CN112442193B - 一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法 - Google Patents

一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法 Download PDF

Info

Publication number
CN112442193B
CN112442193B CN201910820666.4A CN201910820666A CN112442193B CN 112442193 B CN112442193 B CN 112442193B CN 201910820666 A CN201910820666 A CN 201910820666A CN 112442193 B CN112442193 B CN 112442193B
Authority
CN
China
Prior art keywords
agar
solution
hydrogel
stirring
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910820666.4A
Other languages
English (en)
Other versions
CN112442193A (zh
Inventor
冯章启
李�瑞
金飞
李通
杜丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910820666.4A priority Critical patent/CN112442193B/zh
Publication of CN112442193A publication Critical patent/CN112442193A/zh
Application granted granted Critical
Publication of CN112442193B publication Critical patent/CN112442193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0052Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法。该制备方法包括以下步骤:将琼脂粉末溶解在水中,加热搅拌使其高度溶胀,得到均匀的琼脂溶胶液;再将盐酸多巴胺单体溶解于上述溶液中,并超声分散均匀,并通过滴加缓冲液控制溶液酸碱度,使多巴胺单体聚合成短链网络;处理后混于N‑羟乙基丙烯酰胺单体中,同时加入光引发剂,得到预凝胶液;将预凝胶液置于模具,进行紫外光照反应。本发明制备的多功能仿生双网络水凝胶具有机械强度高、粘附性强、自愈能力强、成本低、反应温和、生物相容性好,在生物医学、组织工程领域以及药物递送系统具有潜在的应用价值。

Description

一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法
技术领域
本发明属于生物医学工程技术领域,涉及一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法。
背景技术
水凝胶是一类拥有由亲水性高分子聚合物形成的三维聚合物网络的软材料,能够吸收大量的水而保持形状不变。水凝胶具有生物降解性和优异生物相容性,能够模拟细胞外基质的三维微环境,对细胞行为、组织功能进行调控。近年来,水凝胶因为其在生物医学工程领域有广泛的应用前景受到了持续关注。许多水凝胶制剂成功应用于诸多方向,如功能性药物控缓释体系、柔性电极、传感器和可穿戴装置等。
伤口愈合需要潮湿的环境,水凝胶可以用作抗菌剂和组织再生材料的载体,同时还要求材料结构稳定,有良好的力学性能。Chen等人发明了双网络水凝胶,但是该凝胶很容易受到拉伸应力的破坏,缺乏连续且有效的的粘附性和自修复性能。这将使皮肤水老化变得敏感,更严重的是微生物引起的感染可导致严重的组织损伤,因此对伤口敷料的改进迫在眉睫。为了增强水凝胶的粘附性、自修复性以及吸水性,需利用自修复粒子对水凝胶进行化学或物理修饰。多巴胺可以提高中性主体高分子材料在润湿条件下的细胞粘附增殖能力。从仿生角度出发,贻贝与高性能有机高分子材料结合可模拟生物体软组织,如韧带、角膜、血管等,同时多巴胺又有可以与多种化学官能团作用的特点,这将是生物医学领域交叉研究的重要方向之一。
由于,水凝胶广阔的应用前景,更多结构的水凝胶被开发出来,包括化学水凝胶、离子复合水凝胶滑环水凝胶。这些水凝胶有的无可避免地需要使用毒性较大的交联剂,这些不利于生物组织体的应用,有的水凝胶缺乏稳定的交联点导致凝胶结构韧性差,强度低。而光交联纯物理水凝胶通过自身交联、牺牲机制和增韧机制,有效地弥补了缺点,形成稳定、高性能凝胶结构。
目前市场上的水凝胶伤口敷料的机械强度远远不如纤维型等材料,载药凝胶敷料中大量抗生素的使用导致超级细菌的出现等问题更不能忽视,因此水凝胶伤口敷料仍有一定的局限性。Gong等人用壳聚糖及其衍生物用于水凝胶载体机械性能只有52KPa,Wang 等人用互穿法制备出明胶-壳聚糖/PVA水凝胶,其机械性能提高至600KPa。水凝胶作为新型伤口敷料的基础材料,不仅要求其具备高机械性能,同时也要保证其优良的自身抗菌性能和促进伤口愈合能力以及自身化学稳定性。
发明内容
本发明目的在于提供一种具有超强自修复性能的聚(多巴胺)-琼脂/N-羟乙基丙烯酰胺双网络水凝胶的制备方法,解决目前仿生水凝胶贴剂使用过程中面临的自修复效果差和生物相容性差的问题。
实现本发明目的的技术方案如下:
聚(多巴胺)-琼脂/N-羟乙基丙烯酰胺双网络水凝胶的制备方法,具体步骤如下:
将含量为98%的琼脂粉溶于去离子水中,使其完全溶胀,得到琼脂溶胶液
以水为溶剂,将98%的琼脂粉溶于溶剂中。搅拌加热至完全溶胀,在溶胶液中加入盐酸多巴胺单体,用0.5mol/mL盐酸及0.5mol/mL的氢氧化钠溶液以滴加的方式调节pH,搅拌加热后超声使其混合均匀。再将N-羟乙基丙烯酰胺(HEAA)和光引发剂2-羟基-4- (2-羟基乙氧基)-2-甲基苯丙酮(1wt%HEAA)滴加入上述混合物中,搅拌反应120min 后,确保三种聚合物的充分均匀混合,获得均匀混合的初级凝胶溶液并密封储存。其中,琼脂粉的浓度为20~40mg/mL,盐酸多巴胺单体为琼脂粉质量的1%~3%,N-羟乙基丙烯酰胺为琼脂粉质量的1500%~3000%;
随后,将预凝胶溶液倒入模具中,在暗箱中在UV光(波长365nm,功率10w)下进行光聚合反应30min。得到多功能混合双网络水凝胶。
优选地,所述的98%的琼脂粉的用量为15-20wt%。
优选地,所述的盐酸多巴胺单体的用量为0.03-0.15wt%。
优选地,所述的调节pH值为8.5±0.5。
优选地,所述的98%的N-羟乙基丙酰胺单体用量为30-45wt%。
优选地,所述的紫外灯距离样品上方约为10cm。
与现有技术相比,本发明现对于现有技术相比:
(1)本发明的工艺简单,原料易得;
(2)本发明制备的多功能仿生水凝胶的机械强度大,最佳工艺下的拉伸断裂伸长量可达16倍,最大拉伸应力可达0.8MPa;
(3)本发明制备的多功能仿生水凝胶的具有较高的自修复效果,可修复范围可达到70%;
(4)本发明制备的多功能仿生水凝胶的粘附性优良,可粘附在多种界面表面,包括疏水性材料和亲水性材料;
(5)本发明制备的多功能仿生=水凝胶吸水性较好,能在150min后保持不变,溶胀率可达16倍;
(6)本发明制备的多功能仿生=水凝胶化学稳定性好,效能利用率高。
附图说明
图1为本发明制得的兼具韧性与粘附性的自修复仿生水凝胶光学摄影图。
图2为本发明制得的兼具韧性与粘附性的自修复仿生水凝胶的力学应力-应变图。
图3为本发明制得的兼具韧性与粘附性的自修复仿生水凝胶的自愈率图。
图4为本发明制得的兼具韧性与粘附性的自修复仿生水凝胶的剥离粘附图。
图5为本发明制得的兼具韧性与粘附性的自修复仿生水凝胶的吸水率图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步详述。
实施例1
首先,将质量为16.5wt%的琼脂粉加入1mL去离子水中,在98℃、1000r/min转速下高温搅拌0.5h。加入15mg的多巴胺盐酸盐并使其完全溶解在上述混合物中,搅拌反应30min后进行超声处理。再将30wt%的N-羟乙基丙烯酰胺(HEAA)和光引发剂2- 羟基-4-(2-羟基乙氧基)-2-甲基苯丙酮(1wt%HEAA)滴加入上述混合物中,搅拌反应120h后,确保三种聚合物的充分均匀混合,获得均匀混合的初级凝胶溶液并密封储存。随后,将预凝胶溶液倒入模具中,在暗箱中在UV光(波长365nm,功率10w)下进行光聚合反应0.5h。得到该多功能仿生水凝胶。
实施例2
首先,将质量为20wt%的琼脂粉加入1mL去离子水中,在98℃、1000r/min转速下高温搅拌0.5h。加入15mg的多巴胺盐酸盐并使其完全溶解在上述混合物中,搅拌反应 30min后进行超声处理。再将45wt%的N-羟乙基丙烯酰胺(HEAA)和光引发剂2-羟基 -4-(2-羟基乙氧基)-2-甲基苯丙酮(1wt%HEAA)滴加入上述混合物中,搅拌反应120h 后,确保三种聚合物的充分均匀混合,获得均匀混合的初级凝胶溶液并密封储存。随后,将预凝胶溶液倒入模具中,在暗箱中在UV光(波长365nm,功率10w)下进行光聚合反应0.5h。得到该多功能仿生水凝胶。
图1为实施例制得的琼脂-多巴胺-p(HEAA)混合双网络水凝胶聚合过程的光学摄影图。图2为实施例制得的琼脂-多巴胺-p(HEAA)混合双网络水凝胶的力学性能图。从图中可以看出,其杨氏模量2.1MPa,通过杨氏模量公式(E=δ/ε,ε=(L-L0)/L0,δ=F/A,L拉伸伸长量、L0初始长度、F为载荷、A为断裂处截面积)。
图3为实施例制得的琼脂-多巴胺-p(HEAA)混合双网络水凝胶的自愈效果图。从图中可以看出,随愈合时间的增加,愈合效果变好,2h后效果稳定。通过对比,表明这种水凝胶的自修复性能良好。
图4为实施例制得的琼脂-多巴胺-p(HEAA)混合双网络水凝胶的各界面粘附图和180 剥离图。从图中可以看出,随愈合时间的增加,愈合效果变好,2h后效果稳定。通过180°剥离测试,表明这种水凝胶与玻璃的剥离强度可达1800N/m。
图5为实施例制得的琼脂-多巴胺-p(HEAA)混合双网络水凝胶的的吸水率图。从图中可以看出,纳米纤维膜的吸水率高,最高可溶胀13倍。
对比例1
本对比例与实施例1基本相同,唯一不同的是用合成的聚多巴胺代替盐酸多巴胺单体。在优选条件下,发现其综合性能不理想。
对比例2
本对比例与实施例1基本相同,唯一不同的是未用pH缓冲液调节混合溶液的酸碱度。
在优选条件下,综合性能变化不理想。

Claims (9)

1.一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法,其特征在于,具体步骤如下:
步骤1,将琼脂溶于去离子水中,搅拌加热,使其完全溶胀,得到16.5wt%的琼脂溶胶液;
步骤2,在溶胶液中加入盐酸多巴胺,用0.5mol/mL盐酸及0.5mol/mL的氢氧化钠溶液以滴加的方式调节pH至8.5,搅拌加热后超声使其混合均匀;
步骤3,将98%的N-羟乙基丙酰胺单体溶液与光引发剂均匀混合,再加入到上述多巴胺琼脂溶胶液中,加热搅拌均匀混合,得到聚(多巴胺)-琼脂/N-羟乙基丙烯酰胺双网络水凝胶的预凝胶液;
步骤4,现将特氟龙模板以及PET薄膜用乙醇溶液浸泡清洗干净以清除杂质,晾干;将预凝胶液倒入该模板并覆盖上PET膜,置于10W的紫外灯下光照反应,最后将其从模板上剥离即得到兼具韧性与粘附性的自修复仿生水凝胶。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的搅拌加热是在1000r/min转速、95~100℃温度下。
3.根据权利要求1所述的制备方法,其特征在于,所述的琼脂与N-羟乙基丙烯酰胺的质量比为1:150~1:300,琼脂与盐酸多巴胺的质量比为6:1~2:1。
4.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的搅拌加热是在1000r/min转速、45℃温度下。
5.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的混合均匀时间为1h。
6.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的超声时间为0.5h。
7.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述的光引发剂为2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮,用量为N-羟乙基丙烯酰胺的1wt%。
8.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述的加热搅拌是在1000r/min转速、45℃温度下。
9.根据权利要求1所述的制备方法,其特征在于,步骤4中,所述的光照反应为1h。
CN201910820666.4A 2019-08-29 2019-08-29 一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法 Active CN112442193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910820666.4A CN112442193B (zh) 2019-08-29 2019-08-29 一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910820666.4A CN112442193B (zh) 2019-08-29 2019-08-29 一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN112442193A CN112442193A (zh) 2021-03-05
CN112442193B true CN112442193B (zh) 2022-09-20

Family

ID=74734957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910820666.4A Active CN112442193B (zh) 2019-08-29 2019-08-29 一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN112442193B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150412A (zh) * 2021-05-17 2021-07-23 中裕软管科技股份有限公司 一种可自修复的柔性吸水管
CN114752165A (zh) * 2022-04-22 2022-07-15 大连理工大学 一种非共价键型自修复聚合物材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440772A (zh) * 2018-03-06 2018-08-24 长春工业大学 一种自修复导电双网络结构水凝胶及其制备方法
CN109666106A (zh) * 2018-12-28 2019-04-23 河南省科学院能源研究所有限公司 一种具有近红外响应温度敏感特性的水凝胶复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440772A (zh) * 2018-03-06 2018-08-24 长春工业大学 一种自修复导电双网络结构水凝胶及其制备方法
CN109666106A (zh) * 2018-12-28 2019-04-23 河南省科学院能源研究所有限公司 一种具有近红外响应温度敏感特性的水凝胶复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Synthesis and Properties of an Ecofriendly Superabsorbent Composite by Grafting the Poly(acrylic acid) onto the Surface of Dopamine-Coated Sea Buckthorn Branches;Xiaohui Xu;《Industrial & Engineering Chemistry Research》;20150316;第3268-3278页 *
多巴胺辅助壳聚糖水凝胶的制备及应用;刘欢等;《广州化工》;20190131;第47卷(第2期);第48-97页 *

Also Published As

Publication number Publication date
CN112442193A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
Shojaeiarani et al. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels
Li et al. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity
Lu et al. Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing
Gholamali Stimuli-responsive polysaccharide hydrogels for biomedical applications: a review
Zhang et al. Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing
CN108047465B (zh) 一种甲基丙烯酸酯明胶/壳聚糖互穿网络水凝胶、制备方法及应用
Li et al. Bio-orthogonally crosslinked catechol–chitosan hydrogel for effective hemostasis and wound healing
CN108912352A (zh) 一种抗菌粘附可注射水凝胶敷料及其制备方法和应用
Xiao et al. Adhesion mechanism and application progress of hydrogels
CN112267167B (zh) 一种自愈性发光有机水凝胶纤维的制备方法
CN112442193B (zh) 一种兼具韧性与粘附性的自修复仿生水凝胶的制备方法
CN103145914A (zh) 一种高强度pH、温度快速双响应纳米复合水凝胶的制备方法
Yuan et al. Cationic peptide-based salt-responsive antibacterial hydrogel dressings for wound healing
CN101891946B (zh) 一种具有dn-l结构的增强生物水凝胶及其制备方法
Huang et al. A tannin-functionalized soy protein-based adhesive hydrogel as a wound dressing
CN110922645A (zh) 一种双网络水凝胶组合物、双网络水凝胶生物支架及其制备方法和应用
CN106620832A (zh) 一种透明抗菌水凝胶敷料、其制备方法和应用
CN115386259A (zh) 一种防干抗冻光敏水凝胶墨水及其制备方法和高精度光固化水凝胶及其应用
CN110420349B (zh) 一种用于皮肤伤口治疗的pH响应型光子晶体凝胶基的制备方法
Wei et al. Injectable chitosan/xyloglucan composite hydrogel with mechanical adaptivity and endogenous bioactivity for skin repair
Yi et al. Bioinspired adhesive and self-healing bacterial cellulose hydrogels formed by a multiple dynamic crosslinking strategy for sealing hemostasis
CN101530629A (zh) 一种光交联壳聚糖水凝胶膜的制备方法
CN108794737B (zh) 具有紫外光响应功能的封端改性聚乙二醇交联剂及制法和含该交联剂的水凝胶敷料及制法
Zhang et al. An organic hydrogel with high-strength, high-water retention properties for pressure sore protection
CN112618786B (zh) 一种紫外交联载药凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant