CN112430765B - 一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用 - Google Patents

一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用 Download PDF

Info

Publication number
CN112430765B
CN112430765B CN202011383693.9A CN202011383693A CN112430765B CN 112430765 B CN112430765 B CN 112430765B CN 202011383693 A CN202011383693 A CN 202011383693A CN 112430765 B CN112430765 B CN 112430765B
Authority
CN
China
Prior art keywords
aluminum alloy
resistant
heat
creep
conductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011383693.9A
Other languages
English (en)
Other versions
CN112430765A (zh
Inventor
李红英
席志海
靳东
杨长龙
胡博
金鹏
李希元
李小兰
谭澈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Shenyang Power Supply Co of State Grid Liaoning Electric Power Co Ltd
Original Assignee
Central South University
Shenyang Power Supply Co of State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University, Shenyang Power Supply Co of State Grid Liaoning Electric Power Co Ltd filed Critical Central South University
Priority to CN202011383693.9A priority Critical patent/CN112430765B/zh
Publication of CN112430765A publication Critical patent/CN112430765A/zh
Application granted granted Critical
Publication of CN112430765B publication Critical patent/CN112430765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用,所述导体材料以质量百分比计包括下述组分:Zr:0.02~0.10%、Cu:0.04~0.12%、Ni:0.02~0.06%、La:0.05~0.15%、Y:0.005~0.020%,余量为Al和不可避免的杂质元素;所述制备方法包括配料、熔炼、铸造、变形、热处理。本发明提供的铝合金导体材料具有高导电率并兼顾良好的耐热和抗蠕变性能,20℃的导电率大于60.4%IACS,短期(1h)耐热温度为250℃,长期(400h)耐热温度为210℃,在210℃及30MPa应力条件下的稳态蠕变速率不超过1.79×10‑7s‑1。本发明所设计和制备的材料可以作为导电材料使用,所述导电材料包括但不限于导线、母线、导杆、电线、电缆,特别适用于制备服役温度较高的导电材料。

Description

一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用
技术领域
本发明属于冶金材料技术领域,涉及一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用。
技术背景
我国区域间的电力需求与电力资源严重失衡,需要通过长距离的大容量输电,将电力资源由富集区送往用电负荷集中区,但是,随着输送距离增加,输电线路的电能损耗增大。在输电线路的电能损耗中,由导体电阻导致的电能损耗占比超过80%,导电率提升1%IACS,每公里线路每年平均降低电损2000度左右。随着输电容量增加,导体的服役温度提高,致使其抗拉强度降低,同时还会受热伸长和发生蠕变,由此带来很多问题,例如,导线弧垂大幅增加,致使导线对地距离或对跨越物的距离不能满足安全性要求。
我国的特高压及远距离输电技术处于国际领先地位,但是,架空输电线路用铝导体材料的综合性能水平限制了其发展。在实际应用中,通常会对输电线路的输送容量进行限制或对导体材料提出耐热性要求,保证导体材料在服役温度能有足够的强度残存率和抗蠕变性能。因此,作为远距离、大容量、低损耗输电线路用导体材料,不仅要求其在常温下有较高的导电率,还要求其在服役温度有较高的导电率,而且还要耐热、抗蠕变。但是,现有技术很难使导电率和其他性能指标协同提高,因此,开发高导、耐热、抗蠕变的铝合金导体材料是突破我国电力传输技术进一步发展瓶颈的关键。
公开号为CN108559874A的专利公开了一种高强高导的耐热铝合金导线,公开的导电率达到62%IACS,长期运行温度可达210℃,但该技术方案没有涉及合金的抗蠕变性能,而且,由于Zr、Ce元素的含量很高,导致生产成本增加。
公开号为CN108359861A的专利公开了一种高导耐热抗蠕变铝合金及其制备方法,该技术方案公开的常温导电率只有60.17%IACS,长期耐热温度也只有180℃。
公开号为CN110310755A的专利公开了一种耐蠕变铝合金导体及其制备方法,该技术方案没有涉及合金的耐热性能,而且添加的元素种类较多,会导致生产成本增加,制备工艺也较复杂。
相比现有技术方案,本方明从铝合金组分和制备工艺两方面进行了优化,研制出一种高导电率、耐热、抗蠕变的铝合金导体材料,适合于制备架空导线,也可用于制作母线、导杆,还可制备服役温度较高的电线电缆。
发明内容
针对现有技术的不足,本发明提供一种高导耐热抗蠕变的铝合金导体材料及制备方案,制备出的铝合金兼顾好的导电性、耐热性和抗蠕变性能,同时还具有生产成本较低的优势。
本发明的目的之一在于克服现有技术不足提供一种高导耐热抗蠕变的铝合金导体材料的成分设计方案。
本发明一种高导耐热抗蠕变的铝合金导体材料,所述铝合金以质量百分比计包括下述组分:
Zr:0.02~0.10%;
Cu:0.04~0.12%;
Ni:0.02~0.06%;
La:0.05~0.15%;
Y:0.005~0.020%;
杂质元素Si的总含量小于等于0.05%;
其余Ti、V、Cr、Mn、Zn、Ca等杂质元素的总含量小于等于0.01%;
其余为Al。
在本发明中,Zr的含量为0.02~0.10wt.%,优选为0.03~0.08wt.%,具体地,如0.03wt.%,0.04wt.%,0.05wt.%,0.06wt.%,0.07wt.%,0.08wt.%;Zr元素含量低于0.02%时,难以形成含Zr的第二相粒子,在较高温度下,晶界易动,铝合金的耐热性能和抗蠕变性能满足不了要求;当Zr含量超过0.10wt.%时,可能有初生Al3Zr生成,使晶粒细化导致晶界面积增加,虽然合金耐热性能有所提高,但对合金的导电性能损伤很大。
在本发明中,Cu的含量为0.04~0.12wt.%,优选为0.05~0.10wt.%,具体地,如0.05wt.%,0.06wt.%,0.07wt.%,0.08wt.%,0.09wt.%,0.10wt.%;Cu的含量大于等于0.04wt.%,能有效提高工业纯铝的强度,使合金具有优良的耐热性能;当Cu含量超过0.12wt.%时,会导致铝合金的导电性能显著下降,特别是当其以固溶态存在时。
在本发明中,Ni的含量为0.02~0.06wt.%,优选为0.02~0.04wt.%,具体地,如0.02wt.%,0.03wt.%,0.04wt.%;Ni元素含量大于等于0.02wt.%,与Cu元素协同作用形成铝铜镍相,如β-Al7Cu4Ni、δ-Al3CuNi,可以提高合金的热稳定性;当Ni含量超过0.06wt.%时,对合金的导电性能有负面影响。
本发明中,控制Cu、Ni元素含量比值为2.0~2.5,能充分发挥Cu、Ni元素间的协同作用,促进铝铜镍相的形成,降低Cu、Ni元素的固溶程度,使合金兼顾较好的耐热性能和导电性能。
在本发明中,La的含量为0.05~0.15wt.%,优选为0.10~0.15wt.%,具体地,如0.10wt.%,0.11wt.%,0.12wt.%,0.13wt.%,0.14wt.%,0.15wt.%;La元素含量大于等于0.05wt.%,能净化基体,改善Si元素的分布状况,提高合金的导电率,并在晶界上形成稳定的Al11La3耐热相,强化晶界,有利于获得更优的抗蠕变性能和耐热性能;La元素也能够增强Al、Cu元素的交互作用,促进含Cu耐热相的析出,并且对AlCuNi耐热相具有变质作用,优化合金的综合性能。当La含量高于0.15wt.%时,过量的稀土元素和铝基体形成粗大金属间化合物,反而会降低合金的导电率。
在本发明中,Y的含量为0.005~0.020wt.%,优选为0.005~0.010wt.%,具体地,如0.005wt.%,0.006wt.%,0.007wt.%,0.008wt.%,0.009wt.%,0.010wt.%;Y元素含量大于等于0.005wt.%,能促进Zr元素的脱溶,形成Al3(Zr,Y)复合相,增强其高温抗粗化能力,在较高温下,也能阻碍位错和晶界的运动,提高合金的耐热性能和抗蠕变性能;当Y含量高于0.020wt%时,合金凝固时会有初生Al3Y生成,降低了基体中固溶的Y元素含量,不利于析出Al3(Zr,Y)复合粒子,合金的导电性能和抗蠕变性能会受到影响。
本发明的目的之二在于克服现有技术不足提供一种高导耐热抗蠕变的铝合金导体材料的制备方法,所述制备方法包括如下步骤:按设计组分配取原料、熔炼,进行炉前快速成分分析和成分调整,然后铸造获得母线、导杆、铸坯或连铸坯;所述铸造获得的母线、导杆可作为成品,也可进一步通过热处理改善性能;所述铸坯可通过挤压获得母线、导杆;所述连铸坯可通过连续轧制获得线坯,然后进行热处理和拉拔。
本发明所述熔炼,取工业纯铝锭重熔,或者采用电解铝原液作为铝源,熔炼温度为730℃-770℃,铝熔后加入Al-Zr、Al-Cu、Al-Ni、Al-La、Al-Y中间合金,精炼后进行炉前快速成分分析,按设计的材料组分配比进行成分调整,除渣静置。
本发明所述铸造包括但不限于普通铸造、半连续铸造或连续铸造;铸造冷却速度大于等于20℃/s,通过快速冷却抑制脱溶,为后续热处理析出细小弥散分的第二相粒子提供驱动力,同时,抑制铸态组织中出现分布不均匀的θ-Al2Cu、AlCuNi等粗大化合物,防止其恶化材料的综合性能。图1是本发明实施例11铸态组织的金相照片,由图1中能够看出快速冷却条件下铸态组织中不含粗大的初生相。图2是本发明实施例11铸态组织的扫描电镜照片和初生相的能谱图,其中图2(b)和图2(c)分别是图2(a)中箭头所指球状初生相和晶界上初生相的能谱图,可见呈球形的AlCuNi相,通过变质减弱了其对基体的割裂作用;晶界上初生相含有较高含量的La、Si元素,表明在La元素的作用下,Si原子向晶界富集,减少了Si原子的固溶程度,有利于提高导电率。
本发明所述挤压温度为380-420℃,挤压比λ大于等于6,获得的挤压杆表面质量良好,组织、性能优异。作为优选工艺挤压比λ为6-20;进一步优选为6-17。
本发明所述连续轧制的进轧温度为470-520℃,防止低熔点相熔化,终轧温度低于再结晶温度,以保留适当的加工组织,终轧后快速冷却,保持适当的过饱和程度。
本发明所述热处理包括预时效和时效;所述预时效温度为380-430℃,时间为5-10h,较高的温度提供充足的相变驱动力,促进含Zr第二相粒子、铝铜镍耐热相形核,经高温短时预时效处理,形成均匀分布的亚稳相;所述时效温度为250-300℃,时间为18-24h,时效温度较低,第二相粒子不易发生粗化,可获得高度弥散的第二相,提高铝合金的综合性能。
本发明所述拉拔需根据制品的强度来确定拉拔变形量,变形量优选为大于等于90%。作为进一步的优选方案,平均道次延伸系数为1.25-1.50。
本发明所设计和制备的高导耐热抗蠕变的铝合金导体材料可以作为导电材料使用。所述导电材料包括但不限于导线、母线、导杆、电线、电缆。
本发明所设计和制备的高导耐热抗蠕变的铝合金导体材料,特别适用于制备耐高温电线电缆、架空导线等。
原理和优势
本发明提出了一种高导耐热抗蠕变的铝合金导体材料及制备技术,20℃时导电率大于60.4%IACS,抗拉强度超过210MPa,短期(1h)耐热温度为250℃,长期(400h)耐热温度为210℃,在210℃、30MPa应力条件下的稳态蠕变速率小于等于1.79×10-7s-1
在合金组分方面,同时加入适量的Cu、Ni元素,形成适量的铝铜镍耐热相,提高合金强度和再结晶温度,元素间的协同作用使Cu、Ni原子充分脱溶,降低对合金导电性的影响。添加适量的La元素,增强Al、Cu元素间的交互作用,促进含Cu耐热相的析出,进一步降低Cu元素的固溶程度,优化合金的综合性能。复合加入Zr、Y元素,先析出的Al3Y相,可成为Al3Zr时效析出的异质核心,使合金在时效过程中显示出更高的形核率,有效提高铝的再结晶温度。
在制备工艺方面,铸造冷却速度大于等于20℃/s,提高合金元素的过饱和度,同时抑制铸态组织中出现分布不均匀的θ-Al2Cu、AlCuNi等粗大化合物,减弱其对材料性能的损伤,提高合金的强度和耐热性能。通过变形和预时效、时效工艺,提高时效相的析出密度,使析出相具备更优的抗粗化能力,有效抑制位错滑移和晶界迁移,从而提高铝合金的抗蠕变性能和耐热性能。图3是本发明实施例11拉拔后的金相照片,从图中能够看出合金组织中分布着细小、弥散的第二相。
附图说明
图1为本发明实施例11铸态组织的金相照片;.
图2为本发明实施例11铸态组织的扫描电镜照片及初生相的能谱图;
图3为本发明实施例11拉拔后的金相照片;
图4为本发明对比例6铸态组织的金相照片;
图5为本发明实施例1、实施例8、对比例2的蠕变曲线图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
在本发明的实施例和对比例中,采用工业纯铝锭作为原料,以中间合金的形式加入Zr、Cu、Ni、La、Y元素,控制熔炼温度为750℃,待中间合金完全熔化后充分搅拌、精炼、炉前快速成分分析,根据分析结果调整至表1所述成分配比,其中杂质元素Si的含量小于等于0.05%,Ti、V、Cr、Mn杂质元素总含量小于0.01wt.%,Al为余量。
表1合金元素成分配比表(wt%)
Figure BDA0002808501780000061
Figure BDA0002808501780000071
待化学成分稳定后进行连续铸造,铸造冷却速度为25℃/s,所得铸坯通过连续轧制得到Φ9.5mm的铝合金圆杆;对铝合金圆杆进行预时效处理,预时效温度为400℃,时间为6h,冷至300℃时继续保温18h进行时效,最后冷拉得到Φ3mm的铝合金导线。
按照标准GB/T 228.1-2010测试抗拉强度,按照GB/T 12966-2008测试20℃的电导率,按照标准GB/T 11546.1-2008测试试样的蠕变性能,实验温度为210℃,应力为30MPa,测试结果如表2所示。
表2测试结果
Figure BDA0002808501780000072
Figure BDA0002808501780000081
由表2可知,本发明实施例所述高导耐热抗蠕变的铝合金导体材料在20℃导电率大于60.4%IACS,抗拉强度超过210MPa,短期(1h)耐热温度为250℃,长期(400h)耐热温度为210℃,在210℃、30MPa应力条件下的稳态蠕变速率小于等于1.79×10-7s-1
由实施例1、11、2可以看出,Zr元素的含量越高,铝合金导体材料的耐热性能越好,随着Zr元素的含量的增加,导电率呈现下降趋势,但牺牲不大,总体具有良好的综合性能匹配。结合实施例11和对比例6、7可知,当La元素超过或低于本发明范围,导电率均不能达到本发明指标,添加适量的La元素才能使合金保持较高的导电率。图4是本发明对比例6铸态组织的金相照片,由图可以看出铸态组织枝晶明显,枝晶间存在大量的第二相粒子,主要为含La化合物。对比例5、对比例8说明,Ni和Y元含量超过本发明范围时,对导电率均有负面影响。
由对比例1、2、3、4、6、7可以看出,Zr、Cu、La元素对合金的耐热性能和抗蠕变性能影响显著,当其中一种元素含量为0时,合金的耐热性能和抗蠕变性能明显降低,当其中一种元素含量超过本发明范围时,虽然强度、耐热性能和抗蠕变性能均有提高,但导电率不能达到本发明指标。图5是本发明实施例1、实施例8和对比例2的蠕变曲线图,由图可以看出,蠕变曲线分为三个阶段,其中,I为减速蠕变阶段,II为稳态蠕变阶段,III为加速蠕变阶段,实施例1、实施例8的稳态蠕变阶段较为平缓,稳态蠕变速率分别为1.79×10-7s-1、1.45×10-7s-1,抗蠕变性能好;对比例2的Zr元素含量为0,稳态蠕变阶段陡峭,稳态蠕变速率达到2.27×10-7s-1,抗蠕变性能差。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种高导耐热抗蠕变的铝合金导体材料,其特征在于,所述铝合金以质量百分比计包括下述组分:
Zr:0.02~0.10%;
Cu:0.04~0.12%;
Ni:0.02~0.06 %;
La: 0.05~0.15%;
Y:0.005~0.020%;
杂质元素Si的含量小于等于0.05%;
其余杂质的总含量小于等于0.01%,所述其余杂质包括Ti、V、Cr、Mn、Zn、Ca中的至少一种;
余量为 Al;
所述铝合金中,Cu、Ni元素的质量比为2.0~2.5;
所得铝合金导体材料在20℃的导电率大于60.4%IACS,1h短期耐热温度为250℃,400h长期耐热温度为210℃,在210℃、30MPa应力条件下的稳态蠕变速率小于等于1.79×10-7 s-1
2.根据权利要求1所述的一种高导耐热抗蠕变的铝合金导体材料,其特征在于,所述铝合金以质量百分比计包括下述组分:
Zr:0.03~0.08%;
Cu:0.05~0.10%;
Ni:0.02~0.04 %;
La:0.10~0.15%;
Y:0.005~0.010%;
杂质元素Si的含量小于等于0.05%;
其余杂质的总含量小于等于0.01%,所述其余杂质包括Ti、V、Cr、Mn、Zn、Ca中的至少一种;
余量为 Al。
3.根据权利要求1所述的一种高导耐热抗蠕变的铝合金导体材料,其特征在于,所述高导耐热抗蠕变的铝合金导体材料通过下述步骤制备:
按设计组分配取原料、熔炼,进行炉前快速成分分析和成分调整,然后铸造获得连铸坯;所述连铸坯通过连续轧制获得线坯,然后进行热处理和拉拔;得到高导耐热抗蠕变的铝合金导体材料;所述热处理包括预时效和时效;
铸造冷却速度大于等于20 ℃/s;
所述连续轧制的进轧温度为470-520℃;
所述预时效的温度为380-430℃,时间为5-10h;
所述时效的温度为250-300℃,时间为18-24h。
4.根据权利要求3所述的一种高导耐热抗蠕变的铝合金导体材料,其特征在于,所述拉拔的变形量大于等于90%。
5.根据权利要求4所述的一种高导耐热抗蠕变的铝合金导体材料,其特征在于,所述高导耐热抗蠕变的铝合金导体材料通过下述步骤制备:
首先按设计组分配取原料、熔炼,进行炉前快速成分分析和成分调整,铸造冷却速度为25℃/s,所得铸坯通过连续轧制得到Φ9.5mm的铝合金圆杆;对铝合金圆杆进行预时效处理,预时效温度为400℃,时间为6h,冷至300℃时继续保温18h进行时效,最后冷拉得到Φ3mm的铝合金导线。
CN202011383693.9A 2020-11-30 2020-11-30 一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用 Active CN112430765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011383693.9A CN112430765B (zh) 2020-11-30 2020-11-30 一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011383693.9A CN112430765B (zh) 2020-11-30 2020-11-30 一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN112430765A CN112430765A (zh) 2021-03-02
CN112430765B true CN112430765B (zh) 2022-04-22

Family

ID=74698122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011383693.9A Active CN112430765B (zh) 2020-11-30 2020-11-30 一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN112430765B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725879B (zh) * 2022-12-02 2023-08-25 广东远光电缆实业有限公司 一种高导电率铝合金导线及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402763A (en) * 1980-04-14 1983-09-06 Sumitomo Electric Industries, Ltd. High conductive heat-resistant aluminum alloy
CN103352145A (zh) * 2013-07-01 2013-10-16 巢湖市金业电工机械有限公司 一种电缆用新型铝合金线材及其制备方法与应用
CN103757493A (zh) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 一种汽车线用Al-Fe-Cu-Ni铝合金及其线束
CN104775055A (zh) * 2015-04-01 2015-07-15 苏州欢颜电气有限公司 一种高韧性高强度高导电性铝合金导线及制备方法
CN104928537A (zh) * 2014-03-17 2015-09-23 华为技术有限公司 一种高抗压蠕变低电阻率铝合金导体材料及其制备方法和电缆
CN106893899A (zh) * 2017-03-27 2017-06-27 河北欣意电缆有限公司 一种架空用耐热铝合金导体材料及其制备方法
CN107557618A (zh) * 2017-08-30 2018-01-09 中南大学 一种低电阻温度敏感的高导耐热铝合金及其制备工艺和应用
CN108359861A (zh) * 2018-03-12 2018-08-03 郑州轻研合金科技有限公司 一种高导耐热抗蠕变铝合金及其制备方法
CN110343912A (zh) * 2019-07-18 2019-10-18 上海交通大学 一种稀土耐热铝合金导线材料及制备方法
CN111411267A (zh) * 2019-11-12 2020-07-14 全球能源互联网研究院有限公司 一种导电单丝材料及其制备方法
CN111793758A (zh) * 2020-05-26 2020-10-20 国网辽宁省电力有限公司沈阳供电公司 架空导线用高导电率耐热铝合金单丝及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EG10355A (en) * 1970-07-13 1976-05-31 Southwire Co Aluminum alloy used for electrical conductors and other articles and method of making same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402763A (en) * 1980-04-14 1983-09-06 Sumitomo Electric Industries, Ltd. High conductive heat-resistant aluminum alloy
CN103352145A (zh) * 2013-07-01 2013-10-16 巢湖市金业电工机械有限公司 一种电缆用新型铝合金线材及其制备方法与应用
CN103757493A (zh) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 一种汽车线用Al-Fe-Cu-Ni铝合金及其线束
CN104928537A (zh) * 2014-03-17 2015-09-23 华为技术有限公司 一种高抗压蠕变低电阻率铝合金导体材料及其制备方法和电缆
CN104775055A (zh) * 2015-04-01 2015-07-15 苏州欢颜电气有限公司 一种高韧性高强度高导电性铝合金导线及制备方法
CN106893899A (zh) * 2017-03-27 2017-06-27 河北欣意电缆有限公司 一种架空用耐热铝合金导体材料及其制备方法
CN107557618A (zh) * 2017-08-30 2018-01-09 中南大学 一种低电阻温度敏感的高导耐热铝合金及其制备工艺和应用
CN108359861A (zh) * 2018-03-12 2018-08-03 郑州轻研合金科技有限公司 一种高导耐热抗蠕变铝合金及其制备方法
CN110343912A (zh) * 2019-07-18 2019-10-18 上海交通大学 一种稀土耐热铝合金导线材料及制备方法
CN111411267A (zh) * 2019-11-12 2020-07-14 全球能源互联网研究院有限公司 一种导电单丝材料及其制备方法
CN111793758A (zh) * 2020-05-26 2020-10-20 国网辽宁省电力有限公司沈阳供电公司 架空导线用高导电率耐热铝合金单丝及其制备方法

Also Published As

Publication number Publication date
CN112430765A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
US10460849B2 (en) Lightweight, high-conductivity, heat-resistant, and iron-containing aluminum wire, and preparation process thereof
US20100086435A1 (en) Cu-Ni-Si SYSTEM ALLOY FOR ELECTRONIC MATERIALS
CN101974709A (zh) 特软铝合金导体及其制备方法
WO2016088887A1 (ja) アルミニウム合金線材、アルミニウム合金撚線、被覆電線およびワイヤーハーネスならびにアルミニウム合金線材の製造方法
CN113528900B (zh) 一种短流程高导电6系铝合金板带材及其制备方法
CN113564408B (zh) 一种高强高导稀土铜合金Cu-Cr-Zr-Y及其制备方法
CN112522549A (zh) 一种高强、高导、耐蚀、可焊、良好热成型性能铝合金及其制备方法和应用
CN111826558A (zh) 一种铝-镁-硅合金单丝及其制备方法
CN112430765B (zh) 一种高导耐热抗蠕变的铝合金导体材料及制备方法和应用
CN110846543B (zh) 一种耐热合金单丝及其制备方法
CN110735069B (zh) 高导电率中强全铝合金节能导线及其制备方法
JP4166196B2 (ja) 曲げ加工性が優れたCu−Ni−Si系銅合金条
CN111575528A (zh) 含Zr铜合金材料的制造方法及其铜合金材料
CN108281213B (zh) 一种铁路用稀土铝合金电缆及导体制备方法
JP2013095987A (ja) アルミニウム合金線及びその製造方法
CN112853173A (zh) 一种添加铼元素的耐热铝合金及其制备方法和应用
JPH08277447A (ja) 導電用アルミニウム合金線の製造方法
CN114000017A (zh) 一种高强高导铝合金导体材料及其制备方法
JP2001254132A (ja) 導電用耐熱性アルミニウム合金及び合金線の製造方法
CN103757502A (zh) 一种汽车线用Al-Fe-Cu-Mg-Sr-Be系铝合金及其线束
RU2804566C1 (ru) Сплав на основе алюминия и изделие из него
CN115821129B (zh) 高强高导铝合金节能导线及其制备方法
CN114381634B (zh) 具有双球壳结构析出相耐热铝锆合金电缆材料及其制备方法
JP7311651B1 (ja) 電子材料用銅合金及び電子部品
CN117701957A (zh) 一种高导电率高强度铝合金单丝材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant