CN1124355C - 一种镁基储氢材料的制造方法 - Google Patents

一种镁基储氢材料的制造方法 Download PDF

Info

Publication number
CN1124355C
CN1124355C CN00131504A CN00131504A CN1124355C CN 1124355 C CN1124355 C CN 1124355C CN 00131504 A CN00131504 A CN 00131504A CN 00131504 A CN00131504 A CN 00131504A CN 1124355 C CN1124355 C CN 1124355C
Authority
CN
China
Prior art keywords
magnesium
hydrogen storage
storage material
transition metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN00131504A
Other languages
English (en)
Other versions
CN1349000A (zh
Inventor
王尔德
于振兴
刘祖岩
王晓林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN00131504A priority Critical patent/CN1124355C/zh
Publication of CN1349000A publication Critical patent/CN1349000A/zh
Application granted granted Critical
Publication of CN1124355C publication Critical patent/CN1124355C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Powder Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明提出一种镁基储氢材料的制造方法,该镁基储氢材料在组成上主要是在纯镁及镁基合金中添加过渡金属的氯化物,在工艺上,使用球磨机,在氢气环境中,将氯化物均匀分散在镁基储氢材料颗粒表面上,达到催化作用。本发明提高了镁基储氢材料动力学性能,使吸放氢速度大大加快,也相应地降低了吸放氢的温度,本发明改善了纯镁储氢材料的动力学和热力学性能。

Description

一种镁基储氢材料的制造方法
本发明提出一种镁基储氢材料的制造方法,具体地说是一种改进型的储氢材料的制造方法。
从七十年代开始,人们就开始重视储氢材料的研究,特别是近十年来的燃料电池、镍氢可充电电池的发展,促使人们寻找具有高性能的储氢材料,以满足需要。作为具有实际应用价值的储氢材料,要求该材料储氢容量大,充放氢速度快,温度低,寿命长。几十年来,各国的科学工作者进行了不懈的努力。目前已研究过的储氢材料有近千种,主要有Mg2N,FeTi,LaNi5,VZr等系列。在各种金属储氢材料中,人们普遍地认为镁基材料是一种最有前途的储氢材料。因为它有储氢容量大(纯镁的理论储氢容量可以达到7.6wt%)、密度小,储藏量大,成本低等优点。但是该材料作为储氢材料具有一些不易克服的缺点,如充放氢温度高,动力学性能差,易粉化等。所以具有良好的热力学性能和动力学性能的储氢材料一直是人们研究的焦点。各国的研究工作者,尝试了多种办法,如添加各种过渡金属元素,使其形成镁基合金,并制成纳米晶体,非晶等。使镁基储氢材料的性能不断改善。但现有的研究水平还不能满足人们要求。
本发明的目的针对现有技术存在的不足,提出以纯镁为基础的大容量的储氢材料,从而直接应用于燃料电池等领域。
本发明的目的是这样实现的,本发明包括是由配方组成和相应的方法两方面组成的。
本发明的具体过程是:
1、在纯镁粉(99.5%)或者是镁与过渡金属粉末镍、铁、钛、锌等混合物中,加入三氯化铬(CrCl3),二氯化钯(PaCl2),二氯化铁(FeCl2),二氯化镍(NiCl2),四氯化钛(TiCl4),二氯化锰(MnCl2)等过渡金属氯化物,其加入的比例为0.1-3wt%,可以加入各氯化物的混合物,也可以单独加入。
2、将上述粉末置于球磨机的装料罐内,在氢气的保护下进行机械球磨,(氢气压力2-10atm),对于行星式球磨机来说,对于QM-1SP和Fritsch-P5来说,其球磨罐的自转速度为(300-400rpm),其球磨时间取决于球磨机的机构,其球磨的时间30-120小时之间。
上述粉末经过球磨之后,其粒径在0.05-0.5微米之间。其含氢量在4-6.5wt%之间。其比表面积在10-120m2/g。该粉末可以直接用于充放氢,无需活化。在本发明中,添加过渡金属氯化物能改善镁基材料的储氢性能,主要和材料的表面结构有关。添加氯化物之后,氯化物的粉末与镁基材料的粉末在球磨机中充分接触,由于氯化物的数量少,可以认为氯化物的细小晶粒镶嵌在镁颗粒的表面之上。起到了破坏镁表面的致密氧化镁膜的作用,同时过渡金属离子,具有一定的分解氢分子的作用,使其在材料表面快速离解成氢原子。从而使吸附氢分子的速度大大加快。
本发明在不使用稀有金属和贵金属,如钯,铂,铼,铑等,降低了成本,便于材料的大规模使用。在技术上,该工艺过程更为简单。本发明不需以MgH2为原料,这样就使得制造成本也相应地降低,使整个的制造过程一次完成。
实施例:
1、取纯镁粉99.5%、200目,19.2克;镍粉99.9%、200目,Ni0.6克;CrCl3.6H2O>99.0%晶体,0.2克。所以MgNiCrCl3其百分含量分别是97-3-1wt%。
2、将上述粉末装入QM-1SP型行星式球磨机,抽真空并充入5atm、纯度为99.999%的氢气。
3、将球磨机的转速控制在330rpm。球磨80小时。每间隔20小时取一次样,以备分析用。所有的操作都要在手套箱中进行,箱内充满氩气。
4、取出粉末,粉末颗粒的直径在50-100纳米之间。该粉末可直接用于储存氢气。不需要活化。
该材料的储氢量在6.4wt%左右,可在1分钟内使吸氢量接近最大值,吸氢的温度在140℃左右。

Claims (2)

1、一种镁基储氢材料的制造方法,其特征在于:
(1)在纯镁粉或者是镁与过渡金属粉末镍、铁、钛、锌等混合物中,加入三氯化铬、二氯化钯、二氯化铁、二氯化镍、四氯化钛、二氯化锰等过渡金属氯化物,其加入的比例为0.1-3wt%,
(2)将上述粉末置于球磨机的装料罐内,在氢气的保护下进行机械球磨,氢气压力2-10atm,其球磨时间为30-120小时之间。
2、根据权利要求1所述的储氢材料的制造方法,其特征在于:在纯镁粉或者是镁与过渡金属粉末镍、铁、钛、锌等混合物中,可以加入各氯化物的混合物,也可以单独加入。
CN00131504A 2000-10-13 2000-10-13 一种镁基储氢材料的制造方法 Expired - Fee Related CN1124355C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN00131504A CN1124355C (zh) 2000-10-13 2000-10-13 一种镁基储氢材料的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00131504A CN1124355C (zh) 2000-10-13 2000-10-13 一种镁基储氢材料的制造方法

Publications (2)

Publication Number Publication Date
CN1349000A CN1349000A (zh) 2002-05-15
CN1124355C true CN1124355C (zh) 2003-10-15

Family

ID=4594683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00131504A Expired - Fee Related CN1124355C (zh) 2000-10-13 2000-10-13 一种镁基储氢材料的制造方法

Country Status (1)

Country Link
CN (1) CN1124355C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338249C (zh) * 2003-08-04 2007-09-19 北京有色金属研究总院 用氢化燃烧法制备镁基储氢材料的方法及其镁基储氢材料
CN100391589C (zh) * 2006-07-11 2008-06-04 南开大学 镁-过渡金属氧化物复合储氢材料及其制备方法和应用
CN102408874A (zh) * 2011-11-18 2012-04-11 北京理工大学 一种用于融冰或融雪高活性水反应金属材料的制备
CN105586519A (zh) * 2015-12-21 2016-05-18 安泰科技股份有限公司 一种高性能的纳米镁基储氢材料及其制备方法

Also Published As

Publication number Publication date
CN1349000A (zh) 2002-05-15

Similar Documents

Publication Publication Date Title
Luo et al. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism
Gasiorowski et al. Hydriding properties of nanocrystalline Mg2− xMxNi alloys synthesized by mechanical alloying (M= Mn, Al)
CN100471557C (zh) 具有高存储容量和优良室温动力学的Mg-Ni储氢复合材料
Jiang et al. An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys
Huang et al. Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1− xMnx (x= 0, 0.125, 0.25, 0.375) alloys prepared by mechanical alloying
CN101072889A (zh) 镁基储氢材料中的催化氢解吸以及该材料的制备方法
Guo et al. Precipitation of nanocrystalline LaH3 and Mg2Ni and its effect on de-/hydrogenation thermodynamics of Mg-rich alloys
WO1996019594A1 (en) Magnesium mechanical alloys for thermal hydrogen storage
CN105584989A (zh) 一种非晶镁铝基复合储氢材料及其制备方法
Yin et al. Enhanced hydrogen storage performance of Mg-Cu-Ni system catalyzed by CeO2 additive
Shang et al. Investigations on hydrogen storage performances and mechanisms of as-cast TiFe0. 8-mNi0. 2Com (m= 0, 0.03, 0.05 and 0.1) alloys
JP2002513086A (ja) 熱水素貯蔵のためのマグネシウムの機械的合金
Wang et al. The hydrogenation properties of Mg1. 8Ag0. 2Ni alloy
CN103183314A (zh) 一种泡沫状结构的复合储氢材料及其制备方法
CN1124355C (zh) 一种镁基储氢材料的制造方法
Davids et al. Manufacturing of hydride-forming alloys from mixed titanium-iron oxide
CN108588521A (zh) 一种高容量Mg-Cu-Ni三元贮氢合金及其制备方法
Zhu et al. The effect of grain refining on the discharge capacity of Mg2Ni/MmNi5− x (CoAlMn) x composite prepared by mechanical alloying
CN1204282C (zh) 一种添加有过渡金属氧化物的镁基储氢材料
CN108097947A (zh) 一种高容量Mg-Zn-Ni三元贮氢合金及其制备方法
CN1281775C (zh) 机械合金化法制备镁基储氢材料的方法及其镁基储氢材料
Zhang et al. Systematic investigation of mechanically alloyed Ti-Mg-Ni used as negative electrode in Ni-MH battery
Okonska et al. Hydrogenation properties of amorphous 2Mg+ Fe/xwt% Ni materials prepared by mechanical alloying (x= 0,100,200)
Simičić et al. Hydrogen storage material based on LaNi5 alloy produced by mechanical alloying
Li et al. Promoting the cycling stability of amorphous MgNi-based alloy electrodes by mitigating hydrogen-induced crystallization

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee