CN112439074B - 可快速提高功能多肽亲和力的偶联物及其制备方法和应用 - Google Patents
可快速提高功能多肽亲和力的偶联物及其制备方法和应用 Download PDFInfo
- Publication number
- CN112439074B CN112439074B CN202011401638.8A CN202011401638A CN112439074B CN 112439074 B CN112439074 B CN 112439074B CN 202011401638 A CN202011401638 A CN 202011401638A CN 112439074 B CN112439074 B CN 112439074B
- Authority
- CN
- China
- Prior art keywords
- carrier
- functional polypeptide
- zwitterionic
- conjugate
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/6931—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
- A61K47/6935—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明公开一种可快速提高功能多肽亲和力的偶联物及其制备方法和应用。其中,偶联物包含功能多肽和两性离子化纳米载体,所述功能多肽的一端与两性离子化纳米载体以化学键偶联,所述功能多肽的另一端与两性离子化纳米载体形成氢键。本发明利用多肽分子一级结构具有形成蛋白质分子中二级结构的趋势,通过一端化学键合,另一端氢键在两性离子表面的弱相互作用稳定了功能短肽与其在蛋白质分子类似的二级结构,从而恢复其原先的生物活性,使功能多肽的亲和力快速大幅提高和恢复,并具有优秀的抑制肿瘤生长的能力。
Description
技术领域
本发明涉及功能多肽和两性离子化纳米载体,属于仿蛋白质分子和含功能多肽的纳米药物制造领域。
背景技术
蛋白质-蛋白质的相互作用在生物系统中发挥着重要的调控功能。它们为各种疾病的干预和治疗提供了巨大的机会。由于这些相互作用是通过蛋白质表面上的各种功能多肽来实现的,这些功能多肽具备潜在的调控这些相互作用能力。然而,从药物发现的角度来看,借助这些功能多肽开发出潜在的药物分子来干预这些复杂的相互作用面临着巨大的挑战性。这是因为在游离状态下的功能多肽通常表现出亲和力明显低于其在对应全蛋白质分子上的亲和力。因此,通常需要通过非常繁复的方法去尝试合成具有高亲和力且结构复杂的短肽或结构改造后的功能小分子作为候选药物分子。另一方面,受限于候选药物分子的药代动力学等问题,基于这些候选药物分子发展药物的成功率非常低,使得药物开发变成一个耗时且耗资巨大的过程。因此,通过建立一种简便易行的方法,解决药物开发中所面临的重大问题具有非常重要的意义。
发明内容
本发明所要解决的技术问题是:提供一种可提高功能多肽亲和力的偶联物及其制备方法和用于制备药物的应用。
本发明解决其技术问题所采取的技术方案是:本发明偶联物包含功能多肽和两性离子化纳米载体,所述功能多肽的一端与两性离子化纳米载体以化学键偶联,所述功能多肽的另一端与两性离子化纳米载体形成氢键。
进一步地,本发明所述两性离子化纳米载体的表面的正、负电荷基团呈纳米水平均匀分布,其中,正电荷基团与负电荷基团的比例为0.7:1~1:1。
进一步地,本发明所述两性离子化纳米载体的表面的正电荷基团为氨基、负电荷基团为羧基。
进一步地,本发明所述两性离子化纳米载体为两性离子化的聚酰胺-胺树枝状大分子。
进一步地,本发明所述两性离子化纳米载体为两性离子化的三代、四代或五代聚酰胺-胺树枝状大分子。
进一步地,本发明所述功能多肽的一端通过巯基与两性离子化纳米载体以化学键偶联、另一端通过丝氨酸残基与两性离子化纳米载体形成氢键。
进一步地,本发明所述功能多肽的氨端通过附加的半胱氨酸残基与两性离子化纳米载体以化学键偶联、羧端通过附加的丝氨酸残基与两性离子化纳米载体形成氢键。
进一步地,本发明所述功能多肽为CRGDS、CEKEKEKRGDS、CEKEKEKKKKRGDS中的任一种或任几种。
本发明偶联物的一种制备方法,包括:将氨基封端的聚酰胺-胺树枝状大分子与马来酸酐反应得到马来酰化聚酰胺-胺树枝状大分子;马来酰化聚酰胺-胺树枝状大分子的马来酰基先与功能多肽的巯基进行反应,再与巯基乙胺反应,或与巯基乙胺和含巯基的脂肪酸反应。
进一步地,本发明所述含巯基的脂肪酸与巯基乙胺的摩尔比为0~0.21:1。
进一步地,本发明所述含巯基的脂肪酸为巯基乙磺酸、巯基乙酸、巯基丙酸中的任一种或任几种。
本发明偶联物的一种应用为:所述偶联物用于作为抑制肿瘤生长的药物,或者,用于制备抑制肿瘤生长的药物或药物载体。
与现有技术相比,本发明的有益效果是:
(1)源于蛋白质分子的功能多肽的生物活性(例如亲和力)会急剧下降,对这些多肽的利用面临重重困难。传统方法是通过三维空间上的结构和相互作用力的重建,寻找具有高亲和力配体分子。该方法是一种繁重且效率低下耗资巨大的小分子配体开发过程。本发明利用多肽分子一级结构具有形成蛋白质分子中二级结构的趋势,通过一端化学键合,另一端氢键在两性离子表面的弱相互作用稳定了功能短肽与其在蛋白质分子类似的二级结构,从而能够恢复其原先的生物活性。这一方法简便易行,能够以快速、高效和节约的方式获得高生物活性的配体分子。
(2)小分子配体通常在研究提高亲和力的过程中,对其的水溶性、血液中的稳定性和代谢途径等需要进一步优化,该过程往往是进一步导致小分子药物不能用于临床的原因。此外,通常纳米载体,例如铂、金纳米粒子,在复杂的生物环境中,如血液和组织液中因为与蛋白质分子的非特异性相互作用,会导致其团聚等问题,会被人体快速清除;且这些纳米载体偶联功能多肽后也未能得到亲和力的恢复。本发明构建了两性离子化的仿蛋白质分子,具有优异的生物相容性、血液相容性和专一的生物活性,且生物学毒性低,更加安全。因此,本发明偶联物作为构建的仿蛋白质分子可以直接用于动物体内功能研究,且易于获得与预期一致的靶向治疗效果。
附图说明
图1为含RGD功能多肽的两性离子化PAMAMG-5偶联仿蛋白质分子合成与其生物活性恢复方法示意图;
图2为在不同pH值的磷酸缓冲液(I=100mM)中的含RGD功能多肽的两性离子化PAMAMG-5偶联仿蛋白质分子的ζ电位测量图;
图3为含RGD功能多肽偶联的两性离子化PAMAMG-5偶联仿蛋白质分子的生物相容性的演示,其中,A)为在纤维蛋白原中的稳定性测定;B)为未经修饰的PAMAMG-5暴露于纤维蛋白原溶液2h后的聚集情况;C)为细胞毒性测定;其中(D)、(E)为溶血试验结果(*P<0.05,**P<0.001);
图4为含RGD功能多肽的两性离子化PAMAMG-5偶联仿蛋白质分子对富含αvβ3细胞的抑制作用表征,其中,A、B)为不同浓度对HUVECs的平均面积的影响;C)为不同浓度抑制血小板与纤维蛋白结合;D)抑制HepG2粘附到纤维蛋白涂层表面的效果;
图5为体外新生血管形成实验,其中,A)为新生血管形成实验的代表性荧光图像;B)至E)分别为网格数、主节数、结节数、总管长和血管生成分数(分析面积×管长×分支)的统计分析结果,表明CRGDS肽偶联的两性离子化PAMAMG-5偶联仿蛋白质分子(PAM-CR)相对于c(RGDfV)具有更高的抗血管生成效果(*p<0.05,**p<0.001);
图6为体内抑制肿瘤生长能力实验,其中,A)为肿瘤体积与初始体积比,插入小图为PAM-CR治疗组与Cilengtide治疗组的比较;B)为裸鼠体重与初始体重比;结果表明PAM-CR抑制肿瘤生长的能力略高于Cilengtide,且生物系统毒性更低。
具体实施方式
以下以含RGD功能多肽的两性离子化PAMAM G-5偶联分子的制备及其性能研究为例,结合附图对本发明做出详细的说明。
作为本发明的一种实施方式,含RGD功能多肽的两性离子化PAMAMG-5偶联分子的合成步骤如下:
第一步反应为PAMAM G-5的马来酰化,得到马来酰化PAMAM G-5(PAMAM-M);第二步反应是一端含有巯基、另一端含有丝氨酸残基的短肽与PAMAM-M的点击偶联,得到偶联物;第三步反应是过量巯基乙胺与马来酰的点击反应,得到含RGD功能多肽的两性离子化PAMAMG-5偶联分子。
步骤(1):PAMAM G-5的马来酰化
将2mL水加入到1mL 10%的PAMAM G-5甲醇溶液中,然后冷冻干燥以除去甲醇。将残余物溶解在1.5mL二甲基亚砜(DMSO)中,然后加71mg马来酸酐在室温下搅拌24小时。反应后的溶液水稀释后用纤维素透析袋(MWCO14000)对水透析,然后超滤离心浓缩,得到马来酰PAMAM G-5(PAMAM-M)。本步骤对应了合成步骤中的第一步。
步骤(2):合成含RGD功能多肽的PAMAM-M偶联分子
本步骤以四种含RGD功能多肽(CRGDS、CRGDC、CEKEKEKRGDS和CEKEKEKKKKRGDS)为例进行说明。
将四种含RGD功能多肽(CRGDS、CRGDC、CEKEKEKRGDS和CEKEKEKKKKRGDS)分别通过巯基点击反应偶联到PAMAM-M,合成了4种含RGD的PAMAM-M偶联分子,分别为:PAMAM-M-CRGDS、PAMAM-M-CRGDC、PAMAM-M-CEKEKEKRGDS和PAMAM-M-CEKEKEKKKKRGDS。具体过程为:将PAMAM-M(300μL)和含RGD功能多肽溶解在1.5mL pH=6的磷酸缓冲液(PB)中,PAMAM-M与含RGD功能多肽的最终摩尔比为1:3。将混合物在40℃下搅拌24h,然后用纤维素透析膜(MWCO=14000)对水进行透析,得到PAMAM-M-RGD偶联分子。本步骤为含RGD功能多肽的两性离子化PAMAMG-5偶联分子的合成步骤中的第二步。
步骤(3):含RGD功能多肽的两性离子化PAMAMG-5偶联分子的合成
将PAMAM-M-CRGDS、PAMAM-M-CRGDC、PAMAM-M-CEKEKEKRGDS和PAMAM-M-CEKEKEKKKKRGDS分别进一步与巯基乙胺在pH=6的1.5mL PB溶液中按偶联在PAMAM-M上的马来酰基与巯基乙胺的摩尔比为1∶5的比例混合,得到四种混合物。将四种混合物分别在40摄氏度下搅拌24小时,然后,用纤维素透析膜(MWCO 14000)对水进行透析,相应得到四种巯基乙胺改性后的含RGD功能多肽的两性离子化PAMAMG-5偶联分子:PAMAM-CRGDS(PAM-CR)、PAMAM-CRGDC(PAM-CC)、PAMAM-CEKEKEKRGDS(PAM-EK)和PAMAM-CEKEKEKKKKRGDS(PAMAM-K3)。本步骤为含RGD功能多肽的两性离子化PAMAMG-5偶联分子的合成步骤中的第三步。
为了调节两性离子化纳米载体表面的正负电荷的比率,可在以上步骤(3)中,在加巯基乙胺时通过调节含巯基的脂肪酸(例如,巯基乙磺酸、巯基乙酸、巯基丙酸中的一种或几种)与巯基乙胺的比率实现。作为本发明的一种实施方式,含巯基的脂肪酸与巯基乙胺的摩尔比可为0~0.21:1,使两性离子化纳米载体表面的正电荷基团与负电荷基团的比例对应为0.7:1~1:1,且正、负电荷基团呈纳米水平均匀分布。例如,当巯基脂肪酸与巯基乙胺的摩尔比为0.21:1时,两性离子化纳米载体的表面的正电荷基团与负电荷基团的比例为0.7:1。
ζ电位和粒径测量:将以上步骤(3)得到的含RGD功能多肽的两性离子化PAMAMG-5偶联分子分别在不同pH值的磷酸盐缓冲盐水(PBS)缓冲液中的浓度为0.1毫克/毫升,使用Zetasizer Nano ZS系统(英国马尔文公司)在温度为25℃的条件下,用标准的633nm激光进行ζ电位测量。由图2所示的ζ电位测量结果显示,所有的偶联分子都表现出类似血浆蛋白质分子的物理特性,包括水动力直径为7.5nm,pH值为7.4时的ζ电位略为负。即使是偶联正电荷CEKEKEKKKKRGDS多肽,形成的两性离子化偶联物并没有显著改变整体表面电位,这是因为在PBS中的磷酸氢根等与胺基有较好的亲和力,中和了由额外氨基和胺基的带来的正电荷,使得两性离子偶联物整体呈负电荷状态。
溶血试验:用EDTA-K2真空采血管从健康志愿者献血者处采集新鲜血液。红细胞(RBCs)通过磷酸缓冲盐溶液(PBS)稀释的全血在1500rpm下离心10分钟分离获得。用无菌PBS洗涤三次后,取出上清液,用PBS配置得到2%w/v RBCs悬浮液。将150微升PAMAMG-5或含RGD功能多肽的两性离子化PAMAMG-5偶联分子(20毫克/毫升)加入到150微升的RBCs悬浮液中。水和PBS(150μL)被添加到额外的样品,分别作为阳性和阴性对照。在37℃下孵育2小时后,将混合物离心,并通过使用Thermo Fisher Multiskan MK3在575nm处测定上清液的吸光度来测定血红蛋白的释放量。溶血百分比的计算方法如下:
溶血率(%)=[(A样本-A阴性)/(A阳性-A阴性)]×100%
图3的D图和E图为溶血实验结果图,结果表明含RGD功能多肽的两性离子化PAMAMG-5偶联分子未表现出明显溶血风险。
细胞毒性检测:使用细胞计数试剂盒-8(CCK-8)评估细胞的生存能力。人脐静脉内皮细胞(HUVEC)在96孔组织培养板中以104个细胞/孔的密度播种,并在RPMI 1640培养基中培养,辅以10%胎牛血清(FBS)。孵化17小时后,除去培养基,并更换为100μL的RPMI 1640培养基,其中分别含有不同浓度含RGD功能多肽的两性离子化PAMAMG-5偶联分子,或游离的CRGDS。然后,HUVECs在37℃下培养额外的24小时,再加入10μL的CCK-8,并再共孵育2小时,使用Thermo Fisher Multiskan MK3在450nm处测定吸光度。细胞活力由450nm处加样品的吸光度与未加样品的吸光度的百分比表示。图3的C图为细胞毒性检测结果,结果表明细胞存活率保持在85%以上,即所有含RGD功能多肽的两性离子化PAMAMG-5偶联分子对HUVECs没有明显毒性。
与纤维蛋白原的兼容性实验:在PBS缓冲液配置1mg/mL含RGD功能多肽的两性离子化PAMAMG-5偶联分子或PAMAM G-5溶液,和1.2mg/mL纤维蛋白原以溶液。将纤维蛋白原溶液与上述溶液1:1混合,在37℃恒温摇床中震荡混合6天,每24小时取样一次。使用ZetasizerNano ZS系统(英国Malvern公司),用633nm激光器在173度的散射角下测定粒经。图3的A图为含RGD功能多肽的两性离子化PAMAMG-5偶联分子与纤维蛋白原的兼容性实验结果,结果表明所有含RGD功能多肽的两性离子化PAMAMG-5偶联分子能够与纤维蛋白原溶液稳定共存6天以上,说明其与纤维蛋白原具有优秀的相容性。
体外血小板结合试验:将N-羟基琥珀酰亚胺生物素酯(Biotin-NHS)溶解在DMSO中制成10mM的溶液,并滴加到含RGD功能多肽的两性离子化PAMAMG-5偶联分子溶液(PBS缓冲液,pH=7.4)中,使其最终摩尔比为20:1。室温下搅拌1小时后,将混合物用纤维素透析膜(MWCO 14000)对水进行透析,得到生物素修饰含RGD功能多肽的两性离子化PAMAMG-5偶联分子。使用PRP分离凝胶管从健康志愿者中收集人类富血小板血浆(PRP)。通过5000rpm离心分离后,将血小板在1x Tris-EDTA-NaCl(TEN)缓冲液(pH=7.4)中重新悬浮。血小板计数并用1X TEN缓冲液稀释至每毫升107个。将稀释后的血小板在96孔板中以50μL/孔培养12小时,然后除去之前的缓冲液,加入50μL的2%多聚甲醛固定20分钟,再用含Tween-20(1X,pH=7.4,0.5%(w/v)Tween-20)的PBS缓冲液洗涤。然后,添加50微升不同浓度的生物素修饰含RGD功能多肽的两性离子化PAMAMG-5偶联分子,37℃下孵育2小时后,样品用PBS洗涤5次,添加50μL链霉亲和素修饰辣根过氧化物酶(streptavidin-HRP)后再孵育1小时,再次用PBS洗涤5次,通过3,3′,5,5′-四甲基联苯胺(TMB)显色10分钟。加入1M HCl终止反应,在450nm处读出吸光度。用GraphPad Prism 7软件分析结果。图4为体外血小板结合试验结果,结果表明αIIbβ3整合素受体与PAM-CR、PAM-EK和PAM-K3的Kd值分别为0.49±0.14、0.30±0.10和0.15±0.04μM,而游离态CRGDS的Kd值为62±30μM,这说明RGD功能多肽的两性离子化PAMAMG-5偶联修饰使其亲和力提高了122倍以上。由此可见,本发明利用多肽分子一级结构具有形成蛋白质分子中二级结构的趋势,通过一端化学键合,另一端氢键在两性离子表面的弱相互作用稳定了功能短肽与其在蛋白质分子类似的二级结构,从而能够恢复其原先的生物活性。
含RGD功能多肽的两性离子化PAMAMG-5偶联分子对HUVEC的贴壁生长的抑制能力测定:HUVECs在96孔组织培养板每孔添加104个细胞,并在含10%胎牛血清(FBS)的RPMI1640培养17小时后。换成100μL含有不同浓度PAM-CR、PAM-CC、PAM-EK、PAM-K3或游离CRGDS的RPMI 1640培养基,再在37℃下培养24小时。然后除去培养基,用4%的多聚甲醛固定细胞。细胞图像由安装在尼康Eclipse Ti显微镜上的CCD相机获得,用NIS-ElementsAdvanced Research软件测量细胞的平均面积。图5是对HUVEC贴壁生长的抑制结果,结果显示PAM-CR、PAM-EK、PAM-K3比PAM-CC和RGDS能更有效的抑制HUVEC贴壁生长,表明通过一端表面固定一端氢键键合的方式,能够提高含RGD多肽的抑制能力。
体外抑制新生血管形成能力测定:HUVEC细胞接种含10%胎牛血清(FBS)的RPMI1640培养基。当达到40%细胞种植密度时,换为无血清RPMI 1640培养基培养。24小时后细胞生长至60-80%细胞种植密度时收获细胞。收集的条件培养基(CM)在使用前保存在-80℃备用。
Matrigel(基质胶,LDEV-Free)按照制造商的建议在4℃解冻过夜。预冷96孔板每孔加50微升Matrigel,然后在37℃的5%CO2培养箱中聚合3小时。HUVEC细胞在无血清的RPMI 1640培养基中培养2小时,收集并用Calcein-AM染色,然后以4x105细胞/毫升的浓度分散在CM中,并分别加入不同浓度的Cilengtide或PAM-CR。细胞被预孵育30分钟后加到涂布Matrigel的96孔板中再孵育4小时。用安装在尼康Eclipse Ti系列显微镜上的CCD相机记录图像结果,再用ImageJ软件的血管生成分析插件进行分析。图5为血管生成指标的分析结果。结果表明,PAM-CR和在4×10-4M的浓度下都能抑制血管生成(图5E)。然而,Cilengtide在4×10-7和4×10-6M的低浓度下促进了血管生成,这被认为是其在最初的临床试验中失败的原因。相反,PAM-CR在4×10-7至4×10-4M的每个测试浓度下,PAM-CR表现出对血管生成的抑制作用。PAM-CR比Cilengtide的优势可能来自于PAM-CR中存在的zwitterionic载体,减少了细胞和ECM之间的非特异性相互作用。
体内抑制肿瘤生长能力测定:HepG2荷瘤裸鼠模型按下述方法建立:Matrigel基质胶提前从-20℃转移至4℃冰箱中过夜融化。待HepG2细胞培养至80%汇合度后,消化离心收集细胞,计数后重悬至107个/mL,加入100μL融化的Matrigel基质胶并混匀。取4周龄的Bala/c雌性裸鼠,在上背部使用胰岛素注射器皮下注射0.1mL含基质胶的HepG2悬液。5天后观察注射部位,有小块出现即视为荷瘤成功。肿瘤开始生长后,使用游标卡尺量取肿瘤尺寸并根据以下公式计算肿瘤体积:
其中a为肿瘤长边直径,b为肿瘤短边直径。
肿瘤抑制试验主要按下述方法:待肿瘤体积增长至50mm3后,将裸鼠随机分成5组,按照100μL/只分别尾静脉注射含2.1*10-4mmol(以RGD肽摩尔量计算)PAM-CR或Cilengtide的灭菌PBS溶液,另注射等量灭菌PBS作对照组。以第一次注射记为第0天,每隔两天进行一次注射,同时称取体重并量取肿瘤尺寸。第18天时处死裸鼠并剥离肿瘤及各主要器官用于后续免疫组化分析。结果表明(图6),PAM-CR治疗的裸鼠肿瘤体积略小于Cilengtide,并几乎停止了生长,而PAM-CR治疗的裸鼠体重高于Cilengtide治疗组,说明PAM-CR抑制肿瘤生长的能力略高于Cilengtide,且生物系统毒性更低。可见,本发明偶联物本身可作为抑制肿瘤生长的药物,也可以应用于制备抑制肿瘤生长的药物或药物载体。
由以上实施方式可知,本发明不同于通常着眼于简单功能模仿的仿蛋白质分子思路,如具有催化功能的无机纳米颗粒作为蛋白质模拟物的研究。本发明是基于对蛋白质分子的聚两性离子分子本质的认识出发,通过构建高效的纳米载体两性离子保护层,赋予载体具备类似蛋白质分子的大小、单分散性、血液相容性、生物相容性和组织中的扩散和分布等能力,且与蛋白质分子相比具有更高的稳定性,和类似蛋白质分子的药代动力学;另一方面,功能多肽通过与两性离子化纳米载体的一端表面化学键合、另一端氢键稳定的方式决了两个影响功能多肽亲和力的关键问题:1)解决了功能多肽在未结合前的高熵状态问题;2)赋予了功能多肽的结构适应性,实现与受体分子紧密结合的能力,使功能多肽能够达到其在蛋白质分子上的相同或更高的亲和力;此外,在原有功能多肽的基础上,通过添加额外氨基酸残基序列,进一步提高了亲和力,由此实现了功能多肽亲和力的提高。本发明与常见功能多肽表面偶联有非常大的不同,后者未见亲和力的明显提高。
作为本发明的一种实施例,本发明借助源于细胞外基质(ECM)蛋白的精氨酰-甘胺酰-天冬氨酸(RGD)多肽演示了这种设计和制备仿蛋白质功能分子,及其肿瘤治疗的能力。RGD肽是一种广泛应用于靶向治疗和组织工程的功能短肽,它能够通过与肿瘤细胞表面过度表达的αvβ3和αvβ5整合素,以及血管内皮细胞的αvβ5整合素结合,抑制肿瘤组织生长和新生血管的形成,达到抑制肿瘤生长的治疗目的,因此RGD肽作为靶向药物被广泛研究。然而RGD肽和其他功能短肽一样,游离态RGD肽作为靶向药物时,RGD肽和αvβ5整合素的亲和力明显低于其在原生蛋白质分子中的亲和力。例如,纤维蛋白中的RGD肽亲和力高于游离态RGD肽二个数量级以上。为了解决游离状态RGD肽与目标受体亲和力低的问题,经典的方法是对RGD肽进行人工改造以期获得更高的亲和力。目前在学术界比较常用的包含RGD肽的环形蛋白质类似物有c(RGDfV)、c(RGDfK)、c(RGDyK)和c(RGDfC)等。在实验中通常使用抑制系数ki来衡量亲和力的强弱,这些环形短肽和纯化重组人类的αIIbβ3整合素的ki值能达到0.800μM水平,它们的ki值能够和自然状态下纤维蛋白的RGD与整合素的亲和力相媲美。但是在c(RGDfV)的类似物西仑吉肽的临床研究中发现,由于在治疗过程中经历了低血药浓度的过程,反而促进了新生血管的形成,使肿瘤生长加速,由此含RGD环肽的治疗效果并不理想。
然而,基于本发明的仿蛋白质分子,例如两性离子化PAMAM G-5与CRGDS、CEKEKEKRGDS、CEKEKEKKKKRGDS的偶联物,都体现出等同于或高于纤维蛋白中的RGD肽亲和力,而游离态CRGDS的亲和力仅为这些仿蛋白质分子的1/100到1/500。另一方面,这些偶联物即使在低浓度状态下,也没有促进了新生血管的形成。并通过小动物实验,证明了本发明构建的纳米仿蛋白质分子的有效抑瘤能力。
因此,本发明基于对药物开发中所存在问题的认识,以两性离子化纳米载体为基础,通过简单且高效的功能多肽偶联,借助功能多肽的一端与载体的氢键形成能力调控功能短肽在纳米载体表面的能态和构象,实现了与功能短肽在原生蛋白质分子上同一水平的亲和力,并赋予了进一步提高亲和力的可能。最终通过两性离子化纳米载体与功能多肽的结合构建了具有体内治疗能力的纳米仿蛋白质分子。本发明两性离子化纳米载体除了可优选两性离子化的聚酰胺-胺树枝状大分子,还可以使用其它两性离子化纳米载体,例如氨基封端的聚丙烯亚胺树形大分子(PPI)的有机大分子、纳米氧化硅等无极纳米颗粒经两性离子化后作为载体。此外,本发明所用功能多肽也不仅仅局限于RGD,基于多肽分子一级结构具有形成蛋白质分子中二级结构的趋势,大多数可从蛋白质分子表面获得的功能多肽,例如REDV等,也可以通过本发明的方法实现生物活性的恢复。
本发明功能多肽与两性离子化纳米载体的偶联物可恢复和进一步提高源于蛋白质分子的功能多肽的生物亲和力,且具备优异的专一性识别能力,以及优良的血液相容性和生物相容性。
Claims (14)
1.一种偶联物,其特征是:包含功能多肽和两性离子化纳米载体,所述两性离子化纳米载体为两性离子化的聚酰胺-胺树枝状大分子,所述两性离子化纳米载体的表面的正、负电荷基团呈纳米水平均匀分布,其中,正电荷基团与负电荷基团的比例为0.7:1~1:1,所述功能多肽的一端与两性离子化纳米载体以化学键偶联,所述功能多肽的另一端与两性离子化纳米载体形成氢键。
2.根据权利要求1所述的偶联物,其特征是:所述两性离子化纳米载体的表面的正电荷基团为氨基、负电荷基团为羧基。
3.根据权利要求1或2所述的偶联物,其特征是:所述两性离子化纳米载体为两性离子化的三代、四代或五代聚酰胺-胺树枝状大分子。
4.根据权利要求1或2所述的偶联物,其特征是:所述功能多肽的一端通过巯基与两性离子化纳米载体以化学键偶联、另一端通过丝氨酸残基与两性离子化纳米载体形成氢键。
5.根据权利要求3所述的偶联物,其特征是:所述功能多肽的一端通过巯基与两性离子化纳米载体以化学键偶联、另一端通过丝氨酸残基与两性离子化纳米载体形成氢键。
6.根据权利要求4所述的偶联物,其特征是:所述功能多肽的氨端通过附加的半胱氨酸残基与两性离子化纳米载体以化学键偶联、羧端通过附加的丝氨酸残基与两性离子化纳米载体形成氢键。
7.根据权利要求5所述的偶联物,其特征是:所述功能多肽的氨端通过附加的半胱氨酸残基与两性离子化纳米载体以化学键偶联、羧端通过附加的丝氨酸残基与两性离子化纳米载体形成氢键。
8.根据权利要求6或7所述的偶联物,其特征是:所述功能多肽为CRGDS、CEKEKEKRGDS、CEKEKEKKKKRGDS中的任一种或任几种。
9.一种权利要求1或2所述的偶联物的制备方法,其特征在于,包括:将氨基封端的聚酰胺-胺树枝状大分子与马来酸酐反应得到马来酰化聚酰胺-胺树枝状大分子;马来酰化聚酰胺-胺树枝状大分子的马来酰基先与功能多肽的巯基进行反应,再与巯基乙胺反应,或与巯基乙胺和含巯基的脂肪酸反应,所述含巯基的脂肪酸与巯基乙胺的摩尔比为0~0.21:1。
10.根据权利要求9所述的制备方法,其特征在于:所述含巯基的脂肪酸为巯基乙磺酸、巯基乙酸、巯基丙酸中的任一种或任几种。
11.一种权利要求1、2、5、6或7所述的偶联物的应用,其特征在于:所述偶联物用于制备抑制肿瘤生长的药物或药物载体。
12.一种权利要求3所述的偶联物的应用,其特征在于:所述偶联物用于制备抑制肿瘤生长的药物或药物载体。
13.一种权利要求4所述的偶联物的应用,其特征在于:所述偶联物用于制备抑制肿瘤生长的药物或药物载体。
14.一种权利要求8所述的偶联物的应用,其特征在于:所述偶联物用于制备抑制肿瘤生长的药物或药物载体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011401638.8A CN112439074B (zh) | 2020-12-03 | 2020-12-03 | 可快速提高功能多肽亲和力的偶联物及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011401638.8A CN112439074B (zh) | 2020-12-03 | 2020-12-03 | 可快速提高功能多肽亲和力的偶联物及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112439074A CN112439074A (zh) | 2021-03-05 |
CN112439074B true CN112439074B (zh) | 2022-09-13 |
Family
ID=74739261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011401638.8A Active CN112439074B (zh) | 2020-12-03 | 2020-12-03 | 可快速提高功能多肽亲和力的偶联物及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112439074B (zh) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0125216D0 (en) * | 2001-10-19 | 2001-12-12 | Univ Strathclyde | Dendrimers for use in targeted delivery |
CN101879313B (zh) * | 2009-05-08 | 2012-02-01 | 复旦大学 | 一种基于树枝状聚合物的抗肿瘤纳米前药系统及其制备方法 |
CN103342735B (zh) * | 2013-06-26 | 2014-10-08 | 中国医学科学院基础医学研究所 | 一种肿瘤特异性靶向多肽及其应用 |
PL417159A1 (pl) * | 2016-05-11 | 2017-11-20 | Instytut Biologii Doświadczalnej Im. Marcelego Nenckiego | Koniugaty białka prionowego z dendrymerami do zastosowania w leczeniu choroby Alzheimera |
-
2020
- 2020-12-03 CN CN202011401638.8A patent/CN112439074B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112439074A (zh) | 2021-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Dynamic biostability, biodistribution, and toxicity of L/D-peptide-based supramolecular nanofibers | |
Peeler et al. | pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery | |
Song et al. | Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures | |
Trent et al. | Structural properties of soluble peptide amphiphile micelles | |
Whitmire et al. | Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins | |
Ying et al. | Stabilized heptapeptide A7R for enhanced multifunctional liposome-based tumor-targeted drug delivery | |
US20100196492A1 (en) | Electrostatic coating of particles for drug delivery | |
Morral-Ruiz et al. | Multifunctional polyurethane–urea nanoparticles to target and arrest inflamed vascular environment: A potential tool for cancer therapy and diagnosis | |
Liu et al. | pH-sensitive nanogels based on the electrostatic self-assembly of radionuclide 131 I labeled albumin and carboxymethyl cellulose for synergistic combined chemo-radioisotope therapy of cancer | |
Jiang et al. | Self-assembled peptide nanoparticles responsive to multiple tumor microenvironment triggers provide highly efficient targeted delivery and release of antitumor drug | |
CN102397554B (zh) | 一种肿瘤靶向双载药递释系统及其制备方法 | |
Cui et al. | Enhanced biocompatibility of PAMAM dendrimers benefiting from tuning their surface charges | |
CN107789632A (zh) | 一种t7肽修饰的主动脑靶向纳米递药系统及其制备方法 | |
CN107375288B (zh) | 多臂的聚合靶向抗癌偶联物 | |
CN106632695B (zh) | 一种pH敏感性多肽及其应用 | |
Gao et al. | A progressively targeted gene delivery system with a pH triggered surface charge-switching ability to drive angiogenesis in vivo | |
CN114224838B (zh) | 一种肿瘤微环境激活的融合膜包裹的仿生纳米递送系统及其制备方法及应用 | |
US20230107937A1 (en) | Zwitterionic polypeptide and derivative thereof and nanodrug based thereon | |
Zhang et al. | A polymeric nanocarrier with a tumor acidity-activatable arginine-rich (R 9) peptide for enhanced drug delivery | |
Kong et al. | Benzylguanidine and galactose double-conjugated chitosan nanoparticles with reduction responsiveness for targeted delivery of doxorubicin to CXCR 4 positive tumors | |
CN106880848B (zh) | 可生物降解的多聚HPMA-Gd磁共振成像探针及其制备方法 | |
Wang et al. | Polycation-telodendrimer nanocomplexes for intracellular protein delivery | |
CN112439074B (zh) | 可快速提高功能多肽亲和力的偶联物及其制备方法和应用 | |
Qiao et al. | A brain glioma gene delivery strategy by angiopep-2 and TAT-modified magnetic lipid-polymer hybrid nanoparticles | |
CN111518169A (zh) | 一种多肽、多肽纳米载药载体及两者的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |