,其特征在于,所述PnadB启动子的下游具有标记物基因。
3.根据权利要求2所述的生物传感系统,其特征在于,所述标记物基因为绿色荧光蛋白基因。
4.根据权利要求1~3任一所述的生物传感系统,其特征在于,所述标记物基因的下游还含有P3启动子和PncA基因;所述P3启动子调控PncA基因的表达。
5.根据权利要求4所述的生物传感系统,其特征在于,所述PlacI启动子的核苷酸序列如SEQ ID NO.5所示;编码所述NadR蛋白的核苷酸序列如SEQ ID NO.1或SEQ ID NO.6所示;所述PnadB启动子的核苷酸序列如SEQ ID NO.2所示。
6.含有权利要求1~5任一所述生物传感系统的微生物细胞。
7.根据权利要求6所述的微生物细胞,其特征在于,所述微生物细胞为大肠杆菌JM109细胞。
8.一种制备权利要求6或7所述微生物细胞的方法,其特征在于,包括如下步骤:
(1)将PlacI启动子、NadR蛋白、PnadB启动子分别与载体连接,得到含有响应烟酸的蛋白表达调控元件的质粒;(2)将外源基因连接至PnadB启动子的下游,得到响应烟酸的质粒外源基因;(3)将质粒外源基因转化到微生物细胞中。
9.根据权利要求8所述的方法,其特征在于,所述外源基因为标记物基因。
10.权利要求1~5任一所述生物传感系统在检测烟酸或烟酸相关的代谢产物中的应用。
CN202011446330.5A 2020-12-09 2020-12-09 一种烟酸及烟酰胺生物传感系统 Active CN112501193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011446330.5A CN112501193B (zh) 2020-12-09 2020-12-09 一种烟酸及烟酰胺生物传感系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011446330.5A CN112501193B (zh) 2020-12-09 2020-12-09 一种烟酸及烟酰胺生物传感系统

Publications (2)

Publication Number Publication Date
CN112501193A true CN112501193A (zh) 2021-03-16
CN112501193B CN112501193B (zh) 2022-09-27

Family

ID=74971174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011446330.5A Active CN112501193B (zh) 2020-12-09 2020-12-09 一种烟酸及烟酰胺生物传感系统

Country Status (1)

Country Link
CN (1) CN112501193B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151233A (zh) * 2021-04-13 2021-07-23 浙江工业大学 腈水合酶赖氨酸突变体hba-k2h2、编码基因及应用
CN113151234A (zh) * 2021-04-13 2021-07-23 浙江工业大学 腈水合酶赖氨酸突变体hba-k2h2r、编码基因及应用
CN113637715A (zh) * 2021-08-12 2021-11-12 安徽瑞邦生物科技有限公司 烟酰胺高效率转化为烟酸的菌种的方法
CN114525290A (zh) * 2022-01-21 2022-05-24 同济大学 一种PncA优化基因及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180327797A1 (en) * 2015-11-13 2018-11-15 Dsm Ip Assets B.V. Microbial production of nicotamide riboside

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180327797A1 (en) * 2015-11-13 2018-11-15 Dsm Ip Assets B.V. Microbial production of nicotamide riboside

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DMITRY A. RODIONOV,ET AL: "Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon", 《NUCLEIC ACIDS RESEARCH》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151233A (zh) * 2021-04-13 2021-07-23 浙江工业大学 腈水合酶赖氨酸突变体hba-k2h2、编码基因及应用
CN113151234A (zh) * 2021-04-13 2021-07-23 浙江工业大学 腈水合酶赖氨酸突变体hba-k2h2r、编码基因及应用
CN113637715A (zh) * 2021-08-12 2021-11-12 安徽瑞邦生物科技有限公司 烟酰胺高效率转化为烟酸的菌种的方法
CN114525290A (zh) * 2022-01-21 2022-05-24 同济大学 一种PncA优化基因及应用

Also Published As

Publication number Publication date
CN112501193B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN112501193B (zh) 一种烟酸及烟酰胺生物传感系统
Eggeling et al. Novel screening methods—biosensors
Gabor et al. Construction, characterization, and use of small‐insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases
Kim et al. Down‐regulation of acetate pathway through antisense strategy in Escherichia coli: Improved foreign protein production
Holguin et al. Genetics and molecular biology of Azospirillum
Yu et al. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering
CN104781419B (zh) Nadp(h)传感器和醇脱氢酶的研发
Han et al. Design of growth‐dependent biosensors based on destabilized GFP for the detection of physiological behavior of Escherichia coli in heterogeneous bioreactors
Xu et al. Development of a novel biosensor-driven mutation and selection system via in situ growth of corynebacterium crenatum for the production of L-arginine
Klijn et al. Construction of a reporter vector for the analysis of Bifidobacterium longum promoters
Welsch et al. Stepwise optimization of a low-temperature Bacillus subtilis expression system for “difficult to express” proteins
CN101939422B (zh) 喷雾干燥的微生物及制备和使用的方法
CN111117942B (zh) 一种产林可霉素的基因工程菌及其构建方法和应用
CN109852650B (zh) 一种由茶碱调控的人工适体酶及应用
Dai et al. Expression of penicillin G acylase from the cloned pac gene of Escherichia coli ATCC11105: Effects of pacR and temperature
Quixley et al. Construction of a reporter gene vector for Clostridium beijerinckii using a Clostridium endoglucanase gene
Sun et al. Simultaneous manipulation of multiple genes within a same regulatory stage for iterative evolution of Trichoderma reesei
CN110144626A (zh) 一种启动子文库的构建方法
Li et al. Performance and mechanism analysis of succinate production under different transporters in Escherichia coli
Çakar Metabolic and evolutionary engineering research in Turkey and beyond
CN109929853B (zh) 嗜热菌来源的热激蛋白基因的应用
CN116622702A (zh) 一种人工设计的新型枯草芽孢杆菌终止子及其应用
KR101959019B1 (ko) 내산성을 갖는 재조합 미생물 제조방법 및 상기 방법으로 제조된 미생물
CN114606172B (zh) 一种提高血红素产量的解淀粉芽胞杆菌工程菌及其构建方法
CN111269926B (zh) 一种钴离子诱导型蛋白表达系统及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant