CN112430784B - 高硬度大型锻钢支承辊及其制造方法 - Google Patents
高硬度大型锻钢支承辊及其制造方法 Download PDFInfo
- Publication number
- CN112430784B CN112430784B CN202011196457.6A CN202011196457A CN112430784B CN 112430784 B CN112430784 B CN 112430784B CN 202011196457 A CN202011196457 A CN 202011196457A CN 112430784 B CN112430784 B CN 112430784B
- Authority
- CN
- China
- Prior art keywords
- hardness
- forged steel
- steel support
- manufacturing
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B29/00—Counter-pressure devices acting on rolls to inhibit deflection of same under load, e.g. backing rolls ; Roll bending devices, e.g. hydraulic actuators acting on roll shaft ends
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
- C21D1/10—Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/38—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2261/00—Machining or cutting being involved
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
本发明公开了一种高硬度大型锻钢支承辊及其制造方法,包括按照化学成分及重量百分比冶炼和锻造辊坯、预备热处理、半精加工、最终热处理以及精加工;最终热处理中的整体感应淬火采用三阶段功率加热方式:包括先在1700~2000kW保温25~35min,再在800~1200kW保温25~35min,最后在300~500kW保温30~50min。本发明一方面对常规Cr5材质的大型锻钢支承辊中的部分合金元素含量进行优化,另一方面采用特殊的整体感应淬火进行支承辊的辊身表面淬火,最终能够制得辊身表面硬度在75HSD以上、淬硬层深度在70mm以上、硬度下降梯度小的高硬度大型锻钢支承辊,从而能够满足后处理线轧机要求。
Description
技术领域
本发明属于大型锻钢支承辊技术领域,具体涉及一种高硬度大型锻钢支承辊及其制造方法。
背景技术
大型锻钢支承辊是现代轧钢设备的核心功能部件,主要承受工作辊或中间辊的轧制负荷。
随着我国冷/热轧机不断向大型化、高速化、高精度方向发展,冷/热轧工作辊硬度不断提高,这就对与之相配套的大型锻钢支承辊提出了越来越高的要求,而随着高技术含量、高附加值板带等产品需求量的日益增大,钢厂的后处理线轧机尤其对高硬度大型锻钢支承辊的需求量越来越大。
高硬度大型锻钢支承辊的技术要求为:辊身表面硬度为75~78HSD,淬硬层深度≥70mm,报废硬度≥70HSD。
目前,常规Cr5材质的大型锻钢支承辊辊身表面硬度通常不到70HSD(参见中国专利文献CN102634738A等),而且淬硬层深度较浅,硬度下降梯度较大,难以满足后处理线轧机要求。
发明内容
本发明的目的在于针对常规Cr5材质的大型锻钢支承辊辊身表面硬度较低的问题,提供一种辊身表面硬度在75HSD以上、淬硬层深度在70mm以上、从而能够满足后处理线轧机要求的高硬度大型锻钢支承辊及其制造方法。
实现本发明目的的技术方案是:一种高硬度大型锻钢支承辊的制造方法,包括按照化学成分及重量百分比冶炼和锻造辊坯、预备热处理、半精加工、最终热处理以及精加工。
所述化学成分及重量百分比如下:碳0.45~0.55%、硅0.65~1.20%、锰0.70~1.10%、铬4.80~5.50%、镍0.10~0.35%、钼0.40~0.70%、钒0.10~0.30%、磷≤0.015%、硫≤0.010%、其余为铁和不可避免的杂质。
所述预备热处理的淬火温度为950~1050℃。
所述半精加工是将辊身表面磨削加工至粗糙度Ra<0.6μm,同时将辊身倒角加工成R40~R80,并对倒角50~150mm范围内进行抛光。
所述最终热处理包括预热处理、整体感应淬火以及回火处理。
所述预热处理温度为350~450℃,时间为30~50h。
所述回火处理温度为450~550℃,时间为80~120h。
所述整体感应淬火方式是本发明的关键之处,申请人经过大量实验发现,采用三阶段功率加热方式进行整体感应淬火能够获得上述高硬度、深淬硬层的大型锻钢支承辊。
其中,第一阶段加热功率为1700~2000kW,保温时间为25~35min;第二阶段加热功率为800~1200kW,保温时间为25~35min;第三阶段加热功率为300~500kW,保温时间为30~50min。
本发明具有的积极效果:本发明一方面对常规Cr5材质的大型锻钢支承辊中的部分合金元素含量进行优化(适当增加Si和Mn含量以及适当减少Ni含量),另一方面采用特殊的整体感应淬火进行支承辊的辊身表面淬火,最终能够制得辊身表面硬度在75HSD以上、淬硬层深度在70mm以上、硬度下降梯度小的高硬度大型锻钢支承辊,从而能够满足后处理线轧机要求。
具体实施方式
(实施例1)
本实施例的高硬度大型锻钢支承辊的制造方法如下:
①按照下述化学成分及重量百分比采用常规方法冶炼和锻造辊坯:碳0.51%、硅0.82%、锰0.90%、铬5.19%、镍0.14%、钼0.50%、钒0.20%、磷0.008%、硫≤0.003%、其余为铁和不可避免的杂质。
②预备热处理,温度为980℃。
③半精加工:将辊身表面磨削加工至粗糙度Ra为0.5μm,同时将辊身倒角加工成R80,并对倒角50~100mm范围内进行抛光。
④最终热处理,具体如下:
S1:整体感应加热前,在辊身端面以及辊身辊颈连接处贴上耐火棉,然后对大型锻钢支承辊进行预热处理,温度为400±10℃,时间为40h±2h。
预热处理时,两端辊颈下端需要放置支撑架,以防止辊颈在加热过程中变形。
S2:采用三阶段功率方式进行整体感应加热:也即先在1800kW的功率下保温30min,再在1000kW的功率下保温30min,最后在400kW的功率下保温时间为40min。
整体感应加热过程中,大型锻钢支承辊的转速为6r/min,辊身上端、中部以及下端的温差控制在≤10℃范围内。
S3:整体感应加热后,先空冷10min,以减小喷雾冷却时辊身的开裂倾向和变形量;然后进行喷雾冷却,最后进行回火处理,温度为500±10℃,时间为100±2h。
回火处理时,两端辊颈下端同样需要放置支撑架,以防止辊颈在加热过程中变形。
⑤精加工至成品,得到高硬度大型锻钢支承辊。
(实施例2~实施例5)
各实施例的高硬度大型锻钢支承辊的制造方法与实施例1基本相同,不同之处见表1。
表1
实施例1 | 实施例2 | 实施例3 | 实施例4 | 实施例5 | |
C | 0.51% | 0.51% | 0.51% | 0.45% | 0.55% |
Si | 0.82% | 0.82% | 0.82% | 1.00% | 0.75% |
Mn | 0.90% | 0.90% | 0.90% | 1.00% | 0.80% |
Cr | 5.19% | 5.19% | 5.19% | 4.80% | 5.50% |
Ni | 0.14% | 0.14% | 0.14% | 0.10% | 0.30% |
Mo | 0.50% | 0.50% | 0.50% | 0.40% | 0.70% |
V | 0.20% | 0.20% | 0.20% | 0.10% | 0.30% |
P | 0.008% | 0.008% | 0.008% | 0.008% | 0.008% |
S | 0.003% | 0.003% | 0.003% | 0.003% | 0.003% |
第一阶段 | 1800kW/30min | 2000kW/25min | 1700kW/35min | 1800kW/30min | 1800kW/30min |
第二阶段 | 1000kW/30min | 1200kW/25min | 800kW/35min | 1000kW/30min | 1000kW/30min |
第三阶段 | 400kW/40min | 500kW/30min | 300kW/50min | 400kW/40min | 400kW/40min |
(对比例1)
本对比例与实施例1基本相同,不同之处在于:步骤S2采用两阶段功率方式进行整体感应加热:也即先在1500kW的功率下保温50min,再在600kW的功率下保温40min。
(对比例2)
本对比例与实施例1基本相同,不同之处在于:步骤S2的整体感应加热为常规整体感应加热,也即直接加热至1030℃保温3h。
(测试例1)
本测试例为各实施例及各对比例制得的大型锻钢支承辊的辊身表面硬度(单位HSD)测试,具体是测试辊身表面4条母线,每条母线取5点(辊身中部、辊身两端以及辊身中部与辊身两端之间的中部),结果见表2。
表2中的硬度结果表示方法为辊身一端(长辊颈端)至辊身另一端(短辊颈端)。
表2
母线1 | 母线2 | 母线3 | 母线4 | |
实施例1 | 76/77/78/78/77 | 77/78/78/78/77 | 76/77/77/77/76 | 76/76/77/77/76 |
实施例2 | 76/76/77/77/76 | 77/77/78/77/77 | 76/76/77/77/76 | 76/77/78/77/76 |
实施例3 | 75/76/77/76/76 | 76/77/78/77/76 | 75/76/77/76/75 | 76/77/77/76/75 |
实施例4 | 75/76/77/76/75 | 75/76/76/76/75 | 75/76/77/76/76 | 75/75/76/76/75 |
实施例5 | 76/77/77/77/76 | 76/77/78/77/76 | 76/77/77/76/75 | 75/76/77/76/75 |
对比例1 | 72/73/74/74/73 | 73/74/74/74/72 | 73/74/75/74/73 | 73/74/74/73/72 |
对比例2 | 71/73/74/73/71 | 71/73/75/74/72 | 71/72/74/73/72 | 70/72/74/73/71 |
由表2可以看出:各实施例制得的大型锻钢支承辊辊身表明硬度在75HSD以上,满足高硬度大型锻钢支承辊的技术要求。
(测试例2)
本测试例为各实施例及各对比例制得的大型锻钢支承辊的辊身端面硬度(单位HSD)测试,也即淬硬层硬度测试,结果见表3。
表3中的硬度结果表示方法为:长辊颈端硬度/短辊颈端硬度。
表3
与辊身表面距离 | 实施例1 | 实施例2 | 实施例3 | 实施例4 | 实施例5 | 对比例1 | 对比例2 |
10mm | 76.1/76.8 | 76.3/76.7 | 76.0/76.4 | 75.9/75.9 | 76.0/76.2 | 73.2/73.0 | 71.8/72.1 |
20mm | 76.6/77.1 | 76.7/77.2 | 76.4/76.9 | 76.3/76.5 | 76.6/76.7 | 74.8/74.8 | 73.7/73.4 |
30mm | 76.2/76.8 | 76.5/76.6 | 76.0/76.2 | 76.2/76.3 | 76.1/76.2 | 72.8/72.7 | 71.5/71.7 |
40mm | 76.0/76.3 | 76.3/76.2 | 75.9/75.9 | 76.1/76.2 | 75.9/75.9 | 71.5/71.0 | 70.6/69.9 |
50mm | 75.8/75.9 | 76.0/76.1 | 75.8/75.8 | 75.8/75.9 | 75.8/75.7 | 70.2/70.0 | 68.9/68.3 |
60mm | 75.5/75.6 | 75.5/75.7 | 75.4/75.4 | 75.6/75.6 | 75.5/75.4 | 68.9/68.3 | 67.3/66.7 |
70mm | 75.1/75.2 | 75.2/75.3 | 75.0/75.0 | 75.3/75.2 | 75.2/75.1 | 66.6/66.1 | 65.0/64.7 |
80mm | 74.2/73.8 | 74.4/74.2 | 74.1/73.5 | 74.0/73.7 | 74.1/73.6 | 64.2/64.6 | 63.0/62.2 |
90mm | 72.2/72.5 | 73.8/73.1 | 72.8/71.9 | 71.2/71.0 | 71.9/71.5 | 62.7/62.7 | 60.1/58.9 |
100mm | 68.2/69.5 | 70.2/70.5 | 69.5/68.4 | 69.2/68.8 | 68.2/68.1 | 58.2/59.1 | 56.8/56.4 |
由表3可以看出:各实施例制得的大型锻钢支承辊淬硬层深度≥70mm,硬度下降梯度小,满足高硬度大型锻钢支承辊的技术要求。
Claims (6)
1.一种高硬度大型锻钢支承辊的制造方法,包括按照化学成分及重量百分比冶炼和锻造辊坯、预备热处理、半精加工、最终热处理以及精加工;所述化学成分及重量百分比如下:碳0.45~0.55%、硅0.65~1.20%、锰0.70~1.10%、铬4.80~5.50%、镍0.10~0.35%、钼0.40~0.70%、钒0.10~0.30%、磷≤0.015%、硫≤0.010%、其余为铁和不可避免的杂质;所述最终热处理包括预热处理、整体感应淬火以及回火处理;所述整体感应淬火采用三阶段功率加热方式:其中,第一阶段加热功率为1700~2000kW,保温时间为25~35min;第二阶段加热功率为800~1200kW,保温时间为25~35min;第三阶段加热功率为300~500kW,保温时间为30~50min。
2.根据权利要求1所述的高硬度大型锻钢支承辊的制造方法,其特征在于:所述预备热处理的淬火温度为950~1050℃。
3.根据权利要求1所述的高硬度大型锻钢支承辊的制造方法,其特征在于:所述半精加工是将辊身表面磨削加工至粗糙度Ra<0.6μm,同时将辊身倒角加工成R40~R80,并对倒角50~150mm范围内进行抛光。
4.根据权利要求1所述的高硬度大型锻钢支承辊的制造方法,其特征在于:所述预热处理温度为350~450℃,时间为30~50h。
5.根据权利要求1所述的高硬度大型锻钢支承辊的制造方法,其特征在于:所述回火处理温度为450~550℃,时间为80~120h。
6.一种权利要求1至5任一方法制得的高硬度大型锻钢支承辊。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011196457.6A CN112430784B (zh) | 2020-10-30 | 2020-10-30 | 高硬度大型锻钢支承辊及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011196457.6A CN112430784B (zh) | 2020-10-30 | 2020-10-30 | 高硬度大型锻钢支承辊及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112430784A CN112430784A (zh) | 2021-03-02 |
CN112430784B true CN112430784B (zh) | 2022-04-19 |
Family
ID=74695031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011196457.6A Active CN112430784B (zh) | 2020-10-30 | 2020-10-30 | 高硬度大型锻钢支承辊及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112430784B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115558768B (zh) * | 2022-10-31 | 2024-08-23 | 宝钢轧辊科技有限责任公司 | 大型半高速钢热轧辊淬火中断的处理方法 |
CN117051333B (zh) * | 2023-10-12 | 2024-01-23 | 山西同航特钢有限公司 | 一种锻钢支承辊及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102618788B (zh) * | 2012-03-29 | 2013-11-20 | 宝山钢铁股份有限公司 | 一种具有高耐磨性能的支承辊及其制造方法 |
CN104805276B (zh) * | 2014-01-23 | 2017-04-26 | 宝山钢铁股份有限公司 | 一种支承辊用整体感应加热温度控制方法 |
CN105087877B (zh) * | 2015-08-21 | 2017-06-16 | 宝钢轧辊科技有限责任公司 | 控制大型锻钢支承辊淬火后辊身端部无环裂的方法 |
-
2020
- 2020-10-30 CN CN202011196457.6A patent/CN112430784B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112430784A (zh) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112430784B (zh) | 高硬度大型锻钢支承辊及其制造方法 | |
CN110656294B (zh) | 镀锡光整机专用工作辊及其制造方法 | |
CN104946982B (zh) | 一种宽厚板热矫直机工作辊及制造方法 | |
CN102108469A (zh) | 适用于≤60mm厚钢板的热轧热矫直辊及其制备方法 | |
CN109355561B (zh) | 铝箔轧机工作辊及其制造方法 | |
CN110681698A (zh) | 一种38MnS6L非调质钢轧制工艺 | |
CN113249651A (zh) | 一种控轧加高温回火的齿轮钢棒材 | |
CN106435370B (zh) | 冷轧高强汽车板专用高速钢轧辊及其制造方法 | |
CN102618710A (zh) | 将报废冷轧辊改制成合格冷轧辊的方法 | |
CN105171362A (zh) | 森吉米尔中间辊的制造方法 | |
CN101376203A (zh) | 一种制作冷轧辊的工艺方法 | |
CN109930065B (zh) | 一种复合高速钢支承辊及其制备方法 | |
CN103589850A (zh) | 破鳞拉矫机工作辊的制造方法 | |
CN101513654B (zh) | 用于冷轧宽厚板的矫直辊及其制造方法 | |
CN114150114B (zh) | 一种焊管模具钢的改进热处理方法 | |
CN112391582B (zh) | 超深淬硬层锻钢冷轧工作辊及其制造方法 | |
CN110791707B (zh) | 轧制有色金属的高硬度热粗轧工作辊及其制造方法 | |
CN113430463B (zh) | 一种中碳含硼非调质钢材及其制备方法 | |
CN115896434A (zh) | 一种降低高碳铬钢轴承套圈热处理变形的方法 | |
CN112680657B (zh) | 一种有色热轧半高速钢工作辊的制作方法 | |
CN114350927A (zh) | 一种提升支承辊性能的热处理方法 | |
CN109262203B (zh) | 一种耐冲击合金工具钢钢球的制备方法 | |
CN115558768B (zh) | 大型半高速钢热轧辊淬火中断的处理方法 | |
CN114150138B (zh) | 大型锻钢支承辊差温加热中断的处理方法 | |
CN111876682A (zh) | 一种高强度重型汽车用非调质钢连杆及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |