CN112490317A - 一种基于硒化镉薄膜的近红外窄带探测器及其制备方法 - Google Patents

一种基于硒化镉薄膜的近红外窄带探测器及其制备方法 Download PDF

Info

Publication number
CN112490317A
CN112490317A CN202011354294.XA CN202011354294A CN112490317A CN 112490317 A CN112490317 A CN 112490317A CN 202011354294 A CN202011354294 A CN 202011354294A CN 112490317 A CN112490317 A CN 112490317A
Authority
CN
China
Prior art keywords
cadmium selenide
thin film
type light
selenide thin
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011354294.XA
Other languages
English (en)
Other versions
CN112490317B (zh
Inventor
唐江
李康华
陈超
牛广达
卢岳
杨许可
林雪甜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202011354294.XA priority Critical patent/CN112490317B/zh
Publication of CN112490317A publication Critical patent/CN112490317A/zh
Application granted granted Critical
Publication of CN112490317B publication Critical patent/CN112490317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种基于硒化镉薄膜的近红外窄带探测器及其制备方法,属于光电材料及光电探测器制备领域,探测器从下至上依次包括:基底、硒化镉薄膜、P型吸光层和金属电极;硒化镉薄膜的厚度不小于1μm;P型吸光层的光谱吸收带边大于710nm。制备方法包括:(S1)在基底上沉积厚度不小于1μm的硒化镉薄膜;(S2)在硒化镉薄膜上沉积P型吸光层;(S3)在P型吸光层上沉积金属电极,从而得到基于硒化镉薄膜的近红外窄带探测器。本发明能够实现波长大于710nm的近红外窄带探测,并且结构简单,成本较低。

Description

一种基于硒化镉薄膜的近红外窄带探测器及其制备方法
技术领域
本发明属于光电材料及光电探测器制备领域,更具体地,涉及一种基于硒化镉薄膜的近红外窄带探测器及其制备方法。
背景技术
在生物医学传感、成像、防御和监视等领域,当只需要探测小光谱范围的光,而需要抑制其余的光时(通常是背景或环境辐射),光谱选择性光探测被广泛应用,近红外光探测器(NIR PDs)在过去的几十年中由于其在医疗仪器中的巨大潜力而引起了人们的广泛关注。由于生物系统中对生物样品的光损伤小、组织穿透深度深、背景自发荧光干扰最小等优点,荧光光子在这个范围内的检测和成像已成为医学诊断、手术或治疗的一种强大的实时技术。
窄带光检测通常通过以下三种方法之一来实现:(1)宽带光探测器与带通滤波器相结合;(2)使用具有窄带吸收的光活性材料;(3)通过等离子体效应有意地增强特定波长范围内的吸收。
上述三种方法都能实现窄带光检测,但同时也存在着一些问题。第一种检测系统需要高成本的滤光片,以及复杂的光学系统设计和集成。此外,由于其固有的局限性,目前的商业滤光器不能满足许多应用的需要。例如,干涉滤光片容易产生侧峰,并且对表面污染或划痕非常敏感。第二种方法中,对于窄带吸收材料,尽管它们已成功应用于以宽带隙半导体为活性材料的短波光电探测器,例如可见光或日盲紫外光探测器,但要实现窄带可见光或红外探测仍是一个挑战。第三种方法中,等离子体增强吸收也限制在其操作光谱范围和非抑制吸收在其他非等离子体波长范围。因此,迫切需要开发制备简单的、低成本的近红外窄带探测器,其拥有广阔的应用前景。
发明内容
针对现有技术的缺陷和改进需求,本发明提供了一种基于硒化镉薄膜的近红外窄带探测器及其制备方法,其目的在于,以简单的器件结构和较低成本实现波长大于710nm的近红外窄带探测。
为实现上述目的,按照本发明的一个方面,提供了一种基于硒化镉薄膜的近红外探测器,从下至上依次包括:基底、硒化镉薄膜、P型吸光层和金属电极;
硒化镉薄膜的厚度不小于1μm;P型吸光层的光谱吸收带边大于710nm。
工作时,入射光从透明电极(基底)一侧入射,小于710nm波段的光谱被硒化镉薄膜吸收,剩余的光谱由P型吸光层吸收。(1)由于硒化镉薄膜的厚度较厚,且载流子寿命相对较短,其吸收了<710nm波段的光谱而产生光生载流子很快复合损失,不能够贡献电流响应。(2)P型层吸收的光谱产生的光生空穴能够被金属电极收集,形成光电响应。(3)通过控制P型层的吸收带边(>710nm附近),能够实现仅在710nm至吸收带边的窄带探测器。
本发明所提供的基于硒化镉薄膜的近红外探测器,其中的硒化镉(CdSe)薄膜为N型薄膜,与其上的P型吸光层形成PN结;由于硒化镉吸收小于710nm波段的光谱,其中的载流子传输受限,其无法贡献光电流响应;再结合P型吸光材料对大于710nm波段的近红外窄带光谱响应,通过控制P型吸光层对光谱响应的吸收边,即可实现波长大于710nm的近红外窄带探测。
进一步地,基底的材料为透明导电玻璃。
进一步地,基底的材料为FTO或ITO;FTO和ITO同时具有较高的透过率和较高的导电率,以FTO或ITO为基底材料,能够有效提高探测效率。
进一步地,P型吸光层的材料为Sb2(S,Se)3;Sb2(S,Se)3的光电性质优异,吸收带边可调,能够实现>710nm的吸收带边,非常有潜力实现超窄带探测。
进一步地,金属电极的材料为金;金的电导率高,且化学稳定性高,以金为金属电极材料,能够提高探测器的性能。
按照本发明的另一个方面,提供了一种上述基于硒化镉薄膜的近红外窄带探测器的制备方法,包括如下步骤:
(S1)在基底上沉积厚度不小于1μm的硒化镉薄膜;
(S2)在硒化镉薄膜上沉积P型吸光层;
(S3)在P型吸光层上沉积金属电极,从而得到基于硒化镉薄膜的近红外窄带探测器。
进一步地,步骤(S1)中,采用快速热蒸发法在基底上沉积硒化镉薄膜。
进一步地,步骤(S2)中,采用水浴沉积法或者真空法在硒化镉薄膜上沉积P型吸光层。
进一步地,步骤(S3)中,采用热蒸镀沉积法在P型吸光层上沉积金属电极。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)本发明所提供的基于硒化镉薄膜的近红外探测器,其中的硒化镉薄膜为N型薄膜,与其上的P型吸光层形成PN结;由于硒化镉吸收小于710nm波段的光谱,其中的载流子传输受限,其无法贡献光电流响应;再结合P型吸光材料对大于710nm波段的近红外窄带光谱响应,通过控制P型吸光层对光谱响应的吸收边,即可实现波长大于710nm的近红外窄带探测。
(2)由于波长大于710nm的近红外波段中,血液和水的吸收较少,生物探测成像干扰小,成像质量高,因此,本发明所提供的近红外窄带探测器能够为医学诊断、手术或治疗提供极大的便利。
(3)本发明所提供的基于硒化镉薄膜的近红外窄带探测器,为一种简单的叠层结构,结构简单,且成本较低。
附图说明
图1为本发明实施例提供的基于硒化镉薄膜的近红外窄带探测器的结构示意图;
图2为本发明实施例提供的基于硒化镉薄膜的近红外窄带探测器的EQE(ExternalQuantum Efficiency,外量子效应)响应曲线图;
图3为本发明实施例提供的探测器阵列在不同波长入射光下的成像示意图;其中,(a)为探测器阵列在波长为530nm的入射光下的成像示意图,(b)为探测器阵列在波长为730nm的入射光下的成像示意图,(c)为探测器阵列在波长为1000nm的入射光下的成像示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明中,本发明及附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
提供的一种基于硒化镉薄膜的近红外探测器,如图1所示,从下至上依次包括:基底、硒化镉薄膜、P型吸光层和金属电极;
硒化镉薄膜的厚度不小于1μm,此厚度设定能够避免硒化镉薄膜在红外波段有响应;P型吸光层的光谱吸收带边大于710nm。
在一些可选的实施例中,基底的材料为透明导电玻璃。
在一些优选的实施例中,基底的材料为FTO(掺氟氧化锡)或ITO(掺锡氧化铟);FTO和ITO同时具有较高的透过率和较高的导电率,以FTO或ITO为基底材料,能够有效提高探测效率。
在一些可选的实施例中,P型吸光层的材料为Sb2(S,Se)3;Sb2(S,Se)3的光电性质优异,吸收带边可调,能够实现>710nm的吸收带边,非常有潜力实现超窄带探测。
在一些可选的实施例中,金属电极的材料为金;金的电导率高,且化学稳定性高,以金为金属电极材料,能够提高探测器的性能。
本发明还提供了上述基于硒化镉薄膜的近红外窄带探测器的制备方法,包括如下步骤:
(S1)在基底上沉积厚度不小于1μm的硒化镉薄膜;
(S2)在硒化镉薄膜上沉积P型吸光层;
(S3)在P型吸光层上沉积金属电极,从而得到基于硒化镉薄膜的近红外窄带探测器。
在一些可选的实施例中,步骤(S1)中,采用快速热蒸发法在基底上沉积硒化镉薄膜。
在一些可选的实施例中,步骤(S2)中,采用水浴沉积法或者真空法在硒化镉薄膜上沉积P型吸光层。
在一些可选的实施例中,步骤(S3)中,采用热蒸镀沉积法在P型吸光层上沉积金属电极。
以下为实施例。
实施例1:
一种基于硒化镉薄膜的近红外窄带探测器的制备方法,包括如下步骤:
(1)用去离子水,丙酮,异丙醇,乙醇和去离子水依次清洗透明导电FTO玻璃各三十分钟,再用氮气枪吹干,以获得洁净的基底;
(2)利用快速热蒸发的方法制备硒化镉薄膜,制备工艺为,利用硒化镉粉末作为蒸发源,真空度1Pa,设置基底温度400℃,维持15min,将蒸发源的温度加热至820℃,蒸发时间为100s,得到厚度约为2μm的硒化镉薄膜;
(3)利用水浴沉积法制备P型Sb2(S,Se)3吸光层,吸收带边850nm;
(4)在P型吸光层上,利用热蒸镀沉积金属电极,制备得到如图1所示的基于硒化镉薄膜的近红外窄带探测器。
本实施例制备得到的基于硒化镉薄膜的近红外窄带探测器(记为探测器-1),其外量子效应(EQE)响应谱如图2所示,根据图2所示结果可知,其EQE仅在710~850nm窄光谱范围内有响应,且峰值响应达到>25%,光谱响应半峰宽为51nm。
实施例2
一种基于硒化镉薄膜的近红外窄带探测器的制备方法,包括如下步骤:
(1)用去离子水,丙酮,异丙醇,乙醇和去离子水依次清洗透明导电FTO玻璃各三十分钟,再用氮气枪吹干,以得到洁净的基底;
(2)利用快速热蒸发的方法制备硒化镉薄膜,制备工艺为,利用硒化镉粉末作为蒸发源,真空度1Pa,设置基底温度400℃,维持15min,将蒸发源的温度加热至820℃,蒸发时间为100s,得到厚度约为2μm的硒化镉薄膜;
(3)利用真空法制备P型Sb2(S,Se)3吸光层,吸收带边800nm;
(4)在P型吸光层上,利用热蒸镀沉积金属电极,制备得到如图1所示的基于硒化镉薄膜的近红外窄带探测器。
本实施例制备得到的基于硒化镉薄膜的近红外窄带探测器(记为探测器-2),其外量子效应(EQE)响应谱如图2所示,根据图2所示结果可知,其EQE仅在710~800nm窄光谱范围内有响应,且峰值响应达到~10%,光谱响应半峰宽为31nm。
以本实施例制备得到的基于硒化镉薄膜的近红外窄带探测器构建探测器阵列,该探测器阵列在波长λ=530nm、λ=730nm以及λ=1000nm的入射光下的成像结果分别如图3中的(a)~(c)所示,根据图3所示的成像结果可以看出,在光谱响应范围之外(入射光波长:530nm和1000nm),探测器没有光响应,因此无法实现成像,如图3中的(a)和(c)所示;光谱响应范围之内(730nm),探测器因为穿过物体后,光照强度发生改变,光响应度存在差异,进而能够实现对物体的成像,如图3中的(b)所示。
实施例3:
一种基于硒化镉薄膜的近红外窄带探测器,由上述实施例1或2制备得到,其结构如图1所示。
应当说明的是,上述各实施例的各个步骤所采用的制备工艺,如快速热蒸发、水浴沉积、热蒸发法沉积金属电极等,其中的参数、条件等,均可参考本领域的常规设置方法进行设置;快速热蒸发法可采用快速热蒸发管式炉(MTI,Hefei,China)。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于硒化镉薄膜的近红外窄带探测器,其特征在于,从下至上依次包括:基底、硒化镉薄膜、P型吸光层和金属电极;
所述硒化镉薄膜的厚度不小于1μm;所述P型吸光层的光谱吸收带边大于710nm。
2.如权利要求1所述的基于硒化镉薄膜的近红外窄带探测器,其特征在于,所述基底的材料为透明导电玻璃。
3.如权利要求2所述的基于硒化镉薄膜的近红外窄带探测器,其特征在于,所述基底的材料为FTO或ITO。
4.如权利要求1-3任一项所述的基于硒化镉薄膜的近红外窄带探测器,其特征在于,所述P型吸光层的材料为Sb2(S,Se)3
5.如权利要求1-3任一项所述的基于硒化镉薄膜的近红外窄带探测器,其特征在于,所述金属电极的材料为金。
6.如权利要求1-5任一项所述的基于硒化镉薄膜的近红外窄带探测器的制备方法,其特征在于,包括如下步骤:
(S1)在基底上沉积厚度不小于1μm的硒化镉薄膜;
(S2)在所述硒化镉薄膜上沉积P型吸光层;
(S3)在所述P型吸光层上沉积金属电极,从而得到所述基于硒化镉薄膜的近红外窄带探测器。
7.如权利要求6所述的制备方法,其特征在于,所述步骤(S1)中,采用快速热蒸发法在基底上沉积硒化镉薄膜。
8.如权利要求6所述的制备方法,其特征在于,所述步骤(S2)中,采用水浴沉积法或者真空法在所述硒化镉薄膜上沉积P型吸光层。
9.如权利要求6所述的制备方法,其特征在于,所述步骤(S3)中,采用热蒸镀沉积法在所述P型吸光层上沉积金属电极。
CN202011354294.XA 2020-11-27 2020-11-27 一种基于硒化镉薄膜的近红外窄带探测器及其制备方法 Active CN112490317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011354294.XA CN112490317B (zh) 2020-11-27 2020-11-27 一种基于硒化镉薄膜的近红外窄带探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011354294.XA CN112490317B (zh) 2020-11-27 2020-11-27 一种基于硒化镉薄膜的近红外窄带探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112490317A true CN112490317A (zh) 2021-03-12
CN112490317B CN112490317B (zh) 2022-05-20

Family

ID=74935658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011354294.XA Active CN112490317B (zh) 2020-11-27 2020-11-27 一种基于硒化镉薄膜的近红外窄带探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112490317B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871508A (zh) * 2021-08-19 2021-12-31 华中科技大学 一种碲半导体薄膜红外探测器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176646A1 (en) * 2000-07-28 2002-01-30 Ecole Polytechnique Féderale de Lausanne (EPFL) Solid state heterojunction and solid state sensitized photovoltaic cell
CN102655217A (zh) * 2012-05-15 2012-09-05 大连理工大学 无机-有机异质结全固态太阳能电池
TW202035577A (zh) * 2018-09-06 2020-10-01 日商富士軟片股份有限公司 結構體、光感測器及圖像顯示裝置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176646A1 (en) * 2000-07-28 2002-01-30 Ecole Polytechnique Féderale de Lausanne (EPFL) Solid state heterojunction and solid state sensitized photovoltaic cell
CN102655217A (zh) * 2012-05-15 2012-09-05 大连理工大学 无机-有机异质结全固态太阳能电池
TW202035577A (zh) * 2018-09-06 2020-10-01 日商富士軟片股份有限公司 結構體、光感測器及圖像顯示裝置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIPING GUOA: "Improved stability and efficiency of CdSe/Sb2Se3 thin-film solar cells", 《SOLAR ENERGY》 *
YA.I. LEPIKH等: "Uncooled p(Pb1-xSnxSe)-n(CdSe) heterostructure-based photodetector for the far infrared spectral range", 《SEMICONDUCTOR PHYSICS, QUANTUM ELECTRONICS & OPTOELECTRONICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871508A (zh) * 2021-08-19 2021-12-31 华中科技大学 一种碲半导体薄膜红外探测器件

Also Published As

Publication number Publication date
CN112490317B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
Wang et al. Melanin–perovskite composites for photothermal conversion
Li et al. Filter‐free self‐power CdSe/Sb2 (S1− x, Sex) 3 nearinfrared narrowband detection and imaging
Guo et al. Advances in colloidal quantum dot-based photodetectors
CN110459548B (zh) 一种基于范德瓦尔斯异质结的光电探测器及其制备方法
CN107644939A (zh) 宽谱响应光电探测器及其制备方法
CN112490317B (zh) 一种基于硒化镉薄膜的近红外窄带探测器及其制备方法
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
Wang et al. Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector
Zhu et al. High-performance and stable Sb2S3 thin-film photodetectors for potential application in visible light communication
Yadav et al. Development of visible-blind UV photodetector using solution processed Ag-ZnO nanostructures
CN114300551A (zh) 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法
Sekertekin et al. Ultraviolet photodiode fabricated from TiO2 nanorods/p-silicon heterojunction
Huang et al. Broadband-spectral-responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping
Wu et al. Self-powered and broadband germanium/PEDOT: PSS heterojunction photodetectors for near-infrared biomedical imaging applications
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
Popoola et al. Self-Driven, Quadridirectional Carrier Transport, Bifacial MAPbI3–Perovskites Photodiodes Fabricated via Laterally Aligned Interconnected Sandwiched Type Architecture
CN108346713A (zh) 可见-短波红外探测器及其制备方法
CN113178497B (zh) 一种基于量子点的紫外探测器及制作方法
CN113745360A (zh) 一种窄带响应紫外光电二极管及其制备方法
CN114695430A (zh) 双极性响应双色探测器、其制备方法及应用
CN111048620B (zh) 基于二氧化钛纳米管和石墨烯异质结紫外光电探测器及其制备方法
Liu et al. The Recent Progress and State-of-art applications for Ultraviolet Photodetectors
Liu et al. Self-powered and broadband CuSCN/Si heterojunction photodetector for multi-color imaging based on diffuse reflection mode
KR101935840B1 (ko) 광전 소자 및 그 제조 방법
Huang et al. A high-performance broadband double-junction photodetector based on silicon nanowire arrays wrapped by silver nanoparticles for low-light imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant