CN112421242A - 一种极宽带综合口径阵列天线的布阵方法 - Google Patents

一种极宽带综合口径阵列天线的布阵方法 Download PDF

Info

Publication number
CN112421242A
CN112421242A CN202011229171.3A CN202011229171A CN112421242A CN 112421242 A CN112421242 A CN 112421242A CN 202011229171 A CN202011229171 A CN 202011229171A CN 112421242 A CN112421242 A CN 112421242A
Authority
CN
China
Prior art keywords
array
frequency
antenna
array antenna
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011229171.3A
Other languages
English (en)
Other versions
CN112421242B (zh
Inventor
王杰
张小林
王亚茹
王一杰
李鹏
方佳
金谋平
朱庆超
苗菁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 38 Research Institute
Original Assignee
CETC 38 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 38 Research Institute filed Critical CETC 38 Research Institute
Priority to CN202011229171.3A priority Critical patent/CN112421242B/zh
Publication of CN112421242A publication Critical patent/CN112421242A/zh
Application granted granted Critical
Publication of CN112421242B publication Critical patent/CN112421242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种极宽带综合口径阵列天线的布阵方法,属于天线技术领域,包括以下步骤:S1:频段划分;S2:低频段阵列天线布阵;S3:中频段阵列天线排布区域选择及布阵;S4:高频段阵列天线排布区域选择及布阵。本发明能够实现百倍频程的天线阵列在有限的口径内,尽量采用较少的单元数量,同时保证低副瓣、高增益以及大角度扫描等优点,有效的地解决了传统的紧耦合超宽带阵列天线带宽受到最大不出栅瓣的阵列单元间距限制的问题,相比于传统的分频段共口径天线,不同频段天线互相嵌套,减少了天线数目和口径面积,节约了成本。

Description

一种极宽带综合口径阵列天线的布阵方法
技术领域
本发明涉及天线技术领域,具体涉及一种极宽带综合口径阵列天线的布阵方法。
背景技术
随着对天线要求的不断提高,超宽带、大角度扫描天线是天线工程应用的重要发展方向,尤其是带宽超过百倍频的极宽带阵列天线。传统的超宽带阵列天线大多采用紧耦合阵列天线形式,这种天线对于带宽超过10:1,无论是天线单元本身无法达到这么大的带宽,还是阵列单元间距受到阵列方向图不出栅瓣的限制,目前的阵列天线都难以实现。
为解决上述问题,提出一种极宽带综合口径阵列天线的布阵方法。
发明内容
本发明所要解决的技术问题在于:如何在实现带宽超过百倍频程的阵列天线的同时使天线具有低副瓣和宽角扫描等性能,提供了一种极宽带综合口径阵列天线的布阵方法,可有效地减小天线单元数量的同时,保证整个频段内天线实现大角度扫描、低副瓣和高增益等特性;对未来超宽带SAR成像雷达系统、超宽带电子侦察和干扰系统以及雷达、通信、电子战多功能一体化综合电子系统等有较大的工程应用价值。
本发明是通过以下技术方案解决上述技术问题的,本发明包括以下步骤:
S1:频段划分
将百倍频程的工作频段划分成高、中、低三个超宽带频段,其中低频段和中频段阵列天线采用稀疏化布阵,高频段阵列天线采用紧耦合阵列布阵;
S2:低频段阵列天线布阵
采用超宽带稀疏化阵列优化算法,将低频段天线单元稀疏排布于全局口径面内,全局口径面为三个频段阵列天线共同排布的区域;
S3:中频段阵列天线排布区域选择及布阵
根据中频段阵列天线圆口径面积,在全局口径面内通过移动中频段阵列天线圆口径的圆心位置,寻找中频段圆形口径内低频段天线单元最少的圆心位置,确定中频段阵列天线的圆口径区域,采用超宽带稀疏化阵列优化算法,将中频段天线单元稀疏排布在该圆口径区域内,中频段阵列天线与该区域内所有的低频段阵列天线的单元距离不小于低频段阵列天线最低频的半个波长;
S4:高频段阵列天线排布区域选择及布阵
选择远离中频段阵列天线的区域,且该区域位于低频段阵列天线单元间距最大的区域,确定该区域为高频段阵列天线排布区域,采用紧耦合阵列排布,将整个阵列插入到低频段天线单元之间。
更进一步地,所述超宽带稀疏化阵列优化算法是将一个包含N个阵元的圆形口径面分为面积相等的P个扇形区域,每块扇区的圆心角为
Figure BDA0002764590030000021
每个扇区中的阵元数为M=NP,优化一个扇区内阵元的位置
Figure BDA0002764590030000022
其中r表示阵元半径值,
Figure BDA0002764590030000023
表示阵元的圆心角值,得到该扇区内阵元的最终排布位置,再以
Figure BDA0002764590030000024
的角度间隔旋转对称得到整个圆形口径面的阵面排布。
更进一步地,所述超宽带稀疏化阵列优化算法的具体过程如下:
S21:确定阵列结构的基本参数和工作频带,每个阵元由r、
Figure BDA0002764590030000025
这两个变量共同决定,在(0,R]和
Figure BDA0002764590030000026
范围内随机生成初始父代种群,种群数目满足Np≥(4+3ln(2M)),M为一个扇区内的阵元数;
S22:计算每个种群的适应度函数并按从小到大的顺序对其进行排序,判断是否有适应值满足要求,有则导出优化结果,反之,选取前NP2个最小的种群组成子代种群,Np为种群个数,并进行下一步迭代,目标函数如下:
fcost=PSLLdB+c0(dtarget-min(dmin,dtarget))2
其中,PSLL为整个阵列方向图的副瓣最大值,c0为比重因子,取为1,dtarget为目标天线单元之间最小间距,dmin是实际天线单元之间的最小间距;
S23:根据子代种群,对算法中的均值、步长、协方差矩阵等参量进行更新,再由新的正态分布产生新的父代种群;
S24:重复步骤S21~S23,直到找到满足条件的优化结果或者完成整个迭代。
更进一步地,在所述步骤S1中,频率划分时低频段和中频段阵列天线两个频段的阵列天线带宽设计不超过7:1,高频段阵列天线按照3:1带宽设计。
更进一步地,在所述步骤S2和S3中,低频段和中频段阵列天线的天线单元间距不小于对应工作频段内最低频对应的半个波长;低频段和中频段阵列天线之间的天线单元间距不小于低频段阵列天线最低频对应的半个波长。
更进一步地,在所述步骤S2和S3中,根据该频段天线增益要求,按照等间距排布方式计算所需单元数量,将计算得到的天线单元数作为初始值带入到超宽带稀疏化阵列优化算法中进行优化,根据优化得到的天线增益和适应值函数增加或者减小天线单元数量,增益计算公式如下:
GdB=10logN+G0 dB
其中G0表示天线单元增益,单位为dB,N表示天线单元数目,G为天线增益,单位为dB。
更进一步地,在所述步骤S2中,所使用的超宽带稀疏化阵列优化算法的目标函数为阵列最小单元间距和方向图最高副瓣的线性叠加;在所述步骤S3中,中频段阵列天线稀疏化布阵优化时除去区域内低频段阵列天线所占区域,在剩下的区域中排布中频段阵列天线,所使用的超宽带稀疏化阵列优化算法的目标函数为最小单元间距(包括中频段阵列天线单元之间和中频段与低频段阵列天线单元之间的距离)和方向图最高旁瓣的线性叠加。
更进一步地,在所述步骤S3中,寻找中频段阵列天线排布位置的过程如下:
S31:首先根据中频段阵列天线增益要求计算得到天线所需的圆口径面积,圆面积的计算公式如下:
Figure BDA0002764590030000031
其中A表示天线口径面积,G表示天线增益,λ表示天线工作波长。中频段阵列天线的半径根据圆口径面积计算得出。
S32:然后沿着x轴和y轴两个维度方向在已经排布了低频段阵列天线的全局口径面内移动中频段阵列天线圆口径的圆心,寻找中频段阵列天线的圆口径占据的低频段阵列天线面积最少的圆即为中频段天线排布区域,其中低频段阵列天线的面积为中频段阵列天线圆口径内实际的低频段阵列天线单元投影面积之和。
更进一步第,高频段紧耦合阵列天线的阵列中心位置为离中频段阵列天线圆口径的圆心距离为Sd以外的全局口径区域内,Sd计算公式如下:
Sd=r1+r2+5λmin
其中r1表示中频段圆口径半径距离,r2表示高频段中心到阵列边缘的距离,λmin表示高频段最低频率对应的波长。然后再在该区域内寻找到一点离周围最近的0.3-2GHz天线单元中心距离之和最小的点的位置即为高频段天线单元的中心位置。
更进一步地,低频段和中频段阵列天线的相邻天线单元之间耦合度低于-30dB。
更进一步地,低频段和中频段阵列天线极化方向互相垂直,三个频段的天线单元高度顶部平齐,中频段和高频段抬高地板,保持和低频段阵列天线高度一致。
本发明相比现有技术具有以下优点:该极宽带综合口径阵列天线的布阵方法,通过采用大间距的超宽带稀疏化布阵,突破了传统阵列天线单元间距不超过最高频半个波长的限制;通过采用将中频段稀疏化阵列天线和高频段紧耦合阵列天线插入在低频段稀疏化阵列天线之中,解决了传统紧耦合共口径天线不能互相穿插,口径面积较大的问题;突破了传统超宽带天线带宽的限制,可以实现100:1的带宽,可适应多个系统的工作频率需求,适应于集雷达、通信、电子战和其它功能一体的多功能综合电子系统,值得被推广使用。
附图说明
图1是本发明实施例二中极宽带综合口径阵列天线排布方法的流程示意图(图中空心三角形表示低频段天线单元,实心三角形表示中频段天线单元,矩形表示高频段阵列天线);
图2是本发明实施例二中0.3~2GHz阵列天线经超宽带稀疏化阵列优化后的排布示意图;
图3是本发明实施例二中2~12GHz阵列天线通过移动圆心位置寻找最终天线排布区域的示意图;
图4是本发明实施例二中0.3~2GHz和2~12GHz阵列天线经超宽带稀疏化阵列优化后的排布示意图;
图5是本发明实施例二中0.3~2GHz、2~12GHz超宽带稀疏化阵列以及12~30GHz紧耦合阵列综合口径排布示意图;
图6是本发明实施例二中0.3GHz处由算法根据天线排布得到的天线法向方向图;
图7是本发明实施例二中0.3GHz处由算法根据天线排布得到的天线扫描45°方向图;
图8是本发明实施例二中2GHz处由算法根据天线排布得到的天线法向方向图;
图9是本发明实施例二中2GHz处由算法根据天线排布得到的天线扫描45°方向图;
图10是本发明实施例二中12GHz处由算法根据天线排布得到的天线法向方向图;
图11是本发明实施例二中12GHz处由算法根据天线排布得到的天线扫描45°方向图;
图12是本发明实施例二中30GHz处由10×10个单元组成的紧耦合阵列天线在法向的方向图;
图13是本发明实施例二中30GHz处由10×10个单元组成的紧耦合阵列天线在扫描45°的方向图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例一
本实施例提供一种技术方案:一种极宽带综合口径阵列天线的布阵方法,包括以下步骤:
S1:频段划分
将百倍频程的工作频段划分成高、中、低三个超宽带频段,低频段和中频段阵列天线采用稀疏化布阵,高频段阵列天线采用紧耦合阵列布阵。
S2:低频段阵列天线稀疏化布阵
采用超宽带稀疏化阵列优化算法,将低频段天线单元稀疏排布于全局口径面内,全局口径面为三个频段阵列天线共同排布的区域。
本发明采用的稀疏化阵列优化算法是一种基于种群的进化策略,以多元正态分布的形式引导种群在搜索空间进行搜索,即每一代种群从多元正态分布中抽样产生,多元正态分布被其期望值和对称正定协方差矩阵唯一确定;算法的核心是通过调节种群的均值、协方差以及优化变量数等参数使算法达到尽可能好的搜索效果。
算法的基本原理是将一个包含N个阵元的圆形口径面分为面积相等的P个扇形区域,那么每块扇区的圆心角为
Figure BDA0002764590030000051
每个扇区中的阵元数为M=NP,由于旋转对称阵列的阵因子也具有相似的对称性,故只需要优化一个扇区内阵元的位置
Figure BDA0002764590030000052
其中r表示阵元半径值,
Figure BDA0002764590030000053
表示阵元的圆心角值,得到该扇区内阵元的最终排布位置,再以
Figure BDA0002764590030000054
的角度间隔旋转对称得到整个圆形口径面的阵面排布。
算法的具体步骤包括:
第一步:确定阵列结构的基本参数和工作频带,每个阵元由r、
Figure BDA0002764590030000055
这两个变量共同决定,在(0,R]和
Figure BDA0002764590030000056
范围内随机生成初始父代种群,种群数目满足Np≥(4+3ln(2M)),M为一个扇区内的阵元数。
第二步:根据公式(1)计算每个种群的适应度函数并按从小到大的顺序对其进行排序,判断是否有适应值满足要求,有则导出优化结果,反之,选取前Np/2个适应值最小的种群组成子代种群,Np为种群个数,并进行下一步迭代;
fcost=PSLLdB+c0(dtarget-min(dmin,dtarget))2 (1)
其中,PSLL为整个阵列方向图的副瓣最大值,c0为比重因子,这里取1,dtarget为目标天线单元之间最小间距,dmin是实际天线单元之间的最小间距。
第三步:根据子代种群,对算法中的均值、步长、协方差矩阵等参量进行更新,再由新的正态分布产生新的父代种群。
第四步:重复上述步骤,直到找到满足条件的优化结果或者完成整个迭代。
S3:中频段阵列天线排布区域选择和稀疏化布阵
根据中频段阵列天线圆口径面积,在全局口径面内通过移动中频段阵列天线圆口径的圆心位置寻找中频段圆形口径内低频段天线单元最少的圆心位置从而确定中频段阵列天线的圆口径区域。采用超宽带稀疏化阵列优化算法,将中频段阵列天线排布在上述区域内,保证中频段阵列天线与该区域内所有的低频段阵列天线的单元距离不小于低频段阵列天线最低频的半个波长。
S4高频段阵列天线排布区域选择和紧耦合布阵
高频段阵列天线排布区域为距离中频段阵列天线圆心距离为Sd的以外的全局口径区域内,然后在该圆外区域内寻找一点离周围0.3-2GHz天线单元中心距离之和最大的点即为12-30GHz阵列天线的中心位置,根据12-30GHz天线增益计算出口径大小,最终得到了12-30GHz天线的口径区域。由于高频段阵列天线尺寸相对于低频段天线单元间距较小,因此采用紧耦合阵列排布,将整个阵列插入到低频端天线单元之间。
在所述步骤S1中,频率划分时低频段和中频段阵列天线由于受到超宽带稀疏化算法带宽的限制,两个频段的阵列天线带宽设计不要超过7:1,另外尽可能沿用国际规定的天线频段划分,避免将同一频段拆开。低频段和中频段阵列天线可按照6:1带宽设计,高频段阵列天线按照3:1带宽设计。
在所述步骤S2和S3中,低频段和中频段阵列天线的稀疏化布阵,要求天线单元间距不小于该工作频段内最低频对应的半个波长;低频段和高频段阵列天线之间的单元间距要求不小于低频段阵列天线最低频对应的半个波长。
在所述步骤S2和S3中,根据该频段天线增益要求,按照等间距排布方式计算所需单元数量,计算公式如下公式2,将计算得到的天线单元数作为初始值带入到超宽带稀疏化阵列优化算法中进行优化,根据优化得到的天线增益和适应值函数增加或者减小天线单元数量。
GdB=10logN+G0 dB (2)
其中G0表示天线单元增益,单位为dB,N表示天线单元数目,G为天线增益,单位为dB。
在所述步骤S2中,所使用的超宽带稀疏化阵列优化算法的目标函数为阵列最小单元间距和方向图最高副瓣的线性叠加,如公式1所示。
在所述步骤S3中,中频段阵列天线稀疏化布阵优化时需除去区域内低频段阵列天线所占区域,在剩下的区域中排布中频段阵列天线,所使用的超宽带稀疏化阵列优化算法的目标函数为最小单元间距(包括中频段阵列天线单元之间和中频段与低频段阵列天线单元之间)和方向图最高旁瓣的线性叠加。
在所述步骤S3中,寻找中频段阵列天线排布位置的方法为:首先根据中频段阵列天线增益要求计算得到天线所需的圆口径面积,中频段阵列天线的半径根据圆口径面积计算,然后沿着x轴和y轴两个维度方向在已经排布了低频段阵列天线的全局口径面内移动中频段阵列天线圆口径的圆心,寻找中频段阵列天线的圆口径占据的低频段阵列天线面积最少的圆即为中频段天线排布区域。其中低频段阵列天线的面积为中频段阵列天线圆口径内实际的低频段阵列天线单元投影面积之和。
在所述步骤S4中,高频段紧耦合阵列天线的阵列中心位置为离中频段圆心距离为Sd以外的全局口径区域内,Sd计算公式如下:
Sd=r1+r2+5λmin (3)
其中r1表示中频段圆口径半径距离,r2表示高频段中心到阵列边缘的距离,λmin表示高频段最低频率对应的波长。然后再在该区域内寻找到一点离周围最近的0.3-2GHz天线单元中心距离之和最小的点的位置即为高频段天线单元的中心位置。
低频段和中频段阵列天线的天线单元需实现相邻单元之间耦合度低于-30dB。
低频段和中频段阵列天线极化方向互相垂直,三个频段的天线单元高度顶部平齐,中频段和高频段需要抬高地板,保持和低频段阵列天线高度一致。
实施例二
如图1~13所示,本实施中使用本发明的极宽带综合口径阵列天线布阵方法实现0.3~30GHz阵列天线设计。要求在整个口径面积不大于3m×3m的口径内,具有两维扫描±45°的功能。
S1:频段划分
0.3~30GHz阵列天线整体带宽达到了100:1,考虑到超宽带稀疏化布局优化带宽限制和常用频段划分原则,将频段划分为三段,分别为0.3~2GHz、2~12GHz以及12~30GHz,每段阵列天线带宽不超过7:1。
S2:低频段阵列天线稀疏化布阵
首先通过实施例一中的公式(2)得到0.3~2GHz阵列天线的天线单元数量作为稀疏化布阵优化算法的初始值,然后通过稀疏布阵优化算法得到0.3~2GHz阵列天线在3m×3m口径内阵列天线排布,要求单元和单元之间的间距要不小于最低频率0.3GHz对应的半个波长(500mm),且具有较低的副瓣和二维扫描角度大于±45°的性能,算法优化得到所需天线单元数量为24个,天线单元间距最小为503mm,阵列天线扫描45°的方向图。
S3:中频段阵列天线排布区域选择和稀疏化布阵
计算出2~12GHz阵列天线所需要的圆口径面积,其中天线单元和天线单元之间的距离要不小于最低频率2GHz对应的半个波长(75mm),故圆口径面积的计算公式为:
Figure BDA0002764590030000081
其中,λ为天线的工作波长,A为圆口径面积,G为天线增益,根据指定频率处天线增益要求得到圆口径面积,通过圆口径面积计算出半径(r)为1m。沿着X轴和Y轴两个方向在直径为3m的全局口径圆内移动2~12GHz阵列天线的圆心位置,寻找出包含0.3~2GHz阵列天线单元投影面积之和最小的圆区域,即为2~12GHz阵列天线布局的区域。
通过实施例一中的公式(2)得到2~12GHz阵列天线稀疏化优化算法中天线单元数量初始值,扣除所选定的2~12GHz圆区域内的0.3~2GHz单元的区域,将2~12GHz天线单元布局在扣除后的剩余区域内,且保证天线单元之间的距离大于最低频2GHz对应的半个波长(75mm),最终得到满足2~12GHz增益和扫描范围指标要求的位置布局。2~12GHz阵列天线单元最终数目为127个,单元间距最小间距为76mm,天线扫描45度的最大副瓣为-20dB。
S4:高频段阵列天线排布区域选择紧耦合布阵
根据0.3~2GHz的增益要求,按照公式4计算出12-30GHz紧耦合阵列天线的口径面积为6400mm2,选择正方形的布阵方式,最终得到12~30GHz的口径尺寸为80mm×80mm。在已经排布了0.3~2GHz和2~12GHz的3m×3m的圆形口径内,以2~12GHz圆心位置为圆心,距离Sd为半径在3m×3m的口径内画圆,12~30GHz的口径中心就在该圆外的3m×3m的区域内。其中Sd=r2-12GHz+d12-30GHz+5λ12GHz,其中r2-12GHz为2~12GHz的口径半径,这里为1m,d12-30GHz为12~30GHz的中心距离口径边缘的距离,为40mm,λ12GHz为12GHz对应的波长,为25mm,故Sd的值为1165mm。然后该区域内寻找一个点离周围最近的0.3~2GHz天线单元中心间距之和最大的点即为12~30GHz的口径中心位置,将12~30GHz阵列天线放置其中,最终得到整个300MHz~30GHz综合口径阵列天线布局。
综上所述,上述实施例的极宽带综合口径阵列天线的布阵方法,由通过采用大间距的超宽带稀疏化布阵,突破了传统阵列天线单元间距不超过最高频半个波长的限制;通过采用将中频段稀疏化阵列天线和高频段紧耦合阵列天线插入在低频段稀疏化阵列天线之中,解决了传统紧耦合共口径天线不能互相穿插,口径面积较大的问题;突破了传统超宽带天线带宽的限制,可以实现100:1的带宽,可适应多个系统的工作频率需求,适应于集雷达、通信、电子战和其它功能一体的多功能综合电子系统,值得被推广使用。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种极宽带综合口径阵列天线的布阵方法,其特征在于,包括以下步骤:
S1:频段划分
将百倍频程的工作频段划分成高、中、低三个超宽带频段,其中低频段和中频段阵列天线采用稀疏化布阵,高频段阵列天线采用紧耦合阵列布阵;
S2:低频段阵列天线布阵
采用超宽带稀疏化阵列优化方法,将低频段天线单元稀疏排布于全局口径面内,全局口径面为三个频段阵列天线共同排布的区域;
S3:中频段阵列天线排布区域选择及布阵
根据中频段阵列天线圆口径面积,在全局口径面内通过移动中频段阵列天线圆口径的圆心位置,寻找中频段圆形口径内低频段天线单元最少的圆心位置,确定中频段阵列天线的圆口径区域,采用超宽带稀疏化阵列优化方法,将中频段天线单元稀疏排布在该圆口径区域内,中频段阵列天线与该区域内所有的低频段阵列天线的单元距离不小于低频段阵列天线最低频的半个波长;
S4:高频段阵列天线排布区域选择及布阵
选择远离中频段阵列天线的区域,且该区域位于低频段阵列天线单元间距最大的区域,确定该区域为高频段阵列天线排布区域,采用紧耦合阵列排布,将整个阵列插入到低频段天线单元之间。
2.根据权利要求1所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:所述超宽带稀疏化阵列优化方法是将一个包含N个阵元的圆形口径面分为面积相等的P个扇形区域,每块扇区的圆心角为
Figure FDA0002764590020000011
每个扇区中的阵元数为M=N/P,优化一个扇区内阵元的位置
Figure FDA0002764590020000012
其中r表示阵元半径值,
Figure FDA0002764590020000013
表示阵元的圆心角值,得到该扇区内阵元的最终排布位置,再以
Figure FDA0002764590020000014
的角度间隔旋转对称得到整个圆形口径面的阵面排布。
3.根据权利要求2所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:所述超宽带稀疏化阵列优化方法的具体过程如下:
S21:确定阵列结构的基本参数和工作频带,每个阵元由r、
Figure FDA0002764590020000015
这两个变量共同决定,在(0,R]和
Figure FDA0002764590020000016
范围内随机生成初始父代种群,种群数目满足Np≥(4+3ln(2M)),M为一个扇区内的阵元数;
S22:计算每个种群的适应度函数并按从小到大的顺序对其进行排序,判断是否有适应值满足要求,有则导出优化结果,反之,选取前NP/2个最小的种群组成子代种群,Np为第P代种群个数,并进行下一步迭代,适应值函数如下:
fcost=PSLLdB+c0(dtarget-min(dmin,dtarget))2
其中,PSLL为整个阵列方向图的副瓣最大值,c0为比重因子,取为1,dtarget为目标天线单元之间最小间距,dmin是实际天线单元之间的最小间距;
S23:根据子代种群,对算法中的均值、步长、协方差矩阵等参量进行更新,再由新的正态分布产生新的父代种群;
S24:重复步骤S21~S23,直到找到满足条件的优化结果或者完成整个迭代。
4.根据权利要求3所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:在所述步骤S1中,频率划分时低频段和中频段阵列天线两个频段的阵列天线带宽设计不超过7:1,高频段阵列天线按照3:1带宽设计。
5.根据权利要求4所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:在所述步骤S2和S3中,低频段和中频段阵列天线的天线单元间距不小于对应工作频段内最低频对应的半个波长;低频段和中频段阵列天线之间的天线单元间距不小于低频段阵列天线最低频对应的半个波长。
6.根据权利要求5所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:在所述步骤S2和S3中,根据该频段天线增益要求,按照等间距排布方式计算所需单元数量,将计算得到的天线单元数作为初始值带入到超宽带稀疏化阵列优化方法中进行优化,根据优化得到的天线增益和适应值函数增加或者减小天线单元数量,计算公式如下:
GdB=10log N+G0 dB
其中G0表示天线单元增益,单位为dB,N表示天线单元数目,G为天线增益,单位为dB。
7.根据权利要求6所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:在所述步骤S2中,所使用的超宽带稀疏化阵列优化方法的目标函数为阵列最小单元间距和方向图最高副瓣的线性叠加;在所述步骤S3中,中频段阵列天线稀疏化布阵优化时除去区域内低频段阵列天线所占区域,在剩下的区域中排布中频段阵列天线,所使用的超宽带稀疏化阵列优化方法的目标函数为阵列最小单元间距和方向图最高旁瓣的线性叠加。
8.根据权利要求7所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:在所述步骤S3中,寻找中频段阵列天线排布位置的过程如下:
S31:首先根据中频段阵列天线增益要求计算得到天线所需的圆口径面积,天线口径面积计算公式如下:
Figure FDA0002764590020000031
其中A表示天线口径面积,G表示天线增益,λ表示天线最低频率对应的工作波长。中频段阵列天线的半径根据圆口径面积计算得出。
S32:然后沿着x轴和y轴两个维度方向在已经排布了低频段阵列天线的全局口径面内移动中频段阵列天线圆口径的圆心,寻找中频段阵列天线的圆口径内占据的低频段阵列天线面积最少的圆即为中频段天线排布区域,其中低频段阵列天线的面积为中频段阵列天线圆口径内实际的低频段阵列天线单元投影面积之和。
9.根据权利要求8所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:高频段紧耦合阵列天线的阵列中心位置为离中频段阵列天线圆口径的圆心距离为Sd以外的全局口径区域内,Sd计算公式如下:
Sd=r1+r2+5λmin
其中r1表示中频段圆口径的半径,r2表示高频段中心到阵列边缘的距离,λmin表示高频段最低频率对应的波长;
然后再在该区域内寻找到一点离周围最近的0.3-2GHz天线单元中心距离之和最小的点的位置即为高频段阵列天线的中心位置。
10.根据权利要求9所述的一种极宽带综合口径阵列天线的布阵方法,其特征在于:低频段和中频段阵列天线极化方向互相垂直,三个频段的天线单元高度顶部平齐,中频段和高频段地板抬高,保持和低频段阵列天线高度一致。
CN202011229171.3A 2020-11-06 2020-11-06 一种极宽带综合口径阵列天线的布阵方法 Active CN112421242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011229171.3A CN112421242B (zh) 2020-11-06 2020-11-06 一种极宽带综合口径阵列天线的布阵方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011229171.3A CN112421242B (zh) 2020-11-06 2020-11-06 一种极宽带综合口径阵列天线的布阵方法

Publications (2)

Publication Number Publication Date
CN112421242A true CN112421242A (zh) 2021-02-26
CN112421242B CN112421242B (zh) 2022-04-19

Family

ID=74780409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011229171.3A Active CN112421242B (zh) 2020-11-06 2020-11-06 一种极宽带综合口径阵列天线的布阵方法

Country Status (1)

Country Link
CN (1) CN112421242B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632561A (zh) * 2023-07-19 2023-08-22 南京纳特通信电子有限公司 一种稀布高增益天线阵列设计方法、存储介质
CN116995451A (zh) * 2023-09-27 2023-11-03 成都金支点科技有限公司 一种极化敏感阵列布阵的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337152A1 (en) * 2009-12-10 2011-06-22 Agence Spatiale Européenne Dual-polarisation reflectarray antenna with improved cros-polarization properties
US20140139643A1 (en) * 2009-06-03 2014-05-22 Flir Systems, Inc. Imager with array of multiple infrared imaging modules
US20150226846A1 (en) * 2014-02-12 2015-08-13 Battelle Memorial Institute Shared aperture antenna array
WO2016022727A1 (en) * 2014-08-05 2016-02-11 Massachusetts Institute Of Technology Auxiliary antenna array for wideband sidelobe cancellation
CN106650260A (zh) * 2016-12-22 2017-05-10 厦门大学 最小间距可控的超宽带无栅瓣稀疏线阵设计方法
CN106650104A (zh) * 2016-12-25 2017-05-10 厦门大学 考虑互耦效应的宽带非频变稀疏阵列综合方法
CN109214088A (zh) * 2018-09-07 2019-01-15 厦门大学深圳研究院 一种最小间距可控的大规模超稀疏平面阵列快速布局方法
CN109818157A (zh) * 2019-01-25 2019-05-28 电子科技大学 一种基于不规则子阵的紧耦合超宽带天线阵列的构建方法
CN110571531A (zh) * 2019-09-27 2019-12-13 中国电子科技集团公司第三十八研究所 一种基于抛物柱面反射阵的多波束相控阵天线
US20190393921A1 (en) * 2018-06-26 2019-12-26 The Trustees Of Princeton University System and method for transceiver and antenna programmability and generalized mimo architectures
CN111129787A (zh) * 2019-12-10 2020-05-08 华东师范大学 基于阵列天线的可加载红外源的毫米波准平面波生成器
CN111458711A (zh) * 2020-04-24 2020-07-28 北京卫星信息工程研究所 星载双波段sar系统和舰船目标的探测方法
EP3690483A1 (en) * 2019-02-04 2020-08-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method for synthesis of antenna array layouts or selection of waveform in a set of mutually incoherent apertures for radar and radio-frequency applications

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140139643A1 (en) * 2009-06-03 2014-05-22 Flir Systems, Inc. Imager with array of multiple infrared imaging modules
EP2337152A1 (en) * 2009-12-10 2011-06-22 Agence Spatiale Européenne Dual-polarisation reflectarray antenna with improved cros-polarization properties
US20150226846A1 (en) * 2014-02-12 2015-08-13 Battelle Memorial Institute Shared aperture antenna array
WO2016022727A1 (en) * 2014-08-05 2016-02-11 Massachusetts Institute Of Technology Auxiliary antenna array for wideband sidelobe cancellation
CN106650260A (zh) * 2016-12-22 2017-05-10 厦门大学 最小间距可控的超宽带无栅瓣稀疏线阵设计方法
CN106650104A (zh) * 2016-12-25 2017-05-10 厦门大学 考虑互耦效应的宽带非频变稀疏阵列综合方法
US20190393921A1 (en) * 2018-06-26 2019-12-26 The Trustees Of Princeton University System and method for transceiver and antenna programmability and generalized mimo architectures
CN109214088A (zh) * 2018-09-07 2019-01-15 厦门大学深圳研究院 一种最小间距可控的大规模超稀疏平面阵列快速布局方法
CN109818157A (zh) * 2019-01-25 2019-05-28 电子科技大学 一种基于不规则子阵的紧耦合超宽带天线阵列的构建方法
EP3690483A1 (en) * 2019-02-04 2020-08-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method for synthesis of antenna array layouts or selection of waveform in a set of mutually incoherent apertures for radar and radio-frequency applications
CN110571531A (zh) * 2019-09-27 2019-12-13 中国电子科技集团公司第三十八研究所 一种基于抛物柱面反射阵的多波束相控阵天线
CN111129787A (zh) * 2019-12-10 2020-05-08 华东师范大学 基于阵列天线的可加载红外源的毫米波准平面波生成器
CN111458711A (zh) * 2020-04-24 2020-07-28 北京卫星信息工程研究所 星载双波段sar系统和舰船目标的探测方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C.I. COMAN: "Shared Aperture Sparse Array Antenna for Wide Band Applications", 《IEEE》 *
I.E. LAGER: "The shared aperture, sparse array antenna approach to designing broadband array antennas", 《IEEE》 *
丁卓富: "平面紧凑型多功能相控阵天线阵面关键技术研究", 《中国博士学位论文全文数据库》 *
李媛等: "宽带分形阵列天线的设计及其耦合分析", 《传感技术学报》 *
李帆: "基于差分进化算法的宽频带扫描不等间距直线阵设计", 《微波学报》 *
郑少勇等: "面向微波毫米波频段协同的共口径天线研究综述", 《移动通信》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632561A (zh) * 2023-07-19 2023-08-22 南京纳特通信电子有限公司 一种稀布高增益天线阵列设计方法、存储介质
CN116632561B (zh) * 2023-07-19 2023-09-19 南京纳特通信电子有限公司 一种稀布高增益天线阵列设计方法、存储介质
CN116995451A (zh) * 2023-09-27 2023-11-03 成都金支点科技有限公司 一种极化敏感阵列布阵的方法
CN116995451B (zh) * 2023-09-27 2023-12-15 成都金支点科技有限公司 一种极化敏感阵列布阵的方法

Also Published As

Publication number Publication date
CN112421242B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN112421242B (zh) 一种极宽带综合口径阵列天线的布阵方法
CN105789877A (zh) 基于超表面的四波束微带透射阵天线及其设计方法
CN110190390B (zh) 基于冗余设计的k波段超材料微带天线及设计方法
CN107896129B (zh) 一种稀布同心圆环阵的降维优化算法
CN107732464B (zh) 一种多变量赋形波束天线的设计方法、系统和介质
CN106654601A (zh) 无栅瓣宽角扫描混合阵列超稀疏布局方法
CN114357767B (zh) 一种宽带宽角波束扫描的和差波束稀疏阵列综合方法
Wang et al. Synthesis of wideband rotationally symmetric sparse circular arrays with multiple constraints
Xu et al. Grating lobe suppression of non-uniform arrays based on position gradient and sigmoid function
CN115084874A (zh) 基于异构子阵非均匀布局的波束扫描阵列优化设计方法
CN116244940A (zh) 一种双波束超宽带阵列天线优化布局方法
CN109271735B (zh) 基于量子启发式引力搜索算法的阵列方向图综合方法
CN112467388B (zh) 一种稀疏布阵多频复合口面阵列天线的设计方法
CN114552227B (zh) 一种基于稀布相控阵馈电的平面龙伯透镜天线
CN211578961U (zh) 宽带平板反射天线
CN113948877A (zh) 一种太赫兹龙伯透镜多波束天线
CN114709616A (zh) 基于幅相调控的超宽带强耦合天线阵边缘效应抑制方法
Elizarrarás et al. Design of aperiodic spherical antenna arrays for wideband performance
KR20240022532A (ko) 감소된 사이드로브를 갖는 어드밴스드 안테나 시스템
Gal et al. Thinning Satellite Communication Antenna Arrays for Dual Band Operation
CN115036710B (zh) 一种多级分形子阵平面阵列及其排布方法
CN114914698B (zh) 一种覆层型双频毫米波超材料卦形微带天线的设计方法
CN116632561B (zh) 一种稀布高增益天线阵列设计方法、存储介质
CN116031626B (zh) 一种高增益毫米波天线
CN113708090B (zh) 一种基于圆环共形的泰勒权值优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant