CN112494067A - 用于无创测量的超声换能器 - Google Patents

用于无创测量的超声换能器 Download PDF

Info

Publication number
CN112494067A
CN112494067A CN202010953923.4A CN202010953923A CN112494067A CN 112494067 A CN112494067 A CN 112494067A CN 202010953923 A CN202010953923 A CN 202010953923A CN 112494067 A CN112494067 A CN 112494067A
Authority
CN
China
Prior art keywords
transducer
ultrasonic
ultrasonic lamb
actuator
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010953923.4A
Other languages
English (en)
Inventor
F·卡苏贝克
M·伦纳
S·马拉诺
G·黑尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of CN112494067A publication Critical patent/CN112494067A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2968Transducers specially adapted for acoustic level indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/101Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2965Measuring attenuation of transmitted waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明涉及用于无创测量的超声兰姆波换能器(100,102)。换能器(100,102)配置成发射或接收超声兰姆波束(110,112)以用于测量。超声兰姆波(110,112)的发射和接收各自具有方向,以及脉冲通过至少一个参数来定义。超声兰姆换能器(100,102)包括压电复合物致动器,该压电复合物致动器配置成通过以适合于超声兰姆波的生成的频率发射声辐射来控制超声兰姆波的发射方向。

Description

用于无创测量的超声换能器
技术领域
本发明涉及用于无创测量的超声波换能器、控制器以及用于制造用于无创测量的超声换能器的方法。
背景技术
超声收发器在医疗应用中用来扫描例如器官,或者在机械应用中用来调查可能损坏的材料,这能够通过超声技术按照无损方式来执行。此外,它们能够适用于例如容器中的液体或组织的液位测量。在这些情况下,超声波由通常在容器的顶部或底部处的超声装置发射,以及相同频率的回波(或者更高谐波)从液位界面被反射回装置,所述装置接收回波。也就是说,使用与罐壁(tank wall)平行的直的声波束。
由于容器的底部通常不是可接近的,所以可通过将超声装置附着在容器的侧壁来执行测量。例如罐中的液体的无创液位测量因此可由发射器和接收器来执行。发射器被放置在容器壁外部以及液体表面的液位下方的第一位置处。发射器将作为初波的超声波发射到容器壁中,使得初级兰姆波的一部分采取压力波的形式在倾斜且向上的方向上朝液体表面从容器壁泄漏到液体中。
接收器以这样的方式被放置在容器壁外部以及液体表面的液位下方的第二位置处,以致于接收器能够接收次波,该次波通过压力波在被液体表面反射之后碰撞容器壁来生成。
因此,对于无创测量(例如飞行时间测量),期望具有用来控制按照某些条件所适配的声波束的方向的可能性。术语“飞行时间”涉及信号的发射与接收之间经过的时间。例如,从罐侧的液位的测量要求声波束角被调整,使得从液体表面所反射的波束碰撞接收器。由于待测量液位不是恒定的,所以发射波的方向必须被改变。期望一种类型的发射器,该发射器能够引导(steer)宽角度范围中并且具有充分幅度的声波。由于兰姆波的角度控制与声场的波长直接相关,所以大角度调谐性要求频域中的电声换能元件的宽带宽。
发明内容
此问题通过独立权利要求的主题来解决。实施例通过从属权利要求、以下描述和附图来提供。
所述实施例类似地涉及用于制造用于无创测量的超声换能器的超声兰姆波换能器方法、超声兰姆波换能器的使用以及用于控制介质中的声波束的辐射角的控制器。协同效应可产生于实施例的不同组合,但是可能没有详细描述它们。
更进一步,应该注意,涉及方法的本发明的全部实施例可能利用如所述的步骤的顺序来执行,然而这不必是该方法步骤的唯一且必需的顺序。本文提供的方法能够利用所公开步骤的另一种顺序来执行,而没有背离相应方法实施例,除非下文另有明确相反地提及。
技术术语根据其常识来使用。如果特定含意被表达成某些术语,则下面将在使用术语的上下文中给出术语的定义。
将电能转换为声能的发射器以及将声能转换为电能的接收器在本公开中称作换能器。
按照第一方面,提供一种用于无创测量的超声兰姆波换能器。该换能器配置成发射或接收超声兰姆波脉冲以用于测量。超声兰姆波(110、112)的发射和接收各自具有方向,以及脉冲通过至少一个参数来定义。测量基于超声兰姆波的发射方向或接收方向以及描述脉冲的至少一个参数。超声兰姆换能器包括压电复合物(piezocomposite)致动器,该压电复合物致动器配置成通过以适合于超声兰姆波的生成的频率发射声辐射来控制超声兰姆波的发射方向。术语“兰姆波脉冲”表示波相对于时间的短发射。
按照实施例,至少一个脉冲参数是下列中的一个:载波频移;飞行时间;脉冲宽度;衰减;脉冲幅度;或者其组合。
也就是说,例如,在飞行时间测量应用(例如液位测量)中,其中波的传播路径不是直的,而是从发射点行进到反射点并且从反射点行进到接收点,反射点必须被碰撞,使得反射波束碰撞接收器。例如,在液位测量的情况下,为了查找接收器检测到接收波的能量的最大数的准确反射点,超声波的波束必须被引导到不同角度,直至找到能量的最大数。通过发射器和接收器的已知位置,能够基于对发射角以及传播路径的长度的知识来计算例如液体的液位。发现了以某个频率的最大接收能量,当前发射角通过频率与角度之间的预定关系是已知的。必须注意,本发明并不局限于这种布置。取决于发射和接收换能器位置的几何结构、容器的大小和液位,可能要求大范围的波束发射角。由于角度可变性通过兰姆波的生成来实现,所以这个要求转化为对于具有高频率带宽的电声换能元件的需要。能够通过使用换能器中的压电复合物致动器来满足这个需要。压电复合物致动器允许宽频率范围中以高转换效率的电声转换。在频率范围(该频率范围产生于压电复合物的性质)内控制频率。
压电复合物致动器能够通过调整其性质(例如质量因数)来适配,所述质量因数负责可实现带宽,所述可实现带宽影响使用兰姆波时的发射声波束的角度可变性。质量因数(Q因数)被也与声损耗相关的压电复合物的弹性刚度和粘度影响。通常,压电复合物致动器具有比通常使用的压电陶瓷致动器要低的质量因数,并且因此具有更宽带宽。不仅对于短脉冲(所述短脉冲对一些应用可以是期望的)的生成而且还对于激励兰姆波,宽带宽都是有利的。大频率范围内的激励频率的变化引起发射的兰姆波的大范围的辐射角。能够以充分高的声幅度实现中心频率的变化。
适当类型的波是兰姆波,又称作板波。兰姆波是板中生成的机械波,其中波传播被壁侧处的波的反射以及因而限制的传播空间影响。因此,它们显示与波导中传播的波类似的性质。在气态介质中或者真空中的板中,波在板侧处完全被反射,并且因此被保持在板内部。在板与液体接触的情况下,界面的反射率被降低,以及兰姆波能够将声能发射到周围液体介质中。由于声能到周围介质中的发射,它们又称作漏兰姆波。对于漏兰姆波,当相对于罐壁测量时进入液体的发射的声波的角度取决于声波的频率。因此,通过耦合到具有不同频率的兰姆波,有可能改变发射的波束的方向。
在一些应用中,测量其他脉冲参数(例如载波频移、脉冲时长或脉冲宽度或者接收脉冲的脉冲幅度),并且确定发射与接收脉冲之间的值的差。
按照实施例,压电复合物致动器的基础材料是压电陶瓷材料。压电陶瓷材料的变体可以是锆钛酸铅(PZT)、PZT4和PZT8。备选地,可使用基于(Bi,Na)TiO3-(BNT-)或BT-BaTiO3-(BT-)的陶瓷。通常,标准PZT材料用于致动。PZT是低成本且市场销售的材料。它具有高机电耦合因数,这允许声波的有效生成。由于压电陶瓷元件通常具有窄带宽,所以它们能够仅在其本征谐振附近以合理效率使用。
按照另外的实施例,压电复合物致动器包括作为复合物材料的聚合物,使得压电复合物致动器包括聚合物和压电陶瓷材料的组合。聚合物材料的示例是斯珀尔(spurr)树脂或Poss EP3512树脂。
按照实施例,压电复合物元件被安装在例如尼龙楔形物上,其具有用于耦合罐壁中的声波(包括剪切波)以生成兰姆波的最佳材料性质。
发源于纯压电陶瓷(所述压电陶瓷如上所述的那样具有将系统的谐振的带宽限制到窄频率范围的高机械质量因数),聚合物材料被添加以减少质量因数,使得获得具有更高带宽的宽带行为。同时,由于压电陶瓷含量,高机电耦合因数是几乎适用的或者仅略微减少。由于聚合物含量,压电复合物的声阻抗更接近主体材料(所述主体材料可以是例如用于换能器楔形物的尼龙)的声阻抗,这引起致动器与换能器基板之间的显著增强声耦合。两个效果(即,低质量因数和改进声耦合)允许创建一种致动器,该致动器能够在宽频率范围内很有效地以大幅度激励振动,这又引起增强角度可变性。
作为示例,PZT材料可具有Qe = 950的机械质量因数。如果以体积分数v = 0.5来添加具有Qp = 50的质量因数的聚合物(例如与Duralco128相组合的PZT8-Epotek),则该材料组合的质量因近似为
Figure DEST_PATH_IMAGE002
。在这个示例中,得到Q=95。由于换能器的带宽与1/Q成比例,所以通过将材料从纯压电陶瓷改变成复合物,带宽增加10倍。同时,压电性质(耦合到电压)仅随v线性减少(即,减少至一半)。这通过使用复合物材料来说明增益。
按照另外的实施例,换能器为楔形,其中楔形物适合保持(host)压电复合物致动器。金属和板中的不同声速度引起不同波长。因此在某个角度满足不同波长的谐振条件,该角度取决于不同波长并且因此取决于楔形物和容器的金属板中的速度。因此得到兰姆波的高幅度,从而以满足条件
Figure DEST_PATH_IMAGE004
的角度
Figure DEST_PATH_IMAGE006
引入来自换能器的波,其中
Figure DEST_PATH_IMAGE008
是楔形物中的声速度,以及
Figure DEST_PATH_IMAGE010
是板中的频率相关声速度。类似地,从板进入液体的辐射角为
Figure DEST_PATH_IMAGE012
,其中
Figure DEST_PATH_IMAGE014
是壁与压力波之间的角度,
Figure DEST_PATH_IMAGE016
是液体中的声音的速度,以及
Figure DEST_PATH_IMAGE018
是壁中的兰姆波(又称作初级兰姆波)的频率相关相速度。由于
Figure DEST_PATH_IMAGE020
的频率相关性(分散),改变频率引起
Figure DEST_PATH_IMAGE022
的变化。
按照实施例,换能器包括衬里层(backing layer)和至少一个匹配层,其中衬里层和/或匹配层中的至少一侧具有弯曲的形状。
复合结构能够用于也与适当衬里层和匹配层相组合的楔状布置(如同PZT)。另外,它们能够按照任意形状(例如弯曲的形状)并且以预定义各向异性来产生。这能够例如用来将声波束聚焦到金属板的一部分上(使用“透镜”效应)或者通过调整本征模的形状,使得发射波图案抑制非预期旁瓣(所述非预期旁瓣能够例如因由致动器所激励的剪切和纵向波而发生)。可通过适当形状设计来抑制这些波的一些或者改变它们的时间/空间分布。
因此,压电复合物能够用作典型压电陶瓷元件的简单替代。这利用如上所述的更好声性质。另外,可利用压电复合物的众多制作参数(例如纤维分布、用于聚焦声波束的凸形或凹形等),以便优化兰姆波激励。
按照另外的实施例,换能器是发射器或接收器。由于对于接收,相同性质在相反方向上应用,所以换能器作为接收器也是可部署的。因此,对称几何布置是有利的。备选地,作为接收器,可使用典型PZT超声传感器。
按照方面,提供一种控制器,该控制器配置成控制包括如上所述的超声兰姆波换能器的无创测量系统。控制器可配置成控制发射器和接收器。在液位测量的示例中,它因此控制a)发射器,以便以不同频率来发射初级兰姆波,b)对于不同频率的每个来确定压力波的飞行时间和/或所接收的次级兰姆波的幅度,c)改变发射器的频率,直到所确定的飞行时间达到最小数或者直到所确定的幅度达到最大数,以及d)基于测量的飞行时间、脉冲传播路径和所涉及介质中的声音的速度之间的关系来确定液体液位。在这个液位测量示例中,压力波与水平轴线之间的辐射角处于0与90度之间。
此外,控制器可连接到它将测量结果发送到的其他装置。这类装置可以是例如显示器、包括客户端-服务器架构、服务器或者另外的点对点或云装置的近场通信装置,它们可使用例如蓝牙或移动通信连接无线连接或者可通过导线来连接。
因此,控制器可包括控制单元,其具有例如微控制器、存储介质、通信单元、功率电路等。存储介质可为测量数据并且为由微控制器所运行的程序(例如计算机程序或嵌入式程序)来提供存储器。
按照另外的方面,超声兰姆波换能器能够用于例如如上所述的液位测量布置中的飞行时间测量。另外的应用包括附加无创测量,包括例如声断层扫描(acoustictomography),其中波束角的控制是有益的。
按照另外的方面,提供一种用于制造用于无创测量的超声换能器的方法。该方法包括下列步骤:提供压电陶瓷材料(例如锆钛酸铅(PZT))以作为用于发射超声波的超声致动器的基底(base);将复合物材料添加到压电陶瓷材料,以形成压电复合物超声致动器;以及将超声致动器嵌入在主体材料中或附连在其上,以形成超声换能器。
按照实施例,将复合物材料添加到压电陶瓷材料的步骤使用下列技术中的一个来执行:
棒放置技术(rod placement technique)、小方块(dice)-填充技术、超声切割、注模、脱模(lost mold)、激光加工、共挤压、带层压和纤维插入方法,它们是本领域的技术人员已知的。
参照附图和以下描述,将更好地理解本发明的这些及其他特征、方面和优点。
附图说明
图1示出容器中的液体的无创液位测量的示意图(sketch),
图2示出基于小方块和填充制造技术的压电复合物的示例。
图3示出用于制造用于无创测量的超声换能器的方法的流程图。
具体实施方式
图1示出由各自表示如上所述的换能器的安装在楔形物116上的发射元件100以及安装在楔形物118上的接收元件102所执行的容器104中的液体的无创液位测量的示例。发射器100相应地被放置在容器壁外部以及液体表面106或108的液位下方的第一位置处。发射器100将作为初波的超声波发射到容器壁中,使得初级兰姆波的一部分分别采取压力波110或112的形式在倾斜且向上的方向上朝液体表面106、108从容器壁泄漏到液体114中。接收器102也被放置在容器壁外部以及液体表面106、108的液位下方的与发射器100相反的第二位置处。压力波以这样的方式在某个反射点处在表面106、108处被反射,以致于接收器能够接收次波,该次波通过压力波在被液体表面106、108反射之后碰撞容器壁来生成。在图1中,图示以两个不同角度泄漏到液体中的兰姆波的生成。第一波束110在较低液位处在表面106处被反射,而第二波束112在第二液位处在表面108处被反射。液位界面与罐壁垂直,使得波束以与它们被发射的相同的角度来接收。
控制器120连接到发射器100和接收器102。它可进一步提供到服务器或显示器的接口(图1中未示出)。到发射器、接收器、服务器和/或显示器的接口可通过有线或无线连接来实现。
图2示出基于小方块和填充制造技术的压电复合物的示例,其中作为复合物材料的环氧树脂202填充弛豫(relaxor)-PT(钛酸铅)材料的切块柱206。在填充之后去除PT基板204。
图3示出用于制造用于无创测量的超声换能器的方法的流程图。在第一步骤302中,提供作为用于发射超声波的超声致动器的基底的压电陶瓷材料。在第二步骤304中,添加到压电陶瓷材料以形成压电复合物超声致动器的复合物材料,以及在另外的步骤306中,超声致动器被嵌入主体材料中或附连到主体材料上,以形成超声换能器。
通过研究附图、本公开和所附权利要求书,对所公开的实施例的其他变化通过本领域的技术人员在实施要求保护的本发明中可以理解并且实现。在权利要求书中,词语“包括”并不排除其他元件或步骤,以及不定冠词“一个(“a”或者“an”)”并不排除多个。单个处理器或其他单元可实现权利要求中所述的若干项或步骤的功能。在互不相同的从属权利要求书中陈述某些措施的纯粹事实并不指示这些措施的组合不能有利地使用。计算机程序可被存储/分配在适当介质(例如连同其他硬件一起或者作为其他硬件的组成部分所供应的光存储介质或固态介质)上,但是也可采取其他形式(例如经由因特网或其他有线或无线电信系统)来分配。权利要求书中的任何参考符号不应当被理解为限制权利要求的范围。

Claims (12)

1.一种用于无创测量的超声兰姆波换能器(100,102),所述超声兰姆波换能器(100,102)配置成发射或接收超声兰姆波(110,112)脉冲,其中
所述超声兰姆波(110,112)的发射和接收各自具有方向,以及所述脉冲通过至少一个参数来定义;
所述超声兰姆换能器(100,102)包括至少一个压电复合物致动器;以及
所述压电复合物致动器配置成通过以适合于超声兰姆波的生成的频率发射声辐射来控制所述超声兰姆波的发射方向。
2.如权利要求1所述的超声兰姆波换能器(100,102),其中所述至少一个脉冲参数是下列中的一个:载波频移;飞行时间;脉冲宽度;衰减;脉冲幅度;或者其组合。
3.如权利要求1或2所述的超声兰姆波换能器(100,102),其中在产生于所述压电复合物的组成的性质的频率范围内控制所述频率。
4.如前述权利要求中的任一项所述的超声兰姆波换能器(100,102),其中所述压电复合物致动器包括作为复合物材料的聚合物。
5.如前述权利要求中的任一项所述的超声兰姆波换能器(100,102),其中所述压电复合物致动器的基础材料是包括锆钛酸铅(PZT)的压电陶瓷材料。
6.如前述权利要求中的任一项所述的超声兰姆波换能器(100,102),其中所述换能器(100,102)为楔形;并且其中楔形物适合保持所述压电复合物致动器。
7.如前述权利要求中的任一项所述的超声兰姆波换能器(100,102),其中所述换能器(100,102)包括衬里层和至少一个匹配层,其中所述衬里层和/或所述匹配层的至少一侧具有平的或弯曲的形状。
8.如前述权利要求中的任一项所述的超声兰姆波换能器(100,102),其中所述换能器(100,102)是发射器(100)或接收器(102)。
9.一种控制器(120),所述控制器(120)配置成控制无创测量系统,所述无创测量系统包括如权利要求1-8中的任一项所述的用于无创测量的超声兰姆波换能器(100,102)。
10.一种对如权利要求1至8中的任一项所述的超声兰姆波换能器(100,102)的使用,所述超声兰姆波换能器(100,102)用于液位测量。
11.一种用于制造用于无创测量的超声换能器(100,102)的方法(300),所述方法(300)包括下列步骤:
提供(302)作为用于发射超声波的超声致动器的基底的压电陶瓷材料;
将复合物材料添加(304)到所述压电陶瓷材料,以形成压电复合物超声致动器;以及
将所述超声致动器嵌入在主体材料中或附连(306)在其上,以形成所述超声换能器(100,102)。
12.如权利要求11所述的方法,其中将复合物材料添加到所述压电陶瓷材料的步骤使用下列技术中的一个来执行:棒放置技术、小方块-填充技术、超声切割、注模、脱模、激光加工、共挤压、带层压和纤维插入方法。
CN202010953923.4A 2019-09-13 2020-09-11 用于无创测量的超声换能器 Pending CN112494067A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19197200.9A EP3792624A1 (en) 2019-09-13 2019-09-13 Ultrasonic transducer for non-invasive measurement
EP19197200.9 2019-09-13

Publications (1)

Publication Number Publication Date
CN112494067A true CN112494067A (zh) 2021-03-16

Family

ID=67956517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010953923.4A Pending CN112494067A (zh) 2019-09-13 2020-09-11 用于无创测量的超声换能器

Country Status (3)

Country Link
US (1) US11826781B2 (zh)
EP (1) EP3792624A1 (zh)
CN (1) CN112494067A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164920A (en) * 1990-06-21 1992-11-17 Siemens Aktiengesellschaft Composite ultrasound transducer and method for manufacturing a structured component therefor of piezoelectric ceramic
US20170010146A1 (en) * 2015-07-06 2017-01-12 Abb Schweiz Ag System and method for non-intrusive and continuous level measurement of a liquid

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446395A (en) 1981-12-30 1984-05-01 Technicare Corporation Short ring down, ultrasonic transducer suitable for medical applications
DE3931048A1 (de) 1989-09-16 1991-04-11 Leica Industrieverwaltung Konisches ultraschallwellen-ablenkelement
US5971925A (en) 1998-06-08 1999-10-26 Acuson Corporation Broadband phased array transducer with frequency controlled two dimensional aperture capability for harmonic imaging
US6291928B1 (en) * 1998-12-16 2001-09-18 Active Control Experts, Inc. High bandwidth, large stroke actuator
DE19961856A1 (de) 1999-12-22 2001-06-28 Endress Hauser Gmbh Co Prismen-Lambwellensensor
DE19961857A1 (de) 1999-12-22 2001-06-28 Endress Hauser Gmbh Co Verfahren zur Erregung von Lambwellen in einer Platte, insbesondere in einer Behälterwand, und Vorrichtung zur Durchführung des Verfahrens und zum Empfang der erregten Lambwellen
US7673525B2 (en) 2007-01-09 2010-03-09 Schlumberger Technology Corporation Sensor system for pipe and flow condition monitoring of a pipeline configured for flowing hydrocarbon mixtures
US7633206B2 (en) 2007-07-26 2009-12-15 Delaware Capital Formation, Inc. Reflective and slanted array channelized sensor arrays
JP5433367B2 (ja) 2008-11-19 2014-03-05 日本碍子株式会社 ラム波装置
US8264126B2 (en) 2009-09-01 2012-09-11 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
GB2521661A (en) 2013-12-27 2015-07-01 Xsens As Apparatus and method for measuring flow
US20160114193A1 (en) 2014-10-23 2016-04-28 Oleg Prus Multilayer ultrasound transducers for high-power transmission
US11293791B2 (en) 2017-05-04 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Leaky lamb wave flowmeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164920A (en) * 1990-06-21 1992-11-17 Siemens Aktiengesellschaft Composite ultrasound transducer and method for manufacturing a structured component therefor of piezoelectric ceramic
US20170010146A1 (en) * 2015-07-06 2017-01-12 Abb Schweiz Ag System and method for non-intrusive and continuous level measurement of a liquid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BADCOCK.R.A ET AL: "The use of 0-3 piezo-composite embedded Lamb wave sensors foe detection of damage in advanced fibre composites;Damage detection for advanced fibre composites", 《SMART MATERIALS AND STRUCTURES, IOP PUBLISHING LTD》, vol. 9, no. 3, pages 291 - 297 *
SALAS KIET AL: "Guided wave excitation by a CLoVER transducer for structural health monitoring:theory and experiments", 《SMART MATERIALS AND STRUCTURES, IOP PUBLISHING LTD》, vol. 18, no. 7, pages 1 - 27 *

Also Published As

Publication number Publication date
US11826781B2 (en) 2023-11-28
EP3792624A1 (en) 2021-03-17
US20210078040A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US10770058B2 (en) Acoustic lens for micromachined ultrasound transducers
US10408663B2 (en) Ultrasonic level sensor with reflectors
CN103827960A (zh) 具有声透镜的超声探头
US9427209B2 (en) Ultrasound probe, ultrasound diagnostic imaging apparatus and manufacturing method of ultrasound probe
US7692367B2 (en) Ultrasonic transducer
US11002587B2 (en) Ultrasonic level sensor with sound trap
CA2952312A1 (en) Multi-cell electroacoustic transducer
US20110208059A1 (en) Ultrasound probe
JP6828944B1 (ja) 計測機器用の超音波振動子
US5552004A (en) Method of making an acoustic composite material for an ultrasonic phased array
Dausch et al. 5I-4 Piezoelectric micromachined ultrasound transducer (pMUT) arrays for 3D imaging probes
JP3672565B2 (ja) 小断面脈管超音波像形成トランスジューサ
JP5504921B2 (ja) 超音波探触子および超音波診断装置
JP3954543B2 (ja) 複合圧電体
CN112494067A (zh) 用于无创测量的超声换能器
US7388317B2 (en) Ultrasonic transmitting/receiving device and method for fabricating the same
US20200128333A1 (en) Diagonal resonance sound and ultrasonic transducer
JP5552820B2 (ja) 超音波探触子および超音波診断装置
JP2009201053A (ja) 超音波探触子、その製造方法およびその超音波探触子を用いた超音波診断装置
Gorostiaga et al. Optimal electric load prediction from the KLM model for ultrasound energy receivers
Dausch et al. 11F-3 Performance of Flexure-Mode pMUT 2D Arrays
JP2022552068A (ja) 超音波トランスデューサ及び超音波トランスデューサの動作方法
Nistorica et al. Modeling and characterization of a 3D-MEMS piezoelectric ultrasound transducer
JP2006262149A (ja) 超音波探触子及び超音波診断装置
KR102334802B1 (ko) 임피던스 매칭 부재 및 상기 임피던스 매칭 부재를 사용하는 초음파 트랜스듀서

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination