CN112461866B - 纳米粉晶主暴露面的电子衍射辅助测定方法 - Google Patents

纳米粉晶主暴露面的电子衍射辅助测定方法 Download PDF

Info

Publication number
CN112461866B
CN112461866B CN202011295785.1A CN202011295785A CN112461866B CN 112461866 B CN112461866 B CN 112461866B CN 202011295785 A CN202011295785 A CN 202011295785A CN 112461866 B CN112461866 B CN 112461866B
Authority
CN
China
Prior art keywords
diffraction
luminance value
crystal
ring
offset correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011295785.1A
Other languages
English (en)
Other versions
CN112461866A (zh
Inventor
丁晓坤
陈芳
裘雅渔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011295785.1A priority Critical patent/CN112461866B/zh
Publication of CN112461866A publication Critical patent/CN112461866A/zh
Application granted granted Critical
Publication of CN112461866B publication Critical patent/CN112461866B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • G01N2223/0566Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction analysing diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/102Different kinds of radiation or particles beta or electrons

Abstract

本发明公开了一种纳米粉晶主暴露面的电子衍射辅助测定方法。首先取不同分散区域的纳米粉晶样品进行电子衍射图的拍摄;利用图形处理软件得到电子衍射图中各衍射环的辉度值与晶面指数的关系图,将多张电子衍射照片中各衍射环的辉度值求平均;构建与衍射角2θ和辉度值相关的偏移矫正函数;根据偏移矫正函数求得的理论辉度值矫正各衍射环的实际辉度值得到偏移矫正辉度值;将两个最强的偏移矫正辉度值对应的晶面指数进行叉乘得到主暴露面的对应带轴,根据对应带轴和样品的晶相结构确定主暴露面的晶面指数,从而确定样品的主暴露面。本发明用于超细纯相纳米粉晶的主暴露面的测定。

Description

纳米粉晶主暴露面的电子衍射辅助测定方法
技术领域
本发明属于透射电子显微镜的电子衍射技术领域,具体涉及一种纳米粉晶主暴露面的电子衍射辅助测定方法。
背景技术
前期研究工作表明纳米材料的形貌及其主要暴露晶面对材料性能有一定的影响,通过控制合成纳米材料的主要暴露晶面对提高材料性能具有十分重要的意义。本发明工作基于电子衍射技术,通过对电子衍射图的分析并结合纳米材料本身的结构,从而计算出纳米晶主暴露面。该方法可用于纯相无序纳米粉晶的主暴露面的辅助测定。
发明内容
为了解决背景技术中的问题,本发明提供了一种纳米粉晶主暴露面的电子衍射辅助测定方法,本发明利用选区电子衍射图谱,通过衍射强度分析来确定纳米粉晶的主要衍射面,计算出纳米粉晶的主要暴露晶面。
本发明采用的技术方案如下:
一种纳米粉晶主暴露面的电子衍射辅助测定方法,包括以下步骤:
步骤1:在透射电镜中选择纳米粉晶样品的不同分散区域作为选区,每个选区均套上选区光阑进行电子衍射图的拍摄,从而得到多张电子衍射图;
步骤2:根据物相数据标定每张电子衍射图中各衍射环代表的晶面指数和衍射角2θ,并利用图形处理软件得到各衍射环的辉度值Y与晶面指数的关系图;
步骤3:将多张电子衍射照片中各衍射环的辉度值求平均得到平均辉度值Y1,得到各衍射环的平均辉度值Y1与晶面衍射角2θ的关系图;
步骤4:将具有等效晶面的衍射环对应的平均辉度值Y1进行除权操作,从而得到各衍射环的实际辉度值Y2;
步骤5:构建与布拉格衍射角2θ和辉度值相关的偏移矫正函数;
步骤6:根据偏移矫正函数求得的理论辉度值矫正各衍射环的实际辉度值Y2,从而得到经偏移矫正后的偏移矫正辉度值Y3;
步骤7:将步骤6中两个最强的偏移矫正辉度值对应的晶面指数进行叉乘得到主暴露面的对应带轴,根据对应带轴和样品的晶相结构确定主暴露面的晶面指数,从而确定样品的主暴露面。
所述步骤1中的纳米粉晶为50纳米以下的纯相纳米粉晶。
所述步骤1中,多张电子衍射图进行拍摄时保持相机长度值Cameral Length不变(相机长度值对应于放大倍数,是TEM拍照时的仪器参数)。
所述步骤2中记载的图形处理软件采用Digital Microscope、photoshop等。
所述步骤4具体为:将具有等效晶面的衍射环对应的平均辉度值Y1进行下述除权操作得到实际辉度值Y2:
Y2=Y1÷n
其中,n为衍射环对应的等效晶面数目,等效晶面与衍射环对应的晶面具有相同衍射半径且相互不平行;
不具有等效晶面的衍射环的实际辉度值Y2为平均辉度值Y1。
所述步骤5具体为:选取步骤1中最小号的选区光阑对应的电子衍射图,且电子衍射图中包含1-5个晶粒,在电子衍射图中选择晶面指数为n(n为正整数)倍关系且在同一直线上的多个同族衍射点,将多个同族衍射点的布拉格衍射角2θ和辉度值Y进行数据拟合得到偏移矫正函数Y=f(2θ);
所述步骤6具体为:取衍射环上辉度值最强的四个衍射环对应的布拉格衍射角2θ1、2θ2、2θ3、2θ4,根据偏移矫正函数求得每个衍射环对应的理论辉度值Y2#;选取四个衍射环中其中一个衍射环作为参考衍射环,参考衍射环的实际辉度值作为实际参考辉度值M,参考衍射环的理论辉度值作为理论参考辉度值M#;
Figure GDA0003207461590000021
根据下述公式求得每个衍射环对应的偏移矫正辉度值Y3:
Figure GDA0003207461590000022
其中,Y2为衍射环的平均辉度值,Y2#为衍射环的理论辉度值,M为参考衍射环的实际参考辉度值,M#为参考衍射环的理论参考辉度值。
本发明的有益效果:
纳米材料的主要暴露晶面是影响材料性能的重要原因,本发明提供了纳米粉晶主暴露晶面的有效测量方法,是目前唯一具有统计意义的辅助测定方法。
附图说明
图1为样品选区一及对应电子衍射图。
图2为样品选区二及对应电子衍射图。
图3为样品选区三及对应电子衍射图。
图4为样品选区一中辉度值和晶面关系图。
图5为样品选区二中辉度值和晶面关系图。
图6为样品选区三中辉度值和晶面关系图。
图7为平均辉度值和晶面衍射角的关系图。
图8为实际辉度值和晶面衍射角的关系图。
图9为同族衍射点辉度值和各晶面的关系图。
图10为偏移矫正函数拟合结果。
图11为本发明的流程框图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
如图11所示,本实例以纳米二氧化钛粉晶为例,计算纳米二氧化钛粉晶的主要暴露晶面:
1、取锐钛矿相二氧化钛纳米粉晶滴在碳膜上并取不同分散区域进行图像和电子衍射图的拍摄,得到图1-3所示的三个不同的选区及其对应的电子衍射图。
2、结合物相数据分析每张衍射图中辉度值和晶面关系,利用Digital Microscope处理软件得到如图4-6所示的辉度值Y和晶面指数的关系图;并将各个辉度值Y加和取平均值后得到如图7所示的平均辉度值Y1和晶面衍射角的关系图。
3、本实例中由于锐钛矿相二氧化钛(101)晶面对应的不同方向等效衍射面为(-101),故而将(101)辉度值降为原来的1/2,得到如图8所示的实际辉度值Y2和晶面衍射角的关系图。
4、如图9所示,取最小选区光阑对应的电子衍射图,在电子衍射图中选择晶面指数为正整数倍关系且在同一直线上的多个同族衍射点,将多个同族衍射点的布拉格衍射角2θ和辉度值Y进行数据拟合(可用excel,matlab等计算软件)得到如图10所示的偏移矫正函数Y=f(2θ),具体如下:
Y=22889e-0.043*2θ
5、本实例中辉度值较强的四个衍射环分别是(101),(004),(020),(105),对应的偏移矫正后的辉度值Y3如下表1所示:
表1辉度值较强的四个衍射环与辉度值的关系图
Figure GDA0003207461590000031
6、根据表1得到最强的两个峰值分别对应着锐钛矿(020)、(105);(020)╳(105)=[10 0 2]等效于[5 0 1]
7、对于锐钛矿相结构(四方晶系I41),[501]带轴垂直于(101)晶面。由此可以确定该纳米二氧化钛粉晶主暴露晶面为(101)族等效晶体面。
具体实施中,本发明也可通过单张电子衍射图进行纳米粉晶主暴露的测度,选取单张电子衍射图进行测定时无需求取平均辉度值。

Claims (5)

1.一种纳米粉晶主暴露面的电子衍射辅助测定方法,其特征在于,包括以下步骤:
步骤1:在透射电镜中选择纳米粉晶样品的不同分散区域作为选区,每个选区均套上选区光阑进行电子衍射图的拍摄,从而得到多张电子衍射图;
步骤2:根据物相数据标定每张电子衍射图中各衍射环代表的晶面指数和衍射角2θ,并利用图形处理软件得到各衍射环的辉度值Y与晶面指数的关系图;
步骤3:将多张电子衍射照片中各衍射环的辉度值求平均得到平均辉度值Y1;
步骤4:将具有等效晶面的衍射环对应的平均辉度值Y1进行除权操作,从而得到各衍射环的实际辉度值Y2;
步骤5:构建与衍射角2θ和辉度值Y相关的偏移矫正函数;
步骤6:根据偏移矫正函数求得的理论辉度值Y2#矫正各衍射环的实际辉度值Y2,从而得到经偏移矫正后的偏移矫正辉度值Y3;
步骤7:将步骤6中两个最强的偏移矫正辉度值Y3对应的晶面指数进行叉乘得到主暴露面的对应带轴,根据对应带轴和样品的晶相结构确定主暴露面的晶面指数,从而确定样品的主暴露面;
所述步骤5具体为:选取步骤1中最小号的选区光阑对应的电子衍射图,且电子衍射图中包含1-5个晶粒,在电子衍射图中选择晶面指数为n倍关系且在同一直线上的多个同族衍射点,将多个同族衍射点的衍射角2θ和辉度值Y进行数据拟合得到偏移矫正函数Y=f(2θ);
其中,n为正整数;
所述步骤6具体为:取衍射环上辉度值最强的四个衍射环对应的衍射角2θ1、2θ2、2θ3、2θ4,根据偏移矫正函数求得每个衍射环对应的理论辉度值Y2#;选取四个衍射环中其中一个衍射环作为参考衍射环,参考衍射环的实际辉度值作为实际参考辉度值M,参考衍射环的理论辉度值作为理论参考辉度值M#;
Figure FDA0003211644280000011
根据下述公式求得每个衍射环对应的偏移矫正辉度值Y3:
Figure FDA0003211644280000012
其中,Y2为衍射环的实际辉度值,Y2#为衍射环的理论辉度值,M为参考衍射环的实际参考辉度值,M#为参考衍射环的理论参考辉度值。
2.根据权利要求1所述的一种纳米粉晶主暴露面的电子衍射辅助测定方法,其特征在于,所述步骤1中的纳米粉晶为50纳米以下的纯相纳米粉晶。
3.根据权利要求1所述的一种纳米粉晶主暴露面的电子衍射辅助测定方法,其特征在于,所述步骤1中,多张电子衍射图进行拍摄时保持相机长度值不变。
4.根据权利要求1所述的一种纳米粉晶主暴露面的电子衍射辅助测定方法,其特征在于,所述步骤2中记载的图形处理软件采用Digital Microscope、photoshop。
5.根据权利要求1所述的一种纳米粉晶主暴露面的电子衍射辅助测定方法,其特征在于,所述步骤4具体为:将具有等效晶面的衍射环对应的平均辉度值Y1进行下述除权操作得到实际辉度值Y2:
Y2=Y1÷n
其中,n为衍射环对应的等效晶面数目,等效晶面与衍射环对应的晶面具有相同衍射半径且相互不平行;
不具有等效晶面的衍射环的实际辉度值Y2为平均辉度值Y1。
CN202011295785.1A 2020-11-18 2020-11-18 纳米粉晶主暴露面的电子衍射辅助测定方法 Active CN112461866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011295785.1A CN112461866B (zh) 2020-11-18 2020-11-18 纳米粉晶主暴露面的电子衍射辅助测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011295785.1A CN112461866B (zh) 2020-11-18 2020-11-18 纳米粉晶主暴露面的电子衍射辅助测定方法

Publications (2)

Publication Number Publication Date
CN112461866A CN112461866A (zh) 2021-03-09
CN112461866B true CN112461866B (zh) 2021-09-21

Family

ID=74837204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011295785.1A Active CN112461866B (zh) 2020-11-18 2020-11-18 纳米粉晶主暴露面的电子衍射辅助测定方法

Country Status (1)

Country Link
CN (1) CN112461866B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100545644C (zh) * 2005-09-02 2009-09-30 中国科学院金属研究所 一种半自动x射线晶面指数标定和晶胞常数计算的方法
GB201207997D0 (en) * 2012-05-04 2012-06-20 Imp Innovations Ltd Process
WO2014084007A1 (ja) * 2012-11-29 2014-06-05 シチズンホールディングス株式会社 光変調素子
CN104132955A (zh) * 2014-06-18 2014-11-05 胜科纳米(苏州)有限公司 一种tem衍射斑点图锐利化处理方法
CN104914121A (zh) * 2015-06-12 2015-09-16 朱彦婷 工程化单晶体取向的测量方法及装置
JP6917734B2 (ja) * 2016-03-18 2021-08-11 株式会社半導体エネルギー研究所 半導体装置
JP6857299B2 (ja) * 2017-09-29 2021-04-14 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
CN108181333B (zh) * 2017-12-04 2020-04-21 南京腾元软磁有限公司 一种精制非晶态固体合金三维重构透射电镜样品的工艺方法及评价方法
CN109916928B (zh) * 2019-03-15 2020-11-17 浙江大学 一种判断各向异性纳米晶体择优取向性组装结果的方法

Also Published As

Publication number Publication date
CN112461866A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
Tian et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides
Borgh et al. Synthesis and phase separation of (Ti, Zr) C
Chakraborty et al. Novel hexagonal polytypes of silver: growth, characterization and first-principles calculations
Lay et al. Polarity of prismatic facets delimiting WC grains in WC–Co alloys
CN112461866B (zh) 纳米粉晶主暴露面的电子衍射辅助测定方法
Zhu et al. Direct mapping of Li-enabled octahedral tilt ordering and associated strain in nanostructured perovskites
Castrucci et al. Raman investigation of air-stable silicene nanosheets on an inert graphite surface
WO2014132872A1 (ja) 酸化ニオブスパッタリングターゲット、その製造方法及び酸化ニオブ膜
Šimonová et al. Crystallite size of pure tin oxide ceramics and its growth during sintering determined from XRD line broadening–a methodological case study and a practitioners’ guide
José-Yacamán et al. Electron microscopy of metallic nano particles using high-and medium-resolution techniques
Gu et al. Magnetic characterization of diluted magnetic semiconductor thin films
Bin Anooz et al. Indium incorporation in homoepitaxial β-Ga2O3 thin films grown by metal organic vapor phase epitaxy
Tayade et al. Frustrated microstructures composite PbS material’s size perspective from XRD by variant models of Williamson–Hall plot method
Wang et al. Microstructure of the native oxide layer on Ni and Cr-doped Ni nanoparticles
Langlois et al. Energy-filtered electron microscopy for imaging core–shell nanostructures
Lay et al. Accommodation of the lattice mismatch at the VCx-WC interface
Ye et al. Facet-dependent interfacial segregation behavior of V-doped WC-Co cemented carbides
Du et al. Electrochemical performances of LiNi0. 83Co0. 12Mn0. 05O2 by dual doping of Mg and Ti
Nie et al. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison
Yaremiy et al. X-ray Analysis of NiCrxFe2-xO4 Nanoparticles Using Debye-Sherrer, Williamson-Hall and Size-strain Plot Methods
Kumar et al. A transmission electron microscopy and X-ray photoelectron spectroscopy study of annealing induced γ-phase nucleation, clustering, and interfacial dynamics in reactively sputtered amorphous alumina thin films
Medina et al. Low oxygen pressure synthesis of NdNiO3-δ nanowires by electrospinning
Wang et al. Effect of Cu, N co-doping on conductive properties of AgSnO2 contact
Verbeno et al. Optical, electrical, and structural properties of single-phase Ti2− xN films deposited by cathodic cage
Warczewski et al. Standard deviations of lattice parameters obtained from powder data measurements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant