CN112433155A - 基于参数在线估计的锂离子电池soc估测算法 - Google Patents

基于参数在线估计的锂离子电池soc估测算法 Download PDF

Info

Publication number
CN112433155A
CN112433155A CN201910787296.9A CN201910787296A CN112433155A CN 112433155 A CN112433155 A CN 112433155A CN 201910787296 A CN201910787296 A CN 201910787296A CN 112433155 A CN112433155 A CN 112433155A
Authority
CN
China
Prior art keywords
soc
state
matrix
battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910787296.9A
Other languages
English (en)
Other versions
CN112433155B (zh
Inventor
李庆超
彭富明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910787296.9A priority Critical patent/CN112433155B/zh
Publication of CN112433155A publication Critical patent/CN112433155A/zh
Application granted granted Critical
Publication of CN112433155B publication Critical patent/CN112433155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种基于参数在线估计的锂离子电池SOC估测算法,主要步骤包括:建立锂离子电池模型、利用放电静置法确定SOC‑OCV的关系,离线状态下估计电池模型初始参数,在线状态下利用扩展卡尔曼滤波算法EKF估计电池欧姆内阻,利用Luenberger状态观测器进行SOC值的观测。本发明算法实现简单,实用性强,通过利用Luenberger状态观测器和扩展卡尔曼滤波算法EKF可实现参数的在线估计,从而得到更加稳定精确的SOC估计结果。

Description

基于参数在线估计的锂离子电池SOC估测算法
技术领域
本发明涉及电池荷电状态估算领域,具体涉及一种基于参数在线估计的锂离子电池SOC估测算法。
背景技术
动力电池,作为电动汽车的主要能源,它的SOC是能源管理系统中最重要和最基础的参数之一;只有准确的SOC值估算才能进行合理的能源分配,从而更有效地利用有限能源;也能正确预测车辆的剩余行驶里程。SOC(State of Charge)的定义是电池的荷电状态,它是用来表示电池的剩余电量。准确电池荷电状态(SOC)是进行电动汽车能系统管理前提和先决条件。电池是一个复杂的非线性系统,用于电动车辆时,因电子设备繁多,噪声干扰复杂,难以得到准确的噪声统计;加之外部环境和内部环境参数变化随机性,使系统数学模型不够准确,产生模型误差,因此必须对电池荷电状态估计的抗干扰能力和自适应能力进行研究,提高估计的鲁棒性对电池荷电状态的有效性。
目前现有的SOC估算方法中,基于电流积分法的安时计量法容易形成累积误差;基于电池端电压测量的开路电压法和电动势法,需要电池长时间静置,无法实时估算SOC值;基于大量样本数据和神经网络模型的神经网络法,需要以大量的数据样本为依据提供可靠的训练方法;基于电池状态空间模型和递推方程的卡尔曼滤波方法,不能进行模型参数在线估计,SOC估算误差大。
发明内容
本发明的目的在于提供一种基于参数在线估计的锂离子电池SOC估测算法,解决传统锂离子电池SOC估测算法不能实现模型参数在线实时估计,SOC估算精度低,误差大的问题。
实现本发明目的的技术方案为:一种基于参数在线估计的锂离子电池SOC估测算法,包括以下步骤:
步骤1、建立戴维南锂离子电池模型;
步骤2、利用间歇放电静置法确定SOC-OCV的关系;
步骤3、离线状态下估计电池模型初始参数;
步骤4、利用扩展卡尔曼滤波EKF进行电池模型参数的辨识,利用Luenberger状态观测器观测SOC。
本发明与现有技术相比,其显著优点为:本发明利用扩展卡尔曼滤波EKF进行电池模型参数在线的实时辨识,利用Luenberger状态观测器观测SOC与一般的卡尔曼滤波算法相比减小了SOC估算误差。
附图说明
图1是本发明基于参数在线估计的锂离子电池SOC估测算法流程图。
图2是二阶戴维南锂离子电池模型图。
图3是间歇放电电流图。
图4是间歇放电电压图。
图5是锂离子电池放点结束端电压响应曲线示意图。
图6是SOC观测实验结果图。
具体实施方式
如图1所示,一种基于参数在线估计的锂离子电池SOC估测算法,包括以下步骤:
步骤1、建立戴维南锂离子电池模型;
步骤2、利用间歇放电静置法确定SOC-OCV的关系;
步骤3、离线状态下估计电池模型初始参数;
步骤4、利用扩展卡尔曼滤波EKF进行电池模型参数的辨识,利用Luenberger状态观测器观测SOC。
进一步的,锂离子电池模型为二阶戴维南模型。
进一步的,在离线状态下利用电池间歇放电结束后电压响应曲线计算电池模型的初始参数,初始参数包括电池欧姆内阻、两个RC并联电路的电阻和电容。
进一步的,利用扩展卡尔曼滤波EKF进行电池模型参数的辨识,利用Luenberger状态观测器观测SOC;具体为:
扩展卡尔曼滤波EKF的离散状态方程和输出方程如下式:
Figure BDA0002178477030000021
其中,wk,mk为相互独立的零均值高斯白噪声,Rk为当前时刻的欧姆电阻值,Rk+1为下一时刻的欧姆电阻值,Vocv,k+1(SOCk+1)为开路电压值,Vk+1为输出电压,Up,k+1、Us,k+1分别为两个RC并联电路的电压,ik为当前时刻电流值;
状态转移矩阵:F=1,输入矩阵:u=ik
扩展卡尔曼滤波EKF的估算过程如下:
步骤1,对状态向量R和状态向量估计误差协方差Q的初始值进行设定;
步骤2,状态预测矩阵:
Figure BDA0002178477030000031
其中,
Figure BDA0002178477030000032
为状态矩阵,F为状态转移矩阵。
步骤3,噪声协方差矩阵的传递:
Pk -=FPk-1FT+Q
其中,Pk -为当前时刻的噪声协方差矩阵,Pk-1为上一时刻的噪声协方差矩阵。
步骤4,求取卡尔曼系数:
Kk=Pk -HTinv(HPk -HT+V)
其中,Kk为卡尔曼系数,H为输出矩阵,V为观测噪声协方差;
步骤5,更新状态:
Vk=Vocv,k(SOCk)-Up,k-Up,k-ikR
Figure BDA0002178477030000033
其中,Vk为当前时刻的预测输出电压,Up,k,Us,k分别为两个RC并联电路的电压,ik为输出电流,R为电池的欧姆电阻,
Figure BDA0002178477030000034
为更新的状态变量,
Figure BDA0002178477030000035
为当前的状态变量,yk为测量的真实输出电压。
步骤6,噪声协方差矩阵的更新:
Pk=(I-KkH)Pk -
其中,I为单位矩阵,Pk为更新后的噪声协方差矩阵。
Luenberger状态观测器的状态方程和输出方程如下式:
Figure BDA0002178477030000036
其中,状态变量x=[Up US SOC]T,SOC为电池SOC值,Up、US分别为两个RC并联电路的电压;
输入量u=I,I为输出电流;
状态矩阵
Figure BDA0002178477030000041
控制矩阵B=[1/Cp 1/Cs-1/Qn]T,Qn为电池容量,Rp,Cp,Rs,Cs分别为两个串联电路的电阻值和电容值;
h(x)=E(soc)-Up-Us,E(soc)为开路电压,输出矩阵D=R。
下面结合附图对本发明算法做进一步的说明。
实施例
结合图2,建立二阶戴维南(Thevenin)锂离子电池模型,使用开路电压E(t)表示电压源,R表示电池的欧姆电阻,使用二阶阻容环路模拟电池的极化过程。
结合图3和图4,横坐标为时间,图3的纵坐标为放电电流,图4的纵坐标为开路电压,利用间歇放电静置法确定SOC-OCV的关系,首先将电池完全充电至100%SOC,其次,每10%SOC下使用负脉。电流对电池进行放电,然后静止1h以消除极化反应,最后求静置时的平均值以获得SOC-OCV曲线。脉冲放电电流设定为C/2,其放电时间宽度对应于一定量的电荷(即10%SOC)。
图5为锂离子电池放点结束端电压响应曲线示意图,(V1-V0)是放电结束后电池内部欧姆电阻上产生的压降消失的过程,由此可得电池欧姆内阻:
Figure BDA0002178477030000042
其中,R为欧姆电阻,I为输出电流,V1为脉冲响应节点1时的电压值,V0为脉冲响应节点0时的电压值。
采用两个阻容环节叠加的方式模拟电池的极化过程。结合图2,Cs和Rs组成的RC并联电路时间常数较小,脉冲响应节点V1到脉冲响应节点V2用于模拟电池在电流突变时的电压快速变化的过程,Cp和Rp并联电路的时间常数较大,脉冲响应节点V2到脉冲响应节点V3用于模拟电压缓慢变化的过程。
假设电池在(t0-tr)期间先放电一段时间,然后剩余时间处于静置状态,在此过程中RC网路电压为:
Figure BDA0002178477030000051
Figure BDA0002178477030000052
其中t0,td,tr分别为放电开始时刻、放电停止时刻和静置停止时间,t为时间参数,Rp,Cp,Rs,Cs分别为两个串联电路的电阻值和电容值,Up,Us分别为两个RC并联电路的电压。
令τs=RsCs,τp=RpCsp,为两个RC并联电路的时间常数,脉冲响应节点V1到脉冲响应节点V3阶段电压变化是由电池的极化反应消失引起的,在此过程电压输出为:
Figure BDA0002178477030000053
可用Matlib进行双指数项系数拟合,辨识Rs、Rp、CS、CP的值。
根据图2可得等效电路模型函数关系如下:
Figure BDA0002178477030000054
其中,E(t)为开路电压,U(t)为输出电压,i为输出电流;
扩展卡尔曼滤波EKF的离散状态方程和输出方程如下式:
Figure BDA0002178477030000055
其中,wk,mk为相互独立的零均值高斯白噪声,Rk为当前时刻的欧姆电阻值,Rk+1为下一时刻的欧姆电阻值,Vocv,k+1(SOCk+1)为开路电压值,Vk+1为输出电压。
系数矩阵分别为,状态转移矩阵:F=1,输入矩阵:u=ik
扩展卡尔曼滤波EKF的估算过程如下:
步骤1,对状态向量R和状态向量估计误差协方差Q的初始值进行设定;
步骤2,状态预测矩阵:
Figure BDA0002178477030000061
其中,
Figure BDA0002178477030000062
为状态矩阵,F为状态转移矩阵。
步骤3,噪声协方差矩阵的传递:
Pk -=FPk-1FT+Q
其中,Pk -为当前时刻的噪声协方差矩阵,Pk-1为上一时刻的噪声协方差矩阵。
步骤4,求取卡尔曼系数:
Kk=Pk -HTinv(HPk -HT+V)
其中,Kk为卡尔曼系数,H为输出矩阵,V为观测噪声协方差。
步骤5,更新状态:
Vk=Vocv,k(SOCk)-Up,k-Up,k-ikR
Figure BDA0002178477030000063
其中,Vk为当前时刻的预测输出电压,Up,k,Us,k分别为两个RC并联电路的电压,ik为输出电流,R为电池的欧姆电阻,
Figure BDA0002178477030000064
为更新的状态变量,
Figure BDA0002178477030000065
为当前的状态变量,yk为测量的真实输出电压。
步骤6,噪声协方差矩阵的更新:
Pk=(I-KkH)Pk -
其中,I为单位矩阵,Pk为更新后的噪声协方差矩阵。
Luenberger状态观测器的状态方程和输出方程如下式:
Figure BDA0002178477030000066
其中,状态变量x=[Up US SOC]T,SOC为电池SOC值
输入量u=I,I为输出电流
状态矩阵
Figure BDA0002178477030000067
控制矩阵B=[1/Cp1/Cs-1/Qn]T,Qn为电池容量;
h(x)=E(soc)-Up-Us,E(soc)为开路电压,输出矩阵D=R。
实验结果图如图6所示,将真实SOC和扩展卡尔曼滤波EKF以及本发明的基于Luenberger状态观测器和EKF的锂离子电池SOC估测算法,结果表明本发明SOC估算偏差小,精度高。

Claims (4)

1.一种基于参数在线估计的锂离子电池SOC估测算法,其特征在于,包括以下步骤:
步骤1、建立戴维南锂离子电池模型;
步骤2、利用间歇放电静置法确定SOC-OCV的关系;
步骤3、离线状态下估计电池模型初始参数;
步骤4、利用扩展卡尔曼滤波EKF进行电池模型参数的辨识,利用Luenberger状态观测器观测SOC。
2.根据权利要求1所述的基于参数在线估计的锂离子电池SOC估测算法,其特征在于,锂离子电池模型为二阶戴维南模型。
3.根据权利要求1所述的基于参数在线估计的锂离子电池SOC估测算法,其特征在于,在离线状态下利用电池间歇放电结束后电压响应曲线计算电池模型的初始参数,初始参数包括电池欧姆内阻、两个RC并联电路的电阻和电容。
4.根据权利要求1所述的基于参数在线估计的锂离子电池SOC估测算法,其特征在于,利用扩展卡尔曼滤波EKF进行电池模型参数的辨识,利用Luenberger状态观测器观测SOC;具体为:
扩展卡尔曼滤波EKF的离散状态方程和输出方程如下式:
Figure FDA0002178477020000011
其中,wk,mk为相互独立的零均值高斯白噪声,Rk为当前时刻的欧姆电阻值,Rk+1为下一时刻的欧姆电阻值,Vocv,k+1(SOCk+1)为开路电压值,Vk+1为输出电压,Up,k+1、Us,k+1分别为两个RC并联电路的电压,ik为当前时刻电流值;
状态转移矩阵:F=1,输入矩阵:u=ik
扩展卡尔曼滤波EKF的估算过程如下:
步骤1,对状态向量R和状态向量估计误差协方差Q的初始值进行设定;
步骤2,状态预测矩阵:
Figure FDA0002178477020000012
其中,
Figure FDA0002178477020000013
为状态矩阵,F为状态转移矩阵;
步骤3,噪声协方差矩阵的传递:
Pk -=FPk-1FT+Q
其中,Pk -为当前时刻的噪声协方差矩阵,Pk-1为上一时刻的噪声协方差矩阵;
步骤4,求取卡尔曼系数:
Kk=Pk -HTinv(HPk -HT+V)
其中,Kk为卡尔曼系数,H为输出矩阵,V为观测噪声协方差;
步骤5,更新状态:
Vk=Vocv,k(SOCk)-Up,k-Up,k-ikR
Figure FDA0002178477020000021
其中,Vk为当前时刻的预测输出电压,Up,k、Us,k分别为两个RC并联电路的电压,ik为输出电流,R为电池的欧姆电阻,
Figure FDA0002178477020000022
为更新的状态变量,
Figure FDA0002178477020000023
为当前的状态变量,yk为测量的真实输出电压;
步骤6,噪声协方差矩阵的更新:
Pk=(I-KkH)Pk -
其中,I为单位矩阵,Pk为更新后的噪声协方差矩阵;
Luenberger状态观测器的状态方程和输出方程如下式:
Figure FDA0002178477020000024
其中,状态变量x=[Up US SOC]T,SOC为电池SOC值,Up、US分别为两个RC并联电路的电压;
输入量u=I,I为输出电流;
状态矩阵
Figure FDA0002178477020000025
控制矩阵B=[1/Cp 1/Cs -1/Qn]T,Qn为电池容量,Rp,Cp,Rs,Cs分别为两个串联电路的电阻值和电容值;
h(x)=E(soc)-Up-Us,E(soc)为开路电压,输出矩阵D=R。
CN201910787296.9A 2019-08-26 2019-08-26 基于参数在线估计的锂离子电池soc估测算法 Active CN112433155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910787296.9A CN112433155B (zh) 2019-08-26 2019-08-26 基于参数在线估计的锂离子电池soc估测算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910787296.9A CN112433155B (zh) 2019-08-26 2019-08-26 基于参数在线估计的锂离子电池soc估测算法

Publications (2)

Publication Number Publication Date
CN112433155A true CN112433155A (zh) 2021-03-02
CN112433155B CN112433155B (zh) 2024-09-10

Family

ID=74689997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910787296.9A Active CN112433155B (zh) 2019-08-26 2019-08-26 基于参数在线估计的锂离子电池soc估测算法

Country Status (1)

Country Link
CN (1) CN112433155B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466728A (zh) * 2021-07-13 2021-10-01 北京西清能源科技有限公司 一种两阶段电池模型参数在线辨识的方法与系统
EP4063884A1 (en) * 2021-03-23 2022-09-28 Volvo Truck Corporation A method for estimating or predicting an internal battery state of a battery unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548896A (zh) * 2015-12-25 2016-05-04 南京航空航天大学 基于n-2rc模型的动力电池soc在线闭环估计方法
CN106054084A (zh) * 2016-07-06 2016-10-26 南京航空航天大学 一种动力电池soc估计方法
CN106126783A (zh) * 2016-06-16 2016-11-16 同济大学 一种锂离子电池变时间尺度模型参数估计方法
CN106842060A (zh) * 2017-03-08 2017-06-13 深圳市海云图新能源有限公司 一种基于动态参数的动力电池soc估算方法及系统
CN107390127A (zh) * 2017-07-11 2017-11-24 欣旺达电动汽车电池有限公司 一种soc估算方法
CN108072847A (zh) * 2018-01-29 2018-05-25 西南交通大学 一种动力锂电池模型参数辨识和剩余电量的估计方法
CN109856556A (zh) * 2019-03-21 2019-06-07 南京工程学院 一种动力电池soc估算方法
CN109946623A (zh) * 2019-03-27 2019-06-28 吉林大学 一种锂电池的soc在线估测方法
CN110109019A (zh) * 2019-06-04 2019-08-09 河北工业大学 一种基于ekf算法的混合动力锂电池的soc估算方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548896A (zh) * 2015-12-25 2016-05-04 南京航空航天大学 基于n-2rc模型的动力电池soc在线闭环估计方法
CN106126783A (zh) * 2016-06-16 2016-11-16 同济大学 一种锂离子电池变时间尺度模型参数估计方法
CN106054084A (zh) * 2016-07-06 2016-10-26 南京航空航天大学 一种动力电池soc估计方法
CN106842060A (zh) * 2017-03-08 2017-06-13 深圳市海云图新能源有限公司 一种基于动态参数的动力电池soc估算方法及系统
CN107390127A (zh) * 2017-07-11 2017-11-24 欣旺达电动汽车电池有限公司 一种soc估算方法
CN108072847A (zh) * 2018-01-29 2018-05-25 西南交通大学 一种动力锂电池模型参数辨识和剩余电量的估计方法
CN109856556A (zh) * 2019-03-21 2019-06-07 南京工程学院 一种动力电池soc估算方法
CN109946623A (zh) * 2019-03-27 2019-06-28 吉林大学 一种锂电池的soc在线估测方法
CN110109019A (zh) * 2019-06-04 2019-08-09 河北工业大学 一种基于ekf算法的混合动力锂电池的soc估算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
皮钒等: "基于扩展 PSO 和离散 PI 观测器的电池 SoC 估计", 电子测量与仪器学报, vol. 30, no. 1, pages 11 - 19 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063884A1 (en) * 2021-03-23 2022-09-28 Volvo Truck Corporation A method for estimating or predicting an internal battery state of a battery unit
CN113466728A (zh) * 2021-07-13 2021-10-01 北京西清能源科技有限公司 一种两阶段电池模型参数在线辨识的方法与系统
CN113466728B (zh) * 2021-07-13 2024-04-05 北京西清能源科技有限公司 一种两阶段电池模型参数在线辨识的方法与系统

Also Published As

Publication number Publication date
CN112433155B (zh) 2024-09-10

Similar Documents

Publication Publication Date Title
CN110261778B (zh) 一种锂离子电池soc估测算法
Xu et al. State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter
Chen et al. Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model
CN111581904B (zh) 考虑循环次数影响的锂电池soc及soh协同估算方法
Chen et al. Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach
CN105607009B (zh) 一种基于动态参数模型的动力电池soc估计方法和系统
CN106054084B (zh) 一种动力电池soc估计方法
CN108693472B (zh) 电池等效模型参数在线辨识方法
CN112433154B (zh) 基于ffrls和ekf的锂离子电池soc估测算法
Chen et al. Battery state of charge estimation based on a combined model of Extended Kalman Filter and neural networks
CN104181470B (zh) 一种基于非线性预测扩展卡尔曼滤波的电池soc估计方法
CN108445402A (zh) 一种锂离子动力电池荷电状态估计方法及系统
CN105510829B (zh) 一种新型锂离子动力电池soc估计方法
Jiani et al. Li-ion battery SOC estimation using particle filter based on an equivalent circuit model
CN106126783B (zh) 一种锂离子电池变时间尺度模型参数估计方法
CN109444757A (zh) 一种电动汽车动力电池剩余电量估算方法
CN109917299B (zh) 一种锂电池荷电状态的三层滤波估算方法
Biswas et al. Simultaneous state and parameter estimation of li-ion battery with one state hysteresis model using augmented unscented kalman filter
CN112858916A (zh) 一种基于模型与数据驱动融合的电池包荷电状态估计方法
CN112433155A (zh) 基于参数在线估计的锂离子电池soc估测算法
CN110716146A (zh) 一种动力电池开路电压的估计方法
CN114740385A (zh) 一种自适应的锂离子电池荷电状态估计方法
Morello et al. Comparison of state and parameter estimators for electric vehicle batteries
Koirala et al. Comparison of two battery equivalent circuit models for state of charge estimation in electric vehicles
CN113805062A (zh) 锂电池等效电路模型参数在线鲁棒自适应辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Peng Fuming

Inventor after: Li Qingchao

Inventor before: Li Qingchao

Inventor before: Peng Fuming

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant